14 光的衍射
第十四章 光的衍射(单章答案)

习题十四 光的衍射14-3 衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.14-4 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动?答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.14-5 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a 284sin λλϕ⨯==a 14-6 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小. 14-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样说明?答:不矛盾.单缝衍射暗纹条件为k k a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.14-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽? 答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.14-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1)a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ 可知,当k ab a k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;(2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.14-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什么因素有关?解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强.(2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞. 14-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长?解:单缝衍射的明纹公式为)12(sin +=k a ϕ2λ 当6000=λo A 时,2=k x λλ=时,3=k重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ 得 4286600075=⨯=x λo A 14-12 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f =40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1) 由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k 由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA (2) 若60003=λo A ,则P 点是第3级明纹;若47004=λo A ,则P 点是第4级明纹.(3) 由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带;当4=k 时,单缝处的波面可分成912=+k 个半波带. 14-13 用λ=590nm 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A由λϕk b a =+sin )(知,最多见到的条纹级数max k 对应的2πϕ=, 所以有39.35900100.24max ≈⨯=+=λb a k ,即实际见到的最高级次为3max =k . 这就是中央明条纹的位移值.14-14 波长λ=600nm 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a101060003)(30.0-⨯⨯=+b a得 6100.6-⨯=+b a m(2) 因第四级缺级,故此须同时满足λϕk b a =+sin )(λϕk a '=sin解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m(3) 由λϕk b a =+sin )(λϕsin )(b a k += 当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λb a k 因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).14-15 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800o A 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹? 解:(1)中央明纹宽度为02.010501048002270⨯⨯⨯⨯==-f a l λmm 4.2=cm (2)由缺级条件λϕk a '=sinλϕk b a =+sin )(知k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k 即⋅⋅⋅=,15,10,5k 缺级.中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.14-16 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000o A ,求在透镜焦平面处屏幕上呈现的爱里斑半径.解:由爱里斑的半角宽度47105.302.010500022.122.1--⨯=⨯⨯==D λθ ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 14-17 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式 D λθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm。
光的衍射详解

光栅常数:d=a+b 数量级为10-5~10-6m
b为刻痕,不透光。
• 光栅衍射的实验装置 •
二、光栅衍射条纹的形成 光栅每个缝形成各自的单缝衍射图样。 光栅缝与缝之间形成的多缝干涉图样。 光栅衍射条纹是单缝衍射与多缝干涉的总效果。
(a+b) sin
a b
(a+b) sin ——相邻两缝光线的光程差
1 最小分辨角的倒数 称为光学仪器的分辨率
0
1D
0 1.22
D为光学仪器的透光孔径 D越大,或越小分辨率越高。
13-6 X 射线的衍射
1895年伦琴发现X 射线。 X 射线是波长很短的电磁波。
X 射线的波长: 0.01 ~ 10nm
X射线管
阴极
阳极 (对阴极)
10
4~ 10
5 V
+
X 射线衍射---劳厄实验
S1
D
*
S2 *
爱里斑
瑞利判据:如果一个点光源的衍射图象的中央最亮处刚好与另一个点光源的衍射图象第一个最暗处相重合, 认为这两个点光源恰好能被光学仪器所分辨。
不
恰
能
能
能
分
分
分
辨
辨
辨
s 1*
s* 2
0 D
在恰能分辨时,两个点光源在透镜前所张的角度, 称为最小分辨角0 ,等于爱里斑的半角宽度。
01.22/D
a d k k
amin
d1500nm 4
(3)实际上能观察到的全部明纹数是多少?
dsink
k
max
d sin
sin1, k6000nm10
600nm
在-900<sinθ<900范围内可观察到的明纹级数为k=0,1, 2, 3, 5, 6, 7, 9,共19条明纹
14光的衍射习题解答解析

解
(1)条纹相重合就是位置相同,或衍射角相同。 根据暗条纹条件:a sin 1 22 1 2 2 即1是2的两倍。
k1 2 1 (2)同样, a sin k11 k22 k2 1 2
即衍射级别成两倍关系的条纹重合。
第 11 页
三、计算题 2. 波长=600nm的单色光垂直入射到一光栅上,测得第二级明条 纹衍射角为30°,且第三级是缺级。(1) 光栅常数(a+b)等于 多少?(2) 透光缝可能的最小宽度a等于多少? (3) 在选定了上述 (a+b)和a之后,求在屏幕上可能呈现的全部明条纹的级次。
可能出现的全部主极大的级次为0, 1, 2,共5条
第 12 页
三、计算题 3. 一 衍 射 光 栅 , 每 厘 米 有 200 条 透 光 缝 , 每 条 透 光 缝 宽 为 a=2103mm,在光栅后放一焦距f =1m的凸透镜,现以的单 色平行光垂直照射光栅,求:(1) 透光缝a的单缝衍射中央明纹 宽度为多少?(2) 在该宽度内,有几个光栅衍射明条纹?
