六年级奥数竞赛试题(通用20篇)

合集下载

六年级奥数竞赛试题(通用20篇)

六年级奥数竞赛试题(通用20篇)

六年级奥数竞赛试题(通用20篇)六年级奥数竞赛试题(通用20篇)六年级的数学有着一定的难度,更别说是奥数了,以下是小编整理的六年级奥数竞赛试题,欢迎参考阅读!六年级奥数竞赛试题篇1一、填空(第8题4分,其他每小题均为2分共20分)1、75公顷= 平方千米 100分钟=( )天2、把一根3米长的钢材,从一头到另一头截成每段长米的小段要截( )次,每段占全( )3、1天的和( )小时的一样长。

4、六年(1)班女生占男生的,则男生占全班的( )。

5、甲比乙多,乙比丙少25%,则甲是丙的( )%。

6、一个半圆的直径是10厘米,它的周长是( )7、把360本书按4∶5∶6分给四、五、六、年级,分得最多的年级比分得最少的年级多( )本。

8、在一张长12厘米,宽8厘米的长方形纸上,剪下两个最大的圆,那么每个圆的周长是( ),剩下部分占这张纸面积的( )。

9、两个质数倒数相加,和的分子是25,分母是( )。

二、判断题:(10分)1、1米的25%是25%米。

( )2、一个数的倒数,有可能与这个数相等。

( )3、如果ab=1,则a是倒数。

( )4、直径是4分米的圆,它的周长和面积相等。

( )5、生产101个零件,101个合格,合格100%。

( )三、选择题。

(10分)1、如果a、b、c都为自然数,并都不为零,若a÷ >a,则b( )c。

A> B= C< D不能比较2、一个数和它的倒数之和一定( )1。

A> B= C< D无法比较3、两件衣服都按80元出售,其中一件赚了25%,另一件亏了25%,那么两件衣服合算在一起,结果是( )。

A赚了 B亏了 C不赚不亏 D无法比较4、一个三角形的三个内角度数比是4∶1∶1,这个三角形是( )三角形。

A直角 B等边 C等腰 D直角等腰5、甲乙两数的和是2 ,甲减去乙的差为1,则乙数是( )。

A1 B2 C8 D0四、计算:1、直接写出的得数:(8分)45÷4 = ( 256+14 )×12=152 ÷ 12=2、能简算的要简算。

小学六年级奥数试题(通用7篇)

小学六年级奥数试题(通用7篇)

小学六年级奥数试题小学六年级奥数试题(通用7篇)六年级既是我们学习的冲刺阶段,又是我们为升学打基础的关键时期,所以同学们一定要抓住每一次练习的机会,给自己增强实力。

下面是小编为大家整理的小学六年级奥数试题三篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

小学六年级奥数试题篇11、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。

0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的7倍。

15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。

求有多少个学生?有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。

求水果店里原来一共有多少个芒果?5、(置换问题)学校买回6张桌子和6把椅子共用去192元。

已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。

这样不断来回,直到甲和乙相遇为止,狗共行了多少米?小学六年级奥数试题篇21、一个整数乘以13后,乘积的最后三位数是123,那么这样的整数中最小的是多少?2、将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个乘积等于多少?3、一个五位数,五个数字各不同,且是13的倍数,则符合以上条件的最小的数是多少?4、一把钥匙只能开一把锁,现在有4把锁,但不知道哪把钥匙开哪把锁,最多要试几次能配好全部的钥匙和锁?5、用长和宽是4公分和3公分的长方形小木块,拼成一个正方形,最少要用这样的木块多少块?6、100个自然数,他们的总和是10000,在这些数里,奇数的个数比偶数是个数多,那么这些数里至多有多少个偶数?7、975×935×972×(),要使这个连乘积的最后四个数字都是零,在括号内最小应填多少?8、有三个连续自然数,他们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是多少?9、将进货的单价为40块的商品按50块售出时,每个的利润是10块,但只能卖出500个,已知这种商品每个涨价1块,其销售量就减少10个,为了赚得最多的利润,售价应定为多少?10、一个三角形的三条边长是三个两位的连续偶数,他们的末位数字和能被7整除,这个三角形的周长等于多少?小学六年级奥数试题篇31、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

