2019-2020学年七年级数学下册第六章实数6.3实数2导学案新版新人教版.doc
人教版数学七年级下册6.3《实数》教案2

人教版数学七年级下册6.3《实数》教案2一. 教材分析本节课是人教版数学七年级下册第六章第三节《实数》的教学内容。
在这一节中,学生将学习实数的概念、性质以及实数的运算。
实数是数学中的基础概念,包括有理数和无理数。
学生需要掌握实数的分类、实数的性质以及实数的运算方法。
这一节内容是学生进一步学习数学的基础,也是培养学生逻辑思维能力的重要环节。
二. 学情分析学生在七年级上学期已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但学生对无理数的概念和性质可能还比较陌生,需要通过本节课的学习来掌握。
同时,学生可能对实数的运算方法还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,学会实数的运算方法。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和问题解决能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受到数学的美。
四. 教学重难点1.重点:实数的概念、性质和运算方法。
2.难点:无理数的概念和性质,实数的运算方法。
五. 教学方法采用问题驱动法、自主探究法和合作交流法进行教学。
通过设置问题引导学生思考,激发学生的学习兴趣;给予学生足够的自主探究时间,培养学生的独立思考能力;学生进行合作交流,提高学生的团队协作能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实数的概念、性质和运算方法。
2.练习题:准备一些关于实数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。
提问:同学们,我们已经学习了有理数和无理数,那么实数是什么呢?2.呈现(15分钟)利用PPT展示实数的概念和性质,让学生初步了解实数。
同时,介绍实数的运算方法,如加法、减法、乘法和除法。
3.操练(15分钟)让学生进行实数的运算练习,巩固所学知识。
可以让学生独立完成练习题,也可以进行小组合作,共同解决问题。
新人教版七年级下册第六章实数全章教案

新人教版七年级下册第六章实数全章教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗它们的本质是什么呢这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根: ⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗任意一个负数有算术平方根吗归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
部编版2020七年级数学下册 第六章 实数 6.3 实数备课资料教案 (新版)新人教版

第六章 6.3实数知识点1:无理数1.定义:无限不循环小数叫做无理数.2.表现形式:(1)开方开不尽得到的数如: 、等;(2)含有π的式子;(3)有规律但不循环的无限小数,如:0.101 001 000 1…;注意:对于实数的分类,不能只看形式,并非所有带根号的数都是无理数,应严格按照有理数和无理数的定义来判定,如为有理数.知识点2:实数的概念(1)定义:有理数和无理数统称实数.例如:-6,,,0.4,π等都是实数.(2)实数的分类总结:(1)实数的相反数的意义和有理数的相反数的意义一样,如果a表示任意一个实数,那么-a 就是a的相反数,即a与-a互为相反数,例如:的相反数是 -,的相反数是-.另外,规定0的相反数仍然是0;(2)实数的绝对值的意义与有理数的绝对值的意义一样,一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0,用字母表示为:对于任意实数a,有|a|=知识点3:实数与数轴1.对应关系:实数与数轴上的点一一对应.2.与有理数相同,数轴上右边的点表示的数总比左边的点表示的数大.总结:(1)利用数轴可以比较实数的大小,在数轴上,右边的点表示的实数总比左边的点表示的实数大;(2)正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较大小,绝对值大的反而小.知识点4:实数的性质在实数范围内的相反数、倒数、绝对值的意义和在有理数范围内的相反数、倒数、绝对值的意义完全一样.知识点5:实数的运算(1)实数有加、减、乘、除、乘方、开方运算,混合运算的顺序是先算乘方、开方,再算乘、除,最后算加、减,同级运算按照从左到右的顺序进行,有括号的要先算括号里的;(2)加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.总之有理数的一切运算法则适用于实数的运算.考点1:实数概念的应用【例1】下列各数:-5,3.7,,,,-π,,0.3,-,0.212 112 111 2…(每两个2之间依次多一个1)哪些是有理数?哪些是无理数?哪些是正实数?哪些是负实数?解:有理数有:-5,3.7,,,0.3,-;无理数有:,-π,,0.212 112 111 2…(每两个2之间依次多一个1);正实数有:3.7,,,0.3,,,0.212 112 111 2…(每两个2之间依次多一个1);负实数有:-5,-,-π.考点2:实数的大小比较【例2】比较2,,的大小,正确的是( )A.2<<B.2<<C.<2<D.<<2答案:C点拨:∵22=4<5,∴2<,∵23=8>7,∴2>.故选C.考点3:用数轴比较数的大小【例3】在数轴上表示下列各数,并把它们按从小到大的顺序排列起来,用“<”连接:-0.,-,.解:-0.,-,在数轴上表示,如图所示.由图得到:-<-0.<.点拨:对于-,可以通过画边长为1的正方形的对角线得到.考点4:实数的运算【例4】计算:(1)(+)×;(2)--;(3)-(精确到0.01);(4)+(<a<π)(精确到0.01).解:(1)原式=(0.1+0.1)×12=2.4;(2)原式=--=-;(3)原式=(-)-(+)=---=-2≈(-2)×1.414=-2.828≈-2.83;(4)由<a<π,得原式=(π-a)+(a-)=π-≈3.142-1.414=1.728≈1.73.点拨:对于一些常用的无理数,应记住其近似值,如≈1.414,≈1.732.。
2019-2020学年七年级数学下册 6.3 实数导学案2(新版)新人教版.doc

