新人教版初中七年级数学下册《实数》教案

合集下载

(新人教版)数学七年级下册:《实数》教案

(新人教版)数学七年级下册:《实数》教案

《实数》教案【教学目标】知识与技能:了解无理数和实数的概念以及实数的分类;知道实数与数轴上的点具有一一对应的关系.过程与方法:在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系.情感态度与价值观:通过了解数系扩充体会数系扩充对人类发展的作用;敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.教学重点:了解无理数和实数的概念;对实数进行分类.教学难点:对无理数的认识.【教学过程】一、复习引入无理数:利用计算器把下列有理数3,53-,847,119,95写成小数的形式,它们有什么特征? 发现上面的有理数都可以写成有限小数或无限循环小数的形式归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式, 反过来,任何有限小数或者无限循环小数也都是有理数.通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,把无限不循环小数叫做无理数.二、实数及其分类:1、实数的概念:有理数和无理数统称为实数.2、实数的分类:按照定义分类如下:实数:⎪⎩⎪⎨⎧⎩⎨⎧数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数按照正负分类如下:实数:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零负无理数正有理数正实数 3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示.物理是合乎是否也可以用数轴上的点表示出来吗? 活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来.活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是2-.事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数.归纳:①实数与数轴上的点是一一对应的.即没一个实数都可以用数轴上的点来表示; 反过来,数轴上的每一个点都表示一个实数.②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.三、应用:例1、下列实数中,无理数有哪些?2,172,37.0 -,14.3,35,0,⋅⋅⋅11121211211121.10,π,2)4(-. 解:无理数有:2,35,π注:①带根号的数不一定是无理数,比如2)4(-,它其实是有理数4;②无限小数不一定是无理数,无限不循环小数一定是无理数.比如⋅⋅⋅11121211211121.10. 例2、把无理数5在数轴上表示出来. 分析:类比2的表示方法,我们需要构造出长度为5的线段,从而以它为半径画弧,与数轴正半轴的交点就表示5.有理数集合 无理数集合 解:如图所示, OA =2,AB =1. 由勾股定理可知:5=OB ,以原点O 为圆心,以OB 长度为半径画弧,与数轴的正半轴交于点C ,则点C 就表示5.四、随堂练习:1、判断下列说法是否正确:⑴无限小数都是无理数;⑵无理数都是无限小数;⑶带根号的数都是无理数;⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数; ⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数.2、把下列各数分别填在相应的集合里:1415926.3,7,8-,32,6.0,0,36,3π,⋅⋅⋅313113111.0.3、比较下列各组实数的大小:(1)4,15 (2)π,1416.3五、课堂小结1、无理数、实数的意义及实数的分类.2、实数与数轴的对应关系 .六、布置作业教学反思:关于无理数的认识是非常抽象的,只要求学生了解无理数和实数的意义即可,学生对实数的认识是逐步加深的,以后还要讨论,所以本节课不易过难,教师要把握好难度.。