习题解答
——14光的衍射
1
第1页
一、选择题 1. 在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a稍稍变宽, 则屏幕C上的中央衍射条纹将[ ] A (A) 变窄 (B) 不变 (C) 变宽 (D) 无法确定
解
单缝衍射问题。 注意其条纹特点:中央明 条纹是其他各级明条纹宽 度的两倍。 由两侧第一级暗条纹的位 置求出中央明条纹宽为:
第7页
二、填充题 3. 波长为=480nm的平行光垂直照射到宽度为a=0.40mm的单缝上, 单缝后透镜的焦距为f=60cm,当单缝两边缘点A、B射向P点的两 条光线在P点的相位差为时,P点离透镜焦点O的距离等 于 0.36mm 。
第十四章 第2讲 光的干涉、衍射和偏振

第2讲光的干涉、衍射和偏振目标要求 1.知道什么是光的干涉、衍射和偏振.2.掌握双缝干涉中出现亮、暗条纹的条件.3.知道发生明显衍射的条件.考点一光的干涉现象光的干涉(1)定义:在两列光波叠加的区域,某些区域相互加强,出现亮条纹,某些区域相互减弱,出现暗条纹,且加强区域和减弱区域相互间隔的现象.(2)条件:两束光的频率相同、相位差恒定.(3)双缝干涉图样特点:单色光照射时,形成明暗相间的等间距的干涉条纹.1.光的颜色由光的频率决定.(√)2.频率不同的两列光波不能发生干涉.(√)3.在“双缝干涉”实验中,双缝的作用是使白光变成单色光.(×)4.在“双缝干涉”实验中,双缝的作用是用“分光”的方法使两列光的频率相同.(√) 1.双缝干涉(1)条纹间距:Δx=ldλ,对同一双缝干涉装置,光的波长越长,干涉条纹的间距越大.(2)明暗条纹的判断方法:如图所示,相干光源S1、S2发出的光到屏上P′点的路程差为Δr=r2-r1.当Δr=nλ(n=0,1,2,…)时,光屏上P′处出现明条纹.当Δr=(2n+1)λ2(n=0,1,2,…)时,光屏上P′处出现暗条纹.2.薄膜干涉(1)形成原因:如图所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.光照射到薄膜上时,从膜的前表面AA′和后表面BB′分别反射回来,形成两列频率相同的光波,并且叠加.(2)明暗条纹的判断方法:两个表面反射回来的两列光波的路程差Δr等于薄膜厚度的2倍,光在薄膜中的波长为λ.在P1、P2处,Δr=nλ(n=1,2,3,…),薄膜上出现明条纹.在Q处,Δr=(2n+1)λ2(n=0,1,2,3,…),薄膜上出现暗条纹.(3)应用:增透膜、检查平面的平整度.考向1双缝干涉例1在图示的双缝干涉实验中,光源S到缝S1、S2距离相等,P0为S1、S2连线的中垂线与光屏的交点.用波长为400 nm的光实验时,光屏中央P0处呈现中央亮条纹(记为第0条亮条纹),P处呈现第3条亮条纹.当改用波长为600 nm的光实验时,P处将呈现()A.第2条亮条纹B.第3条亮条纹C.第2条暗条纹D.第3条暗条纹答案 A解析由公式Δx=ld λ可知PP03=ldλ1,当改用波长为600 nm 的光实验时,则有PP0n=ldλ2,即n3=λ1λ2=400600,解得n=2,即P处将呈现第2条亮条纹,A正确.考向2薄膜干涉例2(多选)图甲是用光的干涉法来检查物体平面平整程度的装置,其中A为标准平板,B 为待检查的物体,C为入射光,图乙为观察到的干涉条纹,下列说法正确的是()A.入射光C应采用单色光B.图乙条纹是由A的下表面反射光和B的上表面反射光发生干涉形成的C.当A、B之间某处距离为入射光的半波长奇数倍时,对应条纹是暗条纹D.由图乙条纹可知,被检查表面上有洞状凹陷答案AB例3(2021·江苏卷·6)铁丝圈上附有肥皂膜,竖直放置时,肥皂膜上的彩色条纹上疏下密,由此推测肥皂膜前后两个面的侧视形状应当是()答案 C解析薄膜干涉为前后两个面反射回来的光发生干涉形成干涉条纹,当入射光为复色光时,出现彩色条纹.由于重力作用,肥皂膜前后表面的厚度从上到下逐渐增大,从而使干涉条纹上疏下密,由于表面张力的作用,使得肥皂膜向内凹陷,故C正确,A、B、D错误.考点二光的衍射和偏振现象1.光的衍射发生明显衍射现象的条件:只有当障碍物或狭缝的尺寸足够小的时候,衍射现象才会明显.2.光的偏振(1)自然光:包含着在垂直于传播方向上沿一切方向振动的光,而且沿着各个方向振动的光波的强度都相同.(2)偏振光:在垂直于光的传播方向的平面上,只沿着某个特定的方向振动的光.(3)偏振光的形成①让自然光通过偏振片形成偏振光.②让自然光在两种介质的界面发生反射和折射,反射光和折射光可以成为部分偏振光或完全偏振光.(4)偏振光的应用:加偏振滤光片的照相机镜头、液晶显示器、立体电影、消除车灯眩光等.(5)光的偏振现象说明光是一种横波.1.阳光下茂密的树林中,地面上的圆形亮斑是光的衍射形成的.(×)2.泊松亮斑是光的衍射形成的.(√)3.光遇到障碍物时都能产生衍射现象.(√)4.自然光是偏振光.(×)1.单缝衍射与双缝干涉的比较单缝衍射双缝干涉不同点条纹宽度条纹宽度不等,中央最宽条纹宽度相等条纹间距各相邻亮条纹间距不等各相邻亮(暗) 条纹等间距亮度情况中央条纹最亮,两边变暗条纹清晰,亮度基本相同相同点干涉、衍射都是波特有的现象,都属于波的叠加;干涉、衍射都有明暗相间的条纹2.光的干涉和衍射的本质从本质上看,干涉条纹和衍射条纹的形成有相似的原理,光的干涉和衍射都属于光波的叠加,干涉是从单缝通过两列频率相同的光在屏上叠加形成的,衍射是由来自单缝上不同位置的光在屏上叠加形成的.