2019-2020学年七年级数学下册 6.3 实数导学案2(新版)新人教版 课型:预习展示课 课时:2
【学习目标】 1、了解实数范围内,相反数、倒数、绝对值的意义。
2、了解实数的运算。
【预习导学】
自学课本54—56页内容,完成下列要求:
1、当数从有理数扩充到实数后,有理数关于相反数和绝对值的意义同样适合于实数吗? 2的相反数是 , -π的相反数是 ,0的相反数是 ; |2|= ,|-π|= ,|0|= , 小结:实数a 的相反数是____,这里a 表示任意 _。
一个正实数的绝对值
是 ;一个负实数的绝对值是它的 ;0的绝对值是 。
2、实数的运算:有理数的运算法则及运算性质在进行实数的运算中,同样适用。
【学以致用】
1、写出下列各数的相反数: (1) 6- (2)
14.33
-π (3) 364--
2、3-的相反数是 ,绝对值 。
3、绝对值等于5 的数是 , 7-的平方是
4、已知一个数的绝对值是3,则这个数是 。
52的相反数是_________ ,绝对值是___________。
6、计算下列各式的值:
(1)3)35(-+
(2)5253+
(3))3212(2)35(-
--
【课堂小结】
我的收获有:
【巩固提升】
1、若|a |=3,则a = 。
2、计算: |8|3-= |3
2|-= |7.13|-= |24.1|-=
|14.3|-π=。
七年级数学下册6.3实数教案2新版新人教版