人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。

本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。

通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。

二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。

但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。

此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。

三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。

2.掌握实数的运算规则,能够进行实数的加减乘除运算。

3.能够运用实数的概念和运算规则解决实际问题。

四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。

2.实数的运算规则:实数的加减乘除运算规则。

五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。

六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。

2.练习题:针对实数的分类和运算的练习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。

2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。

3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。

4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。

5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。

6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。

最新七年级下册数学实数的教案

最新七年级下册数学实数的教案

最新七年级下册数学实数的教案一、教学内容本节课选自最新七年级下册数学教材第十章“实数”的第一节,内容包括实数的定义、性质及其运算。

详细内容如下:1. 实数的定义:有理数和无理数的统称,包括整数、分数、无理数等。

2. 实数的性质:实数具有有序性、稠密性、传递性等。

3. 实数的运算:加、减、乘、除、乘方等。

二、教学目标1. 理解并掌握实数的定义、性质及其运算。

2. 能够运用实数进行混合运算,解决实际问题。

3. 培养学生的逻辑思维能力和数学素养。

三、教学难点与重点难点:实数的性质及其运用。

重点:实数的定义、运算及性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:教材、练习本、铅笔。

五、教学过程1. 导入:通过生活实例,引出实数的概念。

(1)提问:同学们,你们知道温度计上的温度是怎么表示的吗?(2)讲解:温度计上的温度实际上是实数,它包括整数和小数。

2. 新课讲解(1)实数的定义:介绍有理数和无理数,进而引出实数的定义。

(2)实数的性质:通过实例,引导学生发现实数的性质。

(3)实数的运算:讲解实数的加、减、乘、除、乘方等运算方法。

3. 例题讲解(1)实数运算:讲解例题,演示解题过程。

(2)实数性质的应用:讲解例题,分析解题思路。

4. 随堂练习(1)学生独立完成练习题。

(2)教师讲解答案,分析解题方法。

(2)拓展实数在实际生活中的应用。

六、板书设计1. 实数的定义2. 实数的性质3. 实数的运算4. 例题及解题方法七、作业设计1. 作业题目:(1)计算题:实数的混合运算。

(2)应用题:运用实数解决实际问题。

2. 答案:见教材课后习题答案。

八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念和性质掌握情况,以及对实数运算的熟练程度。

2. 拓展延伸:研究实数与数轴的关系,了解实数在数轴上的表示方法。

重点和难点解析1. 实数的定义及其包含的有理数和无理数。

2. 实数的性质,尤其是有序性和稠密性的理解。

人教版数学七年级下册6.3《实数》教学设计1

人教版数学七年级下册6.3《实数》教学设计1

人教版数学七年级下册6.3《实数》教学设计1一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数和无理数的概念之后,进一步对实数进行系统学习的开始。

本节内容主要包括实数的定义、实数与数轴的关系、实数的运算等。

通过本节课的学习,使学生对实数有一个清晰的认识,为后续的代数学习和解决实际问题打下基础。

二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数轴也有了一定的了解。

但实数作为介于有理数和无理数之间的一个整体,其定义和性质还需要进一步引导和探究。

此外,实数与数轴的关系以及实数的运算对学生来说也是一个新的挑战。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.掌握实数的运算规则,能进行实数的基本运算。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和性质。

2.实数与数轴的关系。

3.实数的运算规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,通过案例让学生理解实数的定义和性质,通过小组合作学习法让学生在讨论中掌握实数与数轴的关系和实数的运算规则。

六. 教学准备1.PPT课件。

2.数轴教具。

3.练习题。

七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。

同时,提出问题:“实数与数轴有什么关系?”激发学生的学习兴趣。

2.呈现(10分钟)通过PPT课件呈现实数的定义和性质,实数与数轴的关系,实数的运算规则。

结合案例,让学生直观地理解实数的内涵。

3.操练(10分钟)让学生在小组内进行实数的运算练习,如加、减、乘、除等。

教师巡回指导,解答学生疑问。

4.巩固(5分钟)选取一些典型练习题,让学生独立完成,检验对实数知识的掌握程度。

教师及时点评,指出错误并讲解。

5.拓展(5分钟)引导学生思考实数在实际生活中的应用,如面积、体积计算等。

让学生举例说明,培养解决实际问题的能力。

初中七年级下册《实数》教案优质范文

初中七年级下册《实数》教案优质范文

初中七年级下册《实数》教案优质范文一. 教学目标1.掌握实数的基本概念和运算方法;2.熟练解决有理数的加、减、乘、除的简单应用问题;3.能够理解和解决实际问题中的有理数运算问题。

二. 教学重难点1. 教学重点1.实数的概念及运算方法;2.有理数的加、减、乘、除法的应用。

2. 教学难点1.实数的概念和运算方法;2.将有理数应用到实际问题中。

三. 教学过程1. 导入新知识(10分钟)1.翻开数学书,引导学生认识实数的概念;2.探究实数在日常生活中的应用实例;3.通过课堂讨论了解实数运算的意义,以提高学生的学习积极性。