考向1单缝衍射与双缝干涉的比较例4如图所示的4种明暗相间的条纹分别是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(黑色部分表示亮条纹).在下面的4幅图中从左往右排列,亮条纹的颜色依次是()A.红黄蓝紫B.红紫蓝黄C.蓝紫红黄D.蓝黄红紫答案 B解析双缝干涉条纹是等间距的,而单缝衍射条纹除中央亮条纹最宽、最亮之外,两侧条纹亮度、宽度都逐渐减小,因此1、3为双缝干涉条纹,2、4为单缝衍射条纹.相邻亮条纹间距Δx=lλ,红光波长比蓝光波长长,则红光干涉条纹间距大于蓝光干涉条纹间距,即1、3d分别对应红光和蓝光.而在单缝衍射中,当单缝宽度一定时,波长越长,衍射越明显,即中央条纹越宽越亮,黄光波长比紫光波长长,即2、4分别对应紫光和黄光.综上所述,1、2、3、4四幅图中亮条纹的颜色依次是:红、紫、蓝、黄,B正确.考向2光的偏振例5奶粉的碳水化合物(糖)的含量是一个重要指标,可以用“旋光法”来测量糖溶液的浓度,从而鉴定含糖量.偏振光通过糖的水溶液后,偏振方向会相对于传播方向向左或向右旋转一个角度α,这一角度α称为“旋光度”,α的值只与糖溶液的浓度有关,将α的测量值与标准值相比较,就能确定被测样品的含糖量了.如图所示,S是自然光源,A、B是偏振片,转动B,使到达O处的光最强,然后将被测样品P置于A、B之间.(1)偏振片A的作用是_____________________________________________________.(2)偏振现象证明了光是一种________.(3)以下说法中正确的是________.A.到达O处光的强度会减弱B.到达O处光的强度不会减弱C.将偏振片B转动一个角度,使得O处光强度最强,偏振片B转过的角度等于αD.将偏振片A转动一个角度,使得O处光强度最强,偏振片A转过的角度等于α答案(1)把自然光变成偏振光(2)横波(3)ACD解析(1)自然光通过偏振片后变为偏振光,故A的作用是把自然光变成偏振光.(2)偏振现象证明光是一种横波.(3)偏振片只能让一定偏振方向的光通过,没有样品时,要使到达O处的光最强,偏振片A、B的透光方向应相同;当放入样品时,由于样品的“旋光度”是α,即偏振方向不再与B的透光方向平行,到达O处光的强度会减弱,A正确,B错误;偏振片B转过的角度等于α,并使偏振片B的透振方向与偏振光的偏振方向平行时,光到达O处的强度将再次最大,C正确;同理,D正确.考点三几何光学与物理光学的综合应用例6如图所示,不同波长的两单色光a、b沿同一方向从空气射向半圆形玻璃砖,入射点O在直径的边缘,折射光线分别为OA、OB,则()A.a单色光的频率比b单色光的频率小B.当a、b两束光由玻璃射向空气中,a光临界角比b光临界角大C.在玻璃砖中a单色光从O到A的传播时间不等于b单色光从O到B的传播时间D.用a、b两束光在相同条件下做双缝干涉实验,a光产生的干涉条纹间距比b光小答案 D解析因为a光的偏折程度大于b光,所以根据折射定律得知:玻璃对a光的折射率大于对b光的折射率,所以a单色光的频率比b单色光的频率大,故A错误;根据全反射临界角公,可知,a光的折射率大,则a光的临界角小于b光的临界角,故B错误;对于式sin C=1n任一光束研究:设入射角为i,折射角为r,玻璃砖的半径为R,则折射率为n=sin i,光在sin r,光在玻璃中传播距离为s=2R sin r,光在玻璃中传播时间为t=s v,玻璃中传播速度为v=cn,i、R、c均相等,所以在玻璃砖中a单色光从O到A的传播时间等联立以上可得t=2R sin ic于b单色光从O到B的传播时间,故C错误;根据折射率大,频率高,波长短,可知a光的折射率大于b光的折射率,则a光在真空中的波长小于b光在真空中的波长,根据双缝干涉条纹间距公式,可知a光产生的干涉条纹间距比b光小,故D正确.例7如图所示,截面为等腰直角三角形ABC的玻璃砖,∠B=90°,一束频率为f=6×1014 Hz的光线从AB面中点处垂直射入棱镜,在AC面发生全反射,从BC面射出后,进入双缝干涉装置.已知AC 长度L =0.3 m ,双缝间距d =0.2 mm ,光屏与双缝间距离l =1.0 m ,光在真空中的传播速度为c =3.0×108 m/s.求:(1)玻璃砖对该光线的折射率的最小值n ; (2)光线在玻璃砖中传播的最短时间t ; (3)光屏上相邻亮条纹的间距Δx . 答案 (1)2 (2)1×10-9 s (3)2.5 mm解析 (1) 由几何关系知,光线在AC 面发生全反射的入射角为45°,可知临界角C ≤45°时,折射率有最小值,由sin C =1n 得n ≥2,即最小折射率为 2.(2) 由几何关系可知,光线在玻璃砖中传播距离 s =22L ,光线在玻璃砖中的传播速度v =c n传播时间t =s v代入数据解得最短时间t =1×10-9 s (3) 由λ=c f ,Δx =ldλ联立代入数据解得Δx =2.5 mm.课时精练1.下列有关光学现象说法中正确的是( )A .甲中荷叶上的露珠显得特别“明亮”是由于水珠将光线会聚而形成的B .乙中将双缝干涉实验中的双缝间距调小,则干涉条纹间距变小C .丙中用加有偏振滤光片的相机拍照,可以拍摄清楚汽车内部的情景D.丁中肥皂膜在阳光下呈现彩色条纹是光的衍射现象答案 C解析题图甲中荷叶上的露珠显得特别“明亮”是由于水珠对光线的全反射形成的,故A错误;在双缝干涉实验中,条纹间距Δx=lλ,若将双缝间距d调小,则条纹间距Δx变大,故dB错误;在照相机镜头前加装偏振滤光片拍摄汽车内部情景,滤去了汽车外玻璃的反射光,使景象清晰,故C正确;肥皂膜表面可看到彩色条纹,是因为肥皂膜的前后两面反射回来的两列光发生干涉时形成的,故D错误.2.