实数教学目标知识与技能在实数范围内,会进行加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算。
过程与方法掌握实数的加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算。
情感态度与价值观通过实数的运算,培养学生的运算能力.教学重难点掌握实数的加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算。
教学过程【练一练】计算下列各式的值:(1)(3+2)-2;解:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0=3;(2)33+23.(2)33+23.=(3+2)3(分配律)=53.总结实数范围内的运算方法及运算顺序与在有理数范围内都是一样的.试一试计算:(1)5+π(精确到0.01);(2)3·2(结果保留3个有效数字).解:(1)5+π≈2.236+3.142≈5.38;(2)3·2≈1.732×1.414≈2.45.总结在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.(三)应用迁移,巩固提高例1 a为何值时,下列各式有意义?(1)2a;(2)a-;(3)2+a;(4)31-a;(5)aa-+;解:(1)∵a为任何实数时,a2≥0,∴a为任意实数时,2a有意义.(2)∵要使a-有意义,必须使-a≥0,即a≤0,∴当a≤0时,a-有意义.(3)∵要使2+a有意义,必须使a+2≥0,即a≥-2,所以当a≥-2时,2+a有意义;(4)∵31-a有意义,a-1可取任意实数,即a为任意实数,所以当a为任意实数时,31-a有意义;(5)∵要使a有意义,必须使a≥0,要使a-有意义,必须使-a≥0,即a≤0,∴要使aa-+有意义,a必须等于0.因此仅当a=0时,aa-+有意义;例2 计算:(1)求5的算术平方根与2的平方根之和;(保留三位有效数字)(2)|+|-|-|2552;(精确到0.01)(3)|a -π|+|2-a |(2<a <π).(精确到0.01)解:(1)∵ 5的算术平方根为5,2的平方根为±2,∴ 5的算术平方根与2的平方根之和为5±2又因为5≈2.235,2≈1.414,所以 5±2≈2.236+1.414=3.65 5-2≈2.236-1.414≈0.82(2)因为2<5,所以2-5<0,所以|2-5|-|5+2|=5-2-5-2=-22≈-2×1.414≈-2.83. (4)因为2<a <π,所以|a -π|=-(a -π)=π-a ,|2-a |=-(2-a )=a -2因此|a -π|+|2-a |=π-a +a -2=π-2=3.142-1.414=1.73.例 3 已知实数a 、b 、c 在数轴上的位置如图10—3—3所示.化简|a |+|b |+|a +b |-222c a c -)-(的值.解:由数轴可知a >0,b <0,c <0,且a +b >0.所以|a |+|b |+|a +b |-222c a c -)-( =a +(-b )+(a +b )-(a -c )-2(-c ) =a -b +a +b -a +c +2c =a +3c . 【备选例题】实数p 在数轴上的位置如图10—3—4所示,化简()()2211-+-p p 的值.【点拨】 (1)1<p <2 (2)算术平方根的非负性.-=)-(,-=)-(p p p p 221122【答案】 1(四)总结反思,拓展升华总结 1.实数的运算法则及运算律. 2.实数的相反数和绝对值的意义. (五)课堂跟踪反馈 夯实基础1.a 、b 是实数,下列命题正确的是(D )A .a ≠b ,则a 2≠b 2B .若a 2>b 2,则a >bC .若|a |>|b |,则a >bD .若|a |>|b |,则a 2>b 22.如果3962=+-+a a a 成立,那么实数a 的取值范围是(B ) A .a ≤0 B .a ≤3 C .a ≥-3 D .a ≥33.|31-|=1,|π-3.14|=π-3.14,|2-1.42|=242.1-. 4.23-的相反数是32-,39-的相反数是39.5.当a >17时,|a -17|=17-a ,217)-(a =17-a .6.当m =-1时,2m +|m |+2m =0.7.比较下列各数的大小:(1)-3和-1.7;(2)π和722.【答案】 (1)-3<-1.7;(2)π<722.提升能力8.已知a 、b 、c 在数轴上如图所示,化简|.++| )-(|++-|c b a c b a a 22【答案】 由图示知,b <a <0,c >0, ∴ a +b <0,c -a >0,b +c <0,∴|.++| )-(|++-|c b a c b a a 22=|a |-|a +b |+|c -a |+|b +c |=-a +(a +b )+(c -a )-(b +c ) =-a +a +b +c -a -b -c作业:p56页第4题, p57页第4、5题 小结:教学 反思 本节课的教学目标是知道相反数、绝对值的概念可推广到实数范围内;知道在实数范围内,可进行加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算,而且有理数的运算法则和性质同样适用。
人教版数学七年级下册--6.3 实数(2) 导学案

第六章 实数 6.3实数(2) 【教学目标】 知识与技能 1.学会比较两个实数的大小,能熟练地进行实数运算。
2.会求实数的相反数和绝对值。
过程与方法通过复习有理数的相反数、绝对值、运算律、运算性质,引出实数的相反数、绝对值、运算律、运算性质,并通过例题和练习题加以巩固,适当加深对它们的认识。
情感、态度与价值观通过建立有理数的一些概念和运算在实数范围里也成立的意识,让学生了解在这种数的扩充中所体现的一致性,让学生充分感受数的不断发展。
【教学重难点】重点:1.会求实数的相反数和绝对值;2.会进行实数的加减法运算;3.会进行实数的近似计算。
难点:认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。
【导学过程】【知识回顾】1.无理数的特征:2.实数的分类:【新知探究】一、相反数、绝对值1.在数轴上一个实数的绝对值是表示这个数的点到 的距离:两个互为相反数的实数就是表示这两个数的点一个在 ,一个在 ,它们到原点的距离 。
2.相反数:π的相反数是 ,2-的相反数是 ,0的相反数是 。
小结:实数a 的相反数是 。
3.绝对值: 5-= ,π= , 0= ,37-= ,4.小结:一个正实数的绝对值 ,一个负实数的绝对值是 ,0的绝对值是 。
二、实数的大小比较1.下列式中,正确的是( )A.1112710ππB. 1212711ππC. 1312712ππD. 1412713ππ2.小结:进行实数的大小比较时,应把各数统一转化成一种形式。
如:把10转化成100,把11转化成121,把12转化成144,把13转化成169,再比较大小,较简便。
三、例题例1:(1)分别写出-6,π-3.14,的相反数。
(2)求 364-的绝对值。
(3)已知一个数的绝对值是3例2:计算下列各式的值:(1)410273-+ (2))23(2--(3)()322-- (4)3323+例3:见课本P56【知识梳理】本节课你学到了什么?有什么收获和体会?还有什么困惑?1.在数轴上表示的数,右边的数总比左边的数 。
新人教版七年级下册第六章实数全章教案