2. 讲解重点知识(20分钟)实数的定义:实数包含有理数和无理数两个部分,其中有理数可以用分数和整数表示,无理数则不可以用分数表示,如根号2、π等。

实数的运算:实数的运算方法包括加、减、乘、除四种基本运算方法,这些方法与有理数的运算方法没有本质差异。

3. 实践操作(30分钟)将实数的加、减、乘、除运算方法通过数据的形式呈现给学生,要求学生在独立完成题目的同时,在纸上进行计算,以帮助学生了解实数的基本运算方法。

同时,在学生完成课堂练习后对其进行检查,帮助学生纠正错误,加强学生的基本知识和运算能力。

4. 拓展应用(20分钟)引导学生将所学知识应用到实际生活中,例如在度量的过程中,学生需要用到有理数的知识,并提高学生的应用能力。

同时,课堂通过课外练习对所学知识进行巩固,以确保学生能够熟练掌握所学基本知识和应用能力。

四. 教学方法教师采用大讲堂和小组讨论相结合的方式,课堂带着学生完成各种知识讲解及其练习和应用,以利于学生更好地理解知识点,提高学生的学习能力和技巧。

五. 作业布置要求学生预习下一课《一次函数》,准备好本课的复习文本,以便下节课进行深入探讨。

六. 教学总结本节课主要讲授了实数的概念和运算方法,通过将学生所学知识用于实际应用案例中,加深了学生对实数的理解和认识,提高了学生的实际操作能力和应用能力。

七年级数学下《实数》教学设计

七年级数学下《实数》教学设计

七年级数学下《实数》教学设计
一、教学目标
1.知识与技能:学生能够理解实数的概念,掌握实数的性质和运算方法。

2.过程与方法:通过探究活动,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们认真思考、勇于探索的
精神。