(2019·北京卷·14)利用图示的装置(示意图),观察光的干涉、衍射现象,在光屏上得到如图中甲和乙两种图样.下列关于P处放置的光学元件说法正确的是()A.甲对应单缝,乙对应双缝B.甲对应双缝,乙对应单缝C.都是单缝,甲对应的缝宽较大D.都是双缝,甲对应的双缝间距较大答案 A解析由题图中给出的甲、乙两种图样可知,甲是单缝衍射的图样,乙是双缝干涉的图样,A项正确,B、C、D项错误.3.(多选)(2023·河北张家口市模拟)通过如图甲所示的装置可研究光的干涉和衍射现象.从光源发出的光经过一缝板,在缝板后有一装有感光元件的光屏,通过信号转换,可在电脑上看到屏上的光强分布情况.图乙分别显示出A光和B光通过同一缝板得到的光强分布情况.下列有关A、B两种色光的说法正确的有()A.光通过的可能是缝板上的单缝B.A光的波长比B光的波长长C.A光在玻璃中的传播速度大于B光在玻璃中的传播速度D.A光比B光更容易发生明显的衍射现象答案BCD解析从光的强度分布可以看出,光屏上的光是等间距、等亮度的,所以是光通过双缝产生的干涉现象,A错误;由题图乙可看出,A光的条纹间距大于B光的,由Δx=lλ可知,A光d的波长大于B光的波长,B正确;A光的频率小于B光的频率,则玻璃对A光的折射率小于对B光的折射率,所以A光在玻璃中的传播速度大于B光在玻璃中的传播速度,C正确;由于A光的波长较长,所以更容易发生明显的衍射现象,D正确.4.(2023·江苏海安市检测)如图所示,a、b两束不同单色光相互平行,从平行玻璃砖PQ表面入射,从MN面出射时变为一束光c,则下列说法正确的是()A.a、b中有一束光在MN面发生了全发射B.在玻璃中a光传播速度大于b光的传播速度C.在同一个双缝干涉装置中,a光干涉条纹间距较大D.减小玻璃砖的厚度,光从MN面出射时变为两束平行光答案 D解析根据光路的可逆性原理可知,对于平行玻璃砖界面来说,能够射进玻璃砖的光线,在另一个界面绝对不会发生全反射,因此无论是a光线还是b光线,都不可能在MN面发生全反射现象,A错误;画出光路图如图甲所示,根据折射定律有sin i=n a sin i a,sin i=n b sin i b,由图可知i b > i a,则n b<n a,根据波速与折射率的关系有n=c v,则v b > v a,B错误;由波长与折射率的关系可知λb > λa,根据干涉条纹间距公式Δx=lλ,则Δx b>Δx a,C错误;如图乙所d示减小玻璃砖的厚度,下边界变为M′N′,则出射时变为两束平行光,D正确.5.(2023·浙江绍兴市模拟)如图所示,把一个底角很小的圆锥玻璃体倒置(上表面为圆形平面,纵截面为等腰三角形)紧挨玻璃体下放有一平整矩形玻璃砖,它和圆锥玻璃体间有一层薄空气膜.现用红色光垂直于上表面照射,从装置的正上方向下观察,可以看到( )A .一系列不等间距的三角形条纹B .一系列明暗相间的等间距圆形条纹C .若将红光换成白光,则看到黑白相间的条纹D .若将红光换成紫光,则看到的亮条纹数将变少 答案 B解析 由于截面是等腰三角形,从圆心向外,经过相同的宽度空气膜厚度增加量相同,根据光的干涉原理,从装置的正上方向下观察,可以看到一系列明暗相间的等间距圆形条纹,A 错误,B 正确;若将红光换成白光,则看到明暗相间的彩色条纹,C 错误;由于红光的波长比紫光的长,若将红光换成紫光,则条纹间距减小,看到的亮条纹数将增多,D 错误. 6.(2021·湖北卷·5)如图所示,由波长为λ1和λ2的单色光组成的一束复色光,经半反半透镜后分成透射光和反射光.透射光经扩束器后垂直照射到双缝上并在屏上形成干涉条纹.O 是两单色光中央亮条纹的中心位置,P 1和P 2分别是波长为λ1和λ2的光形成的距离O 点最近的亮条纹中心位置.反射光入射到三棱镜一侧面上,从另一侧面M 和N 位置出射,则( )A .λ1<λ2,M 是波长为λ1的光出射位置B .λ1<λ2,N 是波长为λ1的光出射位置C .λ1>λ2,M 是波长为λ1的光出射位置D .λ1>λ2,N 是波长为λ1的光出射位置 答案 D解析 由双缝干涉条纹间距公式Δx =λld 可知,当两种色光通过同一双缝干涉装置时,波长越长相邻两亮条纹间距越宽,由屏上亮条纹的位置可知λ1>λ2,反射光经过三棱镜后分成两束色光,由题图可知从N 位置出射的光的折射角大,又由折射定律可知,入射角相同时,折射率越小的色光折射角越大,由于λ1>λ2,则n1<n2,所以N是波长为λ1的光出射位置,故D正确,A、B、C错误.7.(多选)(2022·山东卷·10)某同学采用图甲所示的实验装置研究光的干涉与衍射现象,狭缝S1、S2的宽度可调,狭缝到屏的距离为L.同一单色光垂直照射狭缝,实验中分别在屏上得到了图乙、图丙所示图样.下列描述正确的是()A.图乙是光的双缝干涉图样,当光通过狭缝时,也发生了衍射B.遮住一条狭缝,另一狭缝宽度增大,其他条件不变,图丙中亮条纹宽度增大C.照射两条狭缝时,增加L,其他条件不变,图乙中相邻暗条纹的中心间距增大D.照射两条狭缝时,若光从狭缝S1、S2到屏上P点的路程差为半波长的奇数倍,P点处一定是暗条纹答案ACD解析题图乙中间部分为等间距条纹,所以题图乙是光的双缝干涉图样,当光通过狭缝时,同时也发生衍射,故A正确;狭缝越小,衍射范围越大,衍射条纹越宽,遮住一条狭缝,另一狭缝宽度增大,则衍射现象减弱,题图丙中亮条纹宽度减小,故B错误;根据条纹间距公式有Δx=Lλ,则照射两条狭缝时,增加L,其他条件不变,题图乙中相邻暗条纹的中心间距d增大,故C正确;照射两条狭缝时,若光从狭缝S1、S2到屏上P点的路程差为半波长的奇数倍,P点处一定是暗条纹,故D正确.8.