6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm5。
接下来教师可以再深入地引导此问题:4,那么正方形的边长分别是多如果正方形的面积分别是1、9、16、36、252,接下来教师可以引导性地提问:少呢?学生会求出边长分别是1、3、4、6、5上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根。
⑵算术平方根的表示方法:a的算术平方根记为a,读作“根号a”或“二次很号a”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算; ②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
人教版七年级数学下册导学案 第六章 实数 6.3 实数(第一课时)

人教版七年级数学下册导学案 第六章 实数 6.3 实数(第一课时)【学习目标】1、了解实数的意义,能对实数按要求进行分类。
2、了解实数范围内,相反数、倒数、绝对值的意义。
3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
【课前预习】12的整数部分是a ,小数部分是b b -的值是( ) A .5 B .5- C .3 D .3-2.在实数 1.414-,π,3.14,2+ 3.212212221…中,无理数的个数是( )个.A .1B .2C .3D .43.在数227,02112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( )A .3个B .4个C .5个D .6个4.估算6 )A .2B .3C .4D .55.如图,A 、B 、C 、D 的点是( )A .点AB .点BC .点CD .点D6.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .673+的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间8.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4079.如图,在数轴上表示A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A1 B.1-C.2 D210.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1 【学习探究】自主学习阅读课本,完成下列问题1.填空:(有理数的两种分类):2.使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 25 , 35- ,427 ,911 ,119 , 互学探究一、实数的概念1.请把下列有理数写成小数的形式,你有什么发现? 3=_____ 35-=_____ ,478=_____ ,911=_____ ,119 =_____ ,59=_____ 小结:任何一个有理数都可以写成_______小数或________小数的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年七年级数学下册第六章实数6.3实数2导学案新版新
人教版
班级小组姓名评价
一、学习目标
1.明确在有理数范围内学的运算律和运算法则在实数范围内同样适用;
2.了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算;
3.积极投入,激情展示,做最佳自己。
二、自主学习
1.当数从有理数扩充到实数后,有理数关于相反数和绝对值的意义同样适合于实数吗?
的相反数是;-π的相反数是;|= ;|0|=________。
归纳:(1)数a的相反数是,这里a表示任意一个实数。
(2)一个正实数的绝对值是它;一个负实数的绝对值是它的; 0的绝对值是。
2.实数的运算:当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除
数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算。
在进行实数的运算时,有理数的运算法则及运算性质等同样适用。
3.回顾:(1)用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律
(2)用字母表示有理数的加法交换律和结合律 (3)有理数的混合运算顺序
4.例题:计算下列各式的值 (1)
解:(1)
5.计算 π (精确到0.01) 32 (结果保留到百分位)
π 2
2.235
3.141≈+ 1.732 1.414≈⨯
5.38≈ 2.45≈
总结:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求 的精确度用相应的近似有限小数去代替无理数,再进行计算。
6.自学检测:
1.实数3.1415926是______: A.无限小数 B.分数 C.循环小数 D.无理数
2. ,-=________,-
2的相反数是________,绝对值是___________.
三、合作探究
的相反数、绝对值、倒数分别是________、_________、_________。
2. 若x =x =__________;若364x =,则x +21的平方根是________。
3.在数轴上表示的点与原点的距离等于__________。
4.计算0.01)
5. 已知实数a b c 、、在数轴上的位置如下,化简a b a b +++
6.a b 、是实数,下列命题正确的是________:
A.a b ≠,则22a b ≠
B.若22a b >,则a b >
C.若a b >,则a b >
D.若a b >,则22a b >
7.如果10a ++,那么b a -的算术平方根是________。
8.当17a >a = = 四、达标检测
的相反数是 ,
2.,3=__________,-=_______
3.已知a 、b 、c a b b c ++
4.计算(1(2(3(4。