二、教学内容与过程
1.导入:回顾有理数的概念,通过与有理数对比,引出实数的概念。

2.知识讲解:详细讲解实数的定义、性质和运算方法,强调实数与有理数的区别
与联系。

3.探究活动:设计探究活动,如比较实数的大小、进行实数的四则运算等,让学
生通过实际操作深入理解实数的性质和运算方法。

4.应用实践:引导学生运用所学知识解决实际问题,如测量长度或质量时产生的
误差等,让学生体会实数在实际生活中的应用。

5.总结与提升:总结实数的主要知识点,通过综合性题目提升学生运用知识解决
实际问题的能力。

三、教学方法与手段
1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。

2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更
好地理解实数的概念和性质。

四、教学评价与反馈
1.课堂互动:通过课堂提问、小组讨论等方式了解学生的学习情况,调整教学策
略。

2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。

3.测试与反馈:组织阶段性测试,检测学生对实数知识的掌握程度,及时发现问
题并进行针对性辅导。

五、作业布置
1.完成相关练习题,巩固所学知识。

2.预习下一节内容,了解无理数的基本概念。

(新人教版)数学七年级下册:《实数》教学案

(新人教版)数学七年级下册:《实数》教学案

《实数》教案一、教学目标1.会利用结论比较两个实数的大小 .2.会利用运算律进行简单的实数运算,会取无理数的近似值进行计算.二、教学重点和难点1.重点:比较实数大小,进行简单的实数运算 .2.难点:比较实数大小 .三、教学过程(一)基本训练,巩固旧知1. 填空:每一个实数都可以用数轴上的一个来表示,反过来,数轴上的每一个点都表示一个.2.填空:(1)7的相反数是,绝对值是;(2)-7 的相反数是,绝对值是;(3)7的相反数是,绝对值是;(4)-7 的相反数是,绝对值是;(5)7-7 的相反数是,绝对值是;(6)7-7 的相反数是,绝对值是.(二)创设情境,导入新课师:初一的时候,我们学过有理数的很多结论,现在数的范围从有理数扩大到了实数,原来对有理数来说成立的结论,对实数来说还成立吗?基本上都成立 . 譬如,“一个负数的绝对值是它的相反数”,对有理数来说是对的,对实数来说还是对的 . 所以,有关实数的很多结论我们可以直接从有理数那里搬过来 . 上节课我们从有理数那里搬来了三个实数的结论,本节课我们还要从有理数那里搬几个结论来,首先我们来看两个实数如何比较大小 .(三)尝试指导,讲授新课(师出示下图)-5-4-3-2-1012345师:(指准数轴)学习有理数的时候,我们讲过这样一个事实,数轴上右边的数总比左边的数大 . 譬如, 4 在 3 的右边, 4> 3;- 1 在- 4 的右边,- 1>- 4,等等 . 数的范围从有理数扩大到实数,数轴上右边的数还是比左边的数大吗?(稍停)对实数来说,数轴上右边的数还是比左边的数大 . 根据这一事实,我们得出比较两个实数大小的结论 . (师出示结论 4)结论 4:正数大于 0,0 大于负数,正数大于负数;两个负数,绝对值大的反而小 . 师:请大家把这个结论读一遍(生读) .师:这个结论跟两个有理数比较大小的结论是一样的,它是直接从有理数那儿搬过来的 . 下面我们就利用这个结论来比较两个实数的大小 . 例 1:比较下列各组数的大小:(1)5 和24; (2)- 5和- 6 ;(3)-3和-1.8.解: (1)24≈4.9 ,因为 5> 4.9 ,所以 5>24.(2) 5 ≈2.2, 6 ≈2.4,因为 2.2 <2.4 ,所以- 5 >- 6 .(3) 3 ≈1.7,因为 1.7 <1.8 ,所以- 3 >-1.8.(四)试探练习,回授调节3.填“>”或“<”:(1)310 ;(2)π 3.142; (3)- 8-7 ;(4)-2-1.42 ; (5)2954;(6)23. 13234.判断对错:对的画“√”,错的画“×” .(1)有最小的正有理数.()(2)没有最小的整数.()(3)没有最小的有理数.()(4)没有最小的无理数.()(5)没有最小的实数.()(6)有绝对值最小的实数.()(五)尝试指导,讲授新课师:我们知道有理数可以进行加、减、乘、除、乘方运算,同样,实数也可以进行加、减、乘、除、乘方运算,除了这些运算,实数可以进行开平方、开立方运算 . 实数之间怎么进行运算呢?有理数的运算法则和运算性质可以搬到实数的运算中来,也就是说,有理数怎么进行运算,实数就怎么进行运算.(师出示结论 5)结论 5:有理数的运算法则和运算性质,在进行实数运算时仍然成立.师:大家把结论 5 默读一遍 . (生默读)师:譬如,有理数的运算有交换律、结合律、分配律,同样实数的运算也具有这些运算性质 . 下面我们就来做几道实数计算题 .(师出例 2)例 2:计算下列各式的值:(1)(32) 2 ;(2)332 3 .解: (1)(32) 2 = 3+2- 2 =3+0= 3;(2)33 2 3 =(3+2)3=53.((2) 题板演时,要指出运用了分配律)(师出示例 3)例 3:计算:(1) 5 +π(精确到0.01 );(2)3g 2 .(精确到0.1 ).解: (1) 5 +π≈2.236+3.142≈5.38 ;(2)3g 2 ≈1.73×1.41≈2.4.(教学时需要指出,结果如果要求精确到0.01 ,那么运算过程中取近似值要精确到 0.001 )(六)试探练习,回授调节5.计算:(1)2 2-3 2;(2)2322.====(七)归纳小结,布置作业师:上节课我们学习了实数的三个结论,这节课我们又学习了实数的另外两个结论,实数的这五个结论是怎么得来的?基本上都是从有理数那里搬过来的 . 有理数可以在数轴上用点表示,实数也可以在数轴上用点表示;有理数有相反数、绝对值,实数也有相反数、绝对值;有理数怎么比较大小,实数也怎么比较大小;有理数怎么运算,实数也怎么运算 .四、板书设计数轴图例 1例 2结论 4:结论 5:例 3。

最新七年级下册数学实数的优质教案

最新七年级下册数学实数的优质教案

最新七年级下册数学实数的优质教案一、教学内容本节课选自最新七年级下册数学教材第六章“实数”的第一节,详细内容包括:实数的定义、分类及性质;无理数的理解与计算;实数的四则运算法则及其应用。