(2023·辽宁省模拟)随着科技的发展,夜视技术越来越成熟.一切物体都可以产生红外线,即使在漆黑的夜里“红外监控”“红外摄影”也能将目标观察得清清楚楚.为了使图像清晰,通常在红外摄像头的镜头表面镀一层膜,下列说法正确的是()A.镀膜的目的是尽可能让入射的红外线反射B.镀膜的目的是尽可能让入射的所有光均能透射C.镀膜的厚度应该是红外线在薄膜中波长的四分之一D.镀膜的厚度应该是红外线在薄膜中波长的二分之一答案 C解析镀膜的目的是尽可能让红外线能够透射,而让红外线之外的光反射,从而使红外线图像更加清晰,故A、B错误;当红外线在薄膜前、后表面的反射光恰好干涉减弱时,反射光最弱,透射光最强,根据干涉相消的规律可知,此时红外线在薄膜前、后表面反射光的光程差应为半波长的奇数倍,而为了尽可能增加光的透射程度,镀膜的厚度应该取最薄的值,即红外线在薄膜中波长的四分之一,故C正确,D错误.9.(2023·福建龙岩市质检)如图所示,把一矩形均匀薄玻璃板ABCD压在另一个矩形平行玻璃板上,一端用薄片垫起,将红单色光从上方射入,这时可以看到明暗相间的条纹,下列关于这些条纹的说法中正确的是()A.条纹方向与AB边平行B.条纹间距不是均匀的,越靠近BC边条纹间距越大C.减小薄片的厚度,条纹间距变小D.将红单色光换为蓝单色光照射,则条纹间距变小答案 D解析薄膜干涉的光程差Δs=2d(d为薄膜厚度),厚度相同处产生的条纹明暗情况相同,因此条纹应与BC边平行,故A错误;因为两玻璃间形成的空气膜厚度均匀变化,因此条纹是等间距的,故B错误;减小薄片厚度,条纹间距将增大,故C错误;将红光换成蓝光照射,入射光波长减小,条纹间距将减小,故D正确.10.(2021·山东卷·7)用平行单色光垂直照射一层透明薄膜,观察到如图所示明暗相间的干涉条纹.下列关于该区域薄膜厚度d随坐标x的变化图像,可能正确的是()答案 D11.单缝衍射实验中所产生图样的中央亮条纹宽度的一半与单缝宽度、光的波长、缝屏距离的关系,和双缝干涉实验中所产生图样的相邻两亮条纹间距与双缝间距、光的波长、缝屏距离的关系相同.利用单缝衍射实验可以测量金属的线膨胀系数,线膨胀系数是表征物体受热时长度增加程度的物理量.如图是实验的示意图,挡光片A 固定,挡光片B 放置在待测金属棒上端,A 、B 间形成平直的狭缝,激光通过狭缝,在光屏上形成衍射图样.温度升高,金属棒膨胀使得狭缝宽度发生变化,衍射图样也随之发生变化.在激光波长已知的情况下,通过测量缝屏距离和中央亮条纹宽度,可算出狭缝宽度及变化,进而计算出金属的线膨胀系数.下列说法正确的是( )A .使用激光波长越短,其他实验条件不变,中央亮条纹越宽B .相同实验条件下,金属的膨胀量越大,中央亮条纹越窄C .相同实验条件下,中央亮条纹宽度变化越大,说明金属膨胀量越大D .狭缝到光屏距离越大,其他实验条件相同,测得金属的线膨胀系数越大答案 C解析 对比双缝干涉相邻两亮条纹间距与双缝间距、光的波长、缝屏距离的关系公式Δx =l dλ可得单缝衍射中央亮条纹宽度的一半与单缝宽度、光的波长、缝屏距离的关系为Δx 2=l dλ,激光波长变短,其他条件不变,则中央亮条纹变窄,A 错误;相同实验条件下,金属的膨胀量越大,则单缝距离d 越小,中央亮条纹越宽,B 错误;相同实验条件下,中央亮条纹宽度变化越大,说明单缝的距离d 变化大,即金属膨胀量越大,C 正确;金属的线膨胀系数属于金属的特有属性,与实验装置无关,D 错误.12.某一质检部门为检测一批矿泉水的质量,利用干涉原理测定矿泉水的折射率.方法是将待测矿泉水填充到特制容器中,放置在双缝与荧光屏之间(之前为真空),如图所示,特制容器未画出,通过对比填充后的干涉条纹间距x 2和填充前的干涉条纹间距x 1就可以计算出该矿泉水的折射率.单缝S 0、双缝中点O 、屏上的P 0点均位于双缝S 1和S 2的中垂线上,屏上P 点处是P 0上方的第3条亮条纹(不包括P 0点处的亮条纹)的中心.已知入射光在真空中的波长为λ,真空中的光速为c ,双缝S 1与S 2之间的距离为d ,双缝到屏的距离为L ,则下列说法正确的是( )A .来自双缝S 1和S 2的光传播到P 点处的时间差为3λcB .x 2>x 1C .该矿泉水的折射率为x 1x 2D .仅将单缝S 0向左(保持S 0在双缝的中垂线上)移动的过程中,P 点处能观察到暗条纹 答案 C解析 第三条亮条纹对应路程差s =3λ,但光在介质中的传播速度小于c ,故A 错误;由Δx =L d λ,n =c v =λλ0可知(λ0为光在矿泉水中的波长),光在矿泉水中的波长小于真空中的波长,所以x 2<x 1,故B 错误;由n =c v =λλ0,x 1=L d λ,x 2=L d λ0,得n =x 1x 2,故C 正确;由Δx =L dλ可知,向左移动S 0对观察结果没有影响,故D 错误.。
第14章光的衍射

d k 时, a k
,出现
d k k a
缺级
缺级满足关系 d 如果 3 则 3,6,9 缺 a
四. 斜入射的光栅方程 光线斜入射时的光栅方程 d (sin sin i )
d (sin sin i ) k
§3
光栅衍射
一. 光栅 1. 光栅—大量等宽等间距的平行狭缝(或 反射面)构成的光学元件。 反射光栅 2. 种类: 透射光栅
d d
3. 光栅常数 a是透光(或反光)部分的宽度 b 是不透光(或不反光)部分的宽度 d=a+b 光栅常数
三. 光栅衍射 P 1. 多光束干涉 d 明纹(主极大)条件: o d sin k k = 0,1,2,3„ 焦距 f dsin 光栅方程 设每个缝发的光在对应衍射角 方向的P点 的光振动的振幅为Ep P点为主极大时 2k
上述暗纹和中央明纹(中心)位置是准确的, 其余明纹中心的位置较上稍有偏离。
相对光强曲线
0.017 0.047
1
I / I0
0.047
0.017
-2( /a) -( /a) 0 /a 2( /a)
sin
四. 条纹宽度 1.中央明纹: sin a 时, 1 1
衍射屏 透镜
=30, = 90
1 π,k ( a b )(sin 30 sin 90 ) / =5.09 取k max 5 2 1 π,k ( a b )(sin 30 sin 90 ) / =-1.7 取 k max 1 2 a b, 第2,,......缺级。 4
-8
-4
0
4
(3) d、a对条纹的影响
text14光的衍射

三、光的衍射分类
S
1. 菲涅耳衍射 (近场衍射) 近场衍射)
光源O ,观察屏E (或二者之 光源 观察屏 或二者之 到衍射屏S 一) 到衍射屏 的距离为有 限的衍射,如图所示。 限的衍射, 所示。 ( 菲涅耳衍射 )
P
P 0
O
E
无限远光源 无限远相遇
2. 夫琅禾费衍射 (远场衍射) 远场衍射)
光源O 观察屏E 到衍射屏S 光源 ,观察屏 到衍射屏 的距离均为无穷远的衍射, 的距离均为无穷远的衍射, 所示。 如图所示。
透镜 观测屏
λ
衍射屏
∆θ1
θ1 o
∆θ0
f
− x1
x2 x1
∆x1
∆x0
中央明纹
角宽度
∆θ0 = 2θ1 ≈ 2 λ a 线宽度 ∆x0 = 2 f ⋅ tanθ1 ≈ 2 fθ 1= 2 f λ a
第k 级明纹
角宽度
∆θk = λ a
请写出线宽度
讨论 波长越长,缝宽越小,条纹宽度越宽。 (1) ∆θ0 = 2θ1 ≈ 2 λ a 波长越长,缝宽越小,条纹宽度越宽。 波动光学退化到几何光学。 λ a →0 ∆θ0 →0 波动光学退化到几何光学。 (3) λ a →1 ∆θ0 → 观察屏上不出现暗纹。 π 观察屏上不出现暗纹。 (2) (4) 缝位置变化不影响条纹位置分布
1. 衍射暗纹、明纹条件 衍射暗纹、
B
•
a sinθ = 0 —— 中央明纹
A
•
λ 此时缝分为两个“半波带”, 为暗纹。 a sinθ = 2 此时缝分为两个“半波带” P 为暗纹。
2
暗纹条件
a sinθ = ±2k ,k = 1,2,3… 2
第14章光的衍射
N sin 2 合振幅: A NA1 N / 2 N a sin 2 令
A0 NA1
则
A A0
sin
——P点合振动的振幅
I I0 (
sin
)
2
式中I 0 ( NA1 )2
11
I I0 (
sin
)
2
N a sin 2
E
PP
有干涉,光栅衍射图样是是单
缝衍射和多缝干涉的总效果。 可以证明: o d=(a+b)
屏上合成光强 =缝间干涉光强
×单缝衍射光强 1. 多光束干涉 光束到达P点的光程差:
f (a+b)sin
设衍射角为的光束经透镜会聚在屏上的P点,任意相邻两
d sin (a b) sin
射。在屏上x =1.4mm 处观察到明纹极大。求入射光波长及该 处衍射条纹的级次。
x 1.4 0.0035 解 : tan f 400
明纹:a sin ( 2k 1)
f
x
2a sin 2atan 4.2 10 3 mm 2k 1 2k 1 2k 1
由上式算得:d =45.5m。
(人眼的最小分辩角)
23
§14.4 光栅衍射
一. 光栅
大量等宽等间距的平行狭缝(或反射面)构成的光学元件。 种类:
透射光栅 d 反射光栅 d
d=a+b 光栅常数
a是透光(或反光)部分的宽度
b 是不透光(或不反光)部分的宽度
24
二. 平面透射光栅的衍射
设平行光线垂直入射。 每条狭缝有衍射,缝间光线还 a b
14第十四章光的衍射
第十四章光的衍射班级:学号:姓名:1.单项选择题(每题3分,共30分)(1)根据惠更斯-菲涅耳原理,如果光在某时刻的波阵面为S,那么S的前方某点P的光强度决定于S上所有面积元发出的子波各自传到P点的[](A) 振动振幅之和;(B) 振动振幅之和;(C) 的平方光强之和;(D) 振动的相干叠加。
(2)在夫琅禾费单缝衍射实验中,如果入射的单色光确定,当缝宽度变小时,除了中央亮纹的中心位置不变以外,各级衍射条纹[](A) 对应的衍射角也不变;(B) 对应的衍射角变大;(C) 对应的衍射角变小;(D) 光强也不变。
(3)在单缝夫琅禾费衍射实验中,如果增大缝宽,其他条件不变,则中央明条纹[](A) 宽度变小;(B) 宽度不变,且中心强度也不变;(C) 宽度变大;(D) 宽度不变,但中心强度增大。
(4)波长一定的单色光垂直入射在衍射光栅上,屏幕上只出现了零级和一级主极大,如果想使屏幕上出现更高级次的主极大,应该(A) 将光栅靠近屏幕;(B) 换一个光栅常数较小的光栅;(C) 将光栅远离屏幕;(D) 换一个光栅常数较大的光栅。
(5)波长为550nm的单色光垂直入射在光栅常数为2×10-3mm的衍射光栅上,这时可以观察到光谱线的最大级次为[](A) 5;(B) 4;(C) 3;(D) 2。
(6)在双缝衍射实验中,如果保持双缝的中心间距不变,而把两条缝的宽度同时略微加宽相同的数值,则[](A) 单缝衍射的中央明纹变窄,其中包含的干涉条纹数目变少;(B) 单缝衍射的中央明纹变宽,其中包含的干涉条纹数目变多;(C) 单缝衍射的中央明纹变窄,其中包含的干涉条纹数目变多;(D) 单缝衍射的中央明纹变宽,其中包含的干涉条纹数目变少。