二、教学目标1. 理解并掌握实数的概念,了解实数的分类及性质。

2. 学会无理数的理解和计算方法,提高数学运算能力。

3. 掌握实数的四则运算法则,并能解决实际问题。

三、教学难点与重点难点:无理数的理解和计算方法,实数的四则运算法则。

重点:实数的概念和分类,实数的性质,实数的四则运算。

四、教具与学具准备教具:黑板、粉笔、多媒体设备。

学具:教材、练习本、计算器。

五、教学过程1. 实践情景引入(5分钟)通过讲解生活中的实际例子,如温度、长度等,引导学生了解实数的概念。

2. 知识讲解(15分钟)(1)实数的定义:讲解实数的概念,引导学生理解实数包括有理数和无理数。

(2)实数的分类:介绍实数的分类,包括整数、分数、无理数等。

(3)实数的性质:讲解实数的性质,如封闭性、结合律、交换律等。

(4)无理数的理解与计算:以π为例,讲解无理数的理解和计算方法。

(5)实数的四则运算法则:详细讲解实数的四则运算法则,并进行例题讲解。

3. 随堂练习(10分钟)布置练习题,让学生独立完成,巩固所学知识。

4. 互动讨论(10分钟)针对学生练习中遇到的问题,进行讨论和解答。

六、板书设计1. 实数的定义、分类及性质。

2. 无理数的理解与计算方法。

3. 实数的四则运算法则。

4. 例题及解答过程。

七、作业设计1. 作业题目:2. 答案:(1)0、3/4、√2、5、π都是实数。

(2)(1) 5,(2) 6.28 3,(3) 1 √5。

八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念、分类和性质掌握程度较好,但对无理数的理解和计算方法还需加强练习。

2. 拓展延伸:引导学生了解实数在生活中的应用,如科学计算、工程设计等,激发学生的学习兴趣。

重点和难点解析1. 实数的定义及分类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数
第一课时
教学目标:
了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。

教学重点:实数的意义和实数的分类;实数的运算法则及运算律。

教学难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算。

教学过程
一、导入新课:
使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , 3
5- ,478 ,911 ,119
,59 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即
3 3.0= ,30.65-=- ,
47 5.8758= ,90.8111= ,11 1.29= ,50.59= 二、新课:
1、 任何一个有理数都可以写成有限小数或无限循环小数的形式。

反过来,任何有限小数或无限循环小数也都是有理数。

无限不循环小数又叫无理数, 3.14159265π=也是无理数;有理数和无理数统称为实数
⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数
像有理数一样,无理数也有正负之分。

,π
是正无理数,
,π-是负无理数。

由于非0有理数和无理数都有正负之分,
实数也可以这样分类:
⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数
2、探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?
每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大
数a 的相反数是a -,这里a 表示任意一个实数。

一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0
3、例1 (1)求下列各数的相反数和绝对值:
2.5,-7,5
π-,0,32,π-3
(2) 一个数的绝对值是3,求这个数。

三、练习:
练习1、2
四、小结
1、什么叫做无理数?
2、什么叫做有理数?
3、有理数和数轴上的点一一对应吗?
4、无理数和数轴上的点一一对应吗?
5、实数和数轴上的点一一对应吗?
五、作业:
习题6.3第1、2、3题;
第二课时
教学过程
一、创设情景,导入新课
复习导入:1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律
2、用字母表示有理数的加法交换律和结合律
3、平方差公式、完全平方公式
4、有理数的混合运算顺序
二、合作交流,解读探究
当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。

在进行实数的运算时,有理数的运
算法则及运算性质等同样适用。

1、讨论 下列各式错在哪里?
(1)、2133993393-⨯÷⨯=⨯÷= (2)
1=
(3)
=(
4)、当x =2202x x -=- 2、例
2计算下列各式的值:
⑴-


3 计算:(结果精确到0.01)
(1π ()
(
2(在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.)
三、练习:
1、课本练习第3题
解:⑴0===⑵ (32=+=
2、计算20
22223-⎛⎛⎛⎫-+-- ⎪ ⎝⎭⎝⎭⎝⎭ 四、小结:
1、实数的运算法则及运算律。

2、实数的相反数和绝对值的意义
五、作业:
课本习题6.3第4、5、6、7题;。

相关文档
最新文档