(7)想用衍射光栅准确测定某单色可见光的波长,在下列各种光栅常数的光栅中,应该选用[](A) 5.5×10-1 mm;(B) 0.5×10-3 mm;(C) 0.8×10-2 mm;(D) 1.5×10-3 mm。
第14章 光的衍射习题答案
思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显著。
对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显著。
2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。
由此可知,这时人眼看到的是夫琅和费衍射图样。
3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。
答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。
离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。
4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。
(B)光强之和。
(C)振动振幅之和的平方。
(D)振动的相干叠加。
答:衍射光强是所有子波相干叠加的结果。
选(D)。
5波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30º,则缝宽的大小( )(A) a =。
(B) a =。
(C)a =2。
(D)a =3。
答:[ C ]6波长为的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30,则缝宽a 等于( )(A) a = 。
(B) a =2。
(C) a =23。
(D) a =3。
答:[ D ]7在单缝夫琅和费衍射实验中波长为的单色光垂直入射到单缝上,对应于衍射角为30的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) 。
(B) 。
(C) 2。
(D) 3。
答:[ D ]8在单缝夫琅和费衍射实验中,波长为的单色光垂直入射到宽度a=4的单缝上,对应于衍射角为30的方向,单缝处波面可分成的半波带数目为( ) (A)2个。
Ch14.4-5(光的衍射)
重点
I
a sin /
(a +b) sin /
6
3
0
3
6
三、光栅光谱
由光栅方程 : d sin k 知:如用白光照射,除中央明纹外出现色散现象。 光栅光谱的特点: (1)同级谱线,由内向外排列顺序为由紫到红 k kf sin k , xk f tg k f k ab ab (2) 很小时,对应同一 ,不同 k 相邻谱线的距离为
与 在法线同侧时取正值
(a b) sin (a b) sin k
当
2
, (a b) sin300 (a b) k m
1.5(a b)
km
1.5 2 10 0.59 5.1
6
A 1
B
C
0
300
2
1 3 5
E5
N 2k
k 即 : (a b) sin N k ' Nk 时为暗条纹
(4)形成条纹的条件
E4
E6
E1
E3 E2
(a b) sin k ①由称光栅方程:
k 0, 1, 2, 3...
d↓对同一级 k 值, 越大条纹分的越开,又亮又细 k = 0 为中央主极大,k = 1,2,3,…依次为一、二 、三级主极大。
一、光栅的种类及构造 (Kinds and Construction of Grating) 1. 构造: 大量等宽等距离狭缝排列起来形成的光学元件 2. 分类: a. 透射光栅; b. 反射光栅。
透 射 光 栅
b
a
反 射 光 栅
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.J.菲涅耳
其构思之精妙,在于 无需什么数学推导, 便能得到衍射条纹分 布的概貌。
大学物
理学 半波带法分析
衍射角为 的一束平 行光线的最大光程差:
AC bsin
用 去分
b
2
设 n
2
对应的单缝b被分为 n个半波带
A A1
对应非明、暗纹中 心的其余位置
大学物 理学
半波带法得到的一般结果:
bsin 0 — 中央明纹中心(准确)
bsin k, k 1,2,3 — 暗纹(准确) bsin (2k 1) , k 1,2,3 — 明纹中心(近似)
2
中央明纹中心和暗纹位置是准 确的,其余明纹中心的位置是近 似的,与准确值稍有偏离。
sin 0 I 0
由 bsin k
此时应有 bsin k, k 1,2,3 — 暗纹(准确)
这正是缝宽可以分成偶数个半波带的情形。
大学物 理学
3.次极大位置:满足
dI
d
0 tg
y y1 = tg
·
· y2 =
-2 - ·0
大学物
理学 2. 惠更斯—菲涅耳原理(1818年)
惠更斯—菲涅耳原理:
意义:把波的传播问题转变成了易于处理的叠加问 题。
大学物
理学 3. 菲涅耳原理的假设
对子波的振幅和相位作了定量描述:
波面上各面元——子波源
各子波初相相同: 0
子波在P点的相位:t
0
2
r
子波在P点的振幅:
P r dS n
Bθ
可将缝分成四个半波带
b
两相邻半波带的衍射光 相消, p 点形成暗纹。
A
/2
大学物 理学
bb
AAAAA1 12........... C.C AA2 3..
..
P0
x Px
BB
P
ff
nn=n=0=奇偶数数
n0 :
对应中央明纹中心
n为偶数: 对应屏上暗纹中心
n为奇数: 对应屏上明纹中心
n 整数:
大学物 理学
光的衍射
光的衍射也是光的波动特性的重要表征 之一。干涉和衍射都是波动所特有的现象 ,也是用以判断某种物质运动是否具有波 动性的证据。从理论上分析,干涉和衍射 都是光波发生相干叠加的结果,它们之间 并没有严格的区别。
大学物 理学
光的衍射 惠更斯—菲涅耳原理
大学物
理学 一 光的衍射
1.定义:光在传播过程中能绕过障碍物的边缘 而偏离直线传播的现象叫光的衍射。
b
中央明纹角宽度为其余明纹角宽度的两倍
大学物
理学 4 .条纹线宽度
L
f
x
x f tg
0 x f (tg2 tg1) x f (2 1) f
中央明纹 x f 2
b
其余明纹 x f
b
中央明纹线宽度为其余明纹线宽度的两倍
大学物
2
其中 bsin
1.主极大(中央明纹中心)位置
0, 0 sin 1
I I0 Imax bsin 0 — 中央明纹中心(准确)
大学物 理学
光强为
I
I0
s in
2
2.极小(暗纹)位置
当 k (k 1,2,3) 时
2
暗纹公式中 k 0 0 为中央明纹中心,不是暗纹 明纹公式中 k 0 仍在中央明纹区内
2 不是明纹中心
大学物
理学 3.条纹角宽度
I
b
f
0
中央明纹中心
sin
k
b
(2k 1)
2b
暗纹 明纹
k 1,2,
中央明纹 2
b
其余明纹
b
大学物
理学 极限情形:
②当缝极宽 当 b 且 0 时,
b
x 0 , k 0 ,
即:各级明纹向中央靠拢,密集得无法分辨,衍 射现象越不明显,只显出单一的亮条纹,这就是 单缝的几何光学像。
∴几何光学是波动光学在/b 0时的极限情形。
b
此时光线遵从直线传播规律。
若用白光照射:
大学物 理学
入射波长变化,衍射效应如何变化 ?
大学物 理学
7. 缝宽变化对条纹的影响
b
b
确定
b , b ,
衍射显著 衍射不明显
① b减小,条纹散开了,又光通量减少,清晰度变差
x f — 缝宽越小,条纹间隔越宽。
I次极大 << I主极大
0.017 0.047
0.047 0.017
sin
2 0 2
bb
bb
大学物 理学
五 单缝衍射条纹分析
1.二者明暗纹条件是否相互矛盾?
双缝干涉中
k
明
(2k 1) 暗 k 0,1,2,
2
单缝衍射中
(2k 1) 明
. .
.
.
.
.C
A2 .
A3 .
.
B
x
P
f
大学物 理学
(1)衍射角为零时
衍射角为零的光线,与 O 入射光方向相同,经透镜
后会聚屏幕的中心,形 成中央明纹。
大学物
理学 (2)当 b sin 2 时,
2
可将缝分为两个“半波带”
θ B
半波带 b 半波带
1 2
相消
1′
2′
相消
1 2
2
·
·
-2.46 -1.43
0
+1.43 +2.46
解得 : 1.43 , 2.46 , 3.47 , 相应 :bsin 1.43 , 2.46 , 3.47 , 半波带法: 1.50 , 2.50 , 3.50 ,
大学物 理学
三 用振幅矢量法推导光强公式
缝平面 透镜
缝宽a
B
x
C
A
xsin
观测屏 x p
0 f
将缝等分成 N个 窄带,每个窄带 宽为:
x b N
各窄带发的子波在 p点振幅近似相等,设为E0,
相邻窄带发的子波到 p点的相位差为:
2 x sin 2 bsin
大学物
理学 ③当缝极细
当b 且 ~ 1时,
b
1
2
,
只有中央明纹,屏幕一片亮。
即:衍射中央亮纹的两端延伸到很远很远的地方,屏上只 接到中央亮纹的一小部分(较均匀),当然就看不到单缝衍 射的条纹了。
这就是我们前面杨氏双缝只考虑干涉,不考虑缝的衍 射的缘故。
回忆:在讲杨氏双缝干涉 时,我们并不考虑每个缝 的衍射影响:因为缝非常 非常的细.
理学 5 . 条纹亮度分布是否均匀,为什么?
中央明纹中心: 全部光线干涉相长 一级明纹中心: 1/3部分光线干涉相长 二级明纹中心: 1/5部分光线干涉相长
屏幕
I
中央明纹集中大部分能量,明条纹级次越高亮度越弱。
大学物
理学 6 .条纹随 的变化
其余明纹
b
b确定
, ,
衍射屏
S
*
a
观察屏
衍射屏
L
S
观察屏 L
一般a ≯ 10-3
孔的衍射
缝的衍射
大学物 理学
屏幕
阴
影
屏幕
缝较大时,光是直线传播的 缝很小时,衍射现象明显
大学物
理学 二 惠更斯—菲涅耳原理
1. 惠更斯原理(1690年)
波面上的每一点 均为发射子波的波源, 这些子波的包络面即 新的波阵面。
成功:可解释衍射 成因,用几何法作 出新的波面,推导 反射、折射定律。
1 ( 0)
倾斜因子:f ( ) 1 (1 cos ) 1 2 ( 2)
2 0 ( )
A f ( )
由上述假设,面元 dS 在 P 引起的振动为:
子波: d
E(
p)
C
f
(
) c os(
t
0
2
r
)
ds r
大学物 理学
空间任一点振动为所有子波在该点相干叠加的结果
当N 时, N个相接的 折线将变为一个圆弧,圆弧 Ep
对应的圆心角为
N 2 bsin
Ep
2R sin
2
E0
2R sin
2
sin N
Ep E0
2
sin
2
E0
R
EP
E0
大学物
理学 设 N b sin
N
( N 很大)
大学物 理学
2 bsin
N
在p点,N个同方向、同频率、同振幅、
初相依次差恒量 的简谐振动合成,合成
的结果仍为简谐振动。
p点合振幅Ep 是各子波振幅矢量和的模。 对于中心点:
= 0, = 0 E0 = N E0
E0
…
E0
大学物 理学
对于其他点 p: ≠ 0,Ep < E0 。
P 点总振动的振幅
E( p)
C