小学奥数题竞赛真题

小学奥数题竞赛真题

小学奥数题竞赛真题小学奥数题竞赛真题:小学六年级奥数竞赛100道测试题,附答案解析:1、有 28位小朋友排成一行 .从左边开始数第 10位是学豆,从右边开始数他是第几位?2、纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?3、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?4、请找出下面哪个图形与其他图形不一样.5、四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?6、在 1998的约数(或因数)中有两位数,其中最大的是哪个数?7、英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?8、相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?9、将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .□ +□□ =□□□问算式中的三位数最大是什么数?10、有一个号码是六位数,前四位是 2857,后两位记不清,即 2857□□但是我记得,它能被 11和 13整除,请你算出后两位数 .11、观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?12、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.13、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.14、幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张?15、两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?16、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第五次交换位子后,小兔坐在第几号位子上?17、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

【经典】小学六年级奥数竞赛数学竞赛试卷及答案图文百度文库

【经典】小学六年级奥数竞赛数学竞赛试卷及答案图文百度文库

【经典】小学六年级奥数竞赛数学竞赛试卷及答案图文百度文库一、拓展提优试题1.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.2.分子与分母的和是2013的最简真分数有个.3.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.4.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.5.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.6.图中的三角形的个数是.7.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.8.从五枚面值为1元的邮票和四枚面值为 1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.9.若质数a,b满足5a+b=2027,则a+b=.10.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.11.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.12.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.13.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.14.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.15.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.【参考答案】一、拓展提优试题1.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.2.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.3.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.4.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.5.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.6.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.7.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.8.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.11.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.12.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.13.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.14.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.15.解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.。

六年级奥数试题及解析(精选12篇)

六年级奥数试题及解析(精选12篇)

六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。

小学六年级数学奥赛竞赛题附答案

小学六年级数学奥赛竞赛题附答案

小学六年级数学奥赛竞赛题附答案研究奥数的重要性研究奥数有助于思维训练,包括发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等。

这可以帮助孩子开拓思路,提高思维能力,从而有效提高分析问题和解决问题的能力,并提高智商水平。

研究奥数能提高逻辑思维能力。

奥数是高于普通数学的数学内容,求解奥数题需要分析判断、逻辑推理和抽象思维能力。

研究奥数对提高孩子的逻辑推理和抽象思维能力大有帮助。

研究奥数可以为中学学好数理化打下基础。

数理化是三门很重要的课程,如果孩子在小学阶段通过研究奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段的数理化大都能轻松对付。

研究奥数对孩子的意志品质是一种锻炼。

研究奥数的过程是一个充满挑战的过程,难度会随着课程的深入而增加。

只有少部分孩子凭着天分和毅力坚持下来,但只要能坚持学下来,都会有所收获,特别是对孩子的意志力是一次很好的锻炼,这对他今后的研究和生活都大有益处。

小学六年级数学奥赛竞赛题1.1.25×17.6+36.1÷0.8+2.63×12.5= 22.0+45.125+32.875= 100.02.7.5×2.3+1.9×2.5= 17.25+4.75= 22.03.1999+999×999=4.8+98+998+9998+=5.(78.6-0.786×25×75%×21.4)÷15×1997= 1001.06.六(1)班男、女生人数的比是8:7.1)女生人数是男生人数的7/8.2)男生人数占全班人数的8/15.3)女生人数占全班人数的7/15.4)全班有45人,男生有16人。

7.已知甲数和乙数的比是2:5,乙数和丙数的比是4:7,且甲数为16,求甲、乙、丙三个数的和。

解:设乙数为5x,则甲数为2x=16,解得x=8,乙数为40,丙数为35.所以三个数的和为16+40+35=91.8.已知甲数和乙数的比是7:3,乙数和丙数的比是6:5,且丙数是甲数的k倍,甲数和丙数的比是m:n。

六年级小升初奥数竞赛题100道及答案(完整版)

六年级小升初奥数竞赛题100道及答案(完整版)

六年级小升初奥数竞赛题100道及答案(完整版)题目1:甲、乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行60 千米,乙车每小时行80 千米,经过 3 小时两车相遇。

A、B 两地相距多少千米?答案:(60 + 80)×3= 140×3= 420(千米)答:A、B 两地相距420 千米。

题目2:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2,这个长方体的体积是多少立方厘米?答案:80÷4 = 20(厘米)5 + 3 + 2 = 10长:20×5/10 = 10(厘米)宽:20×3/10 = 6(厘米)高:20×2/10 = 4(厘米)体积:10×6×4 = 240(立方厘米)答:这个长方体的体积是240 立方厘米。

题目3:在比例尺是1 : 5000000 的地图上,量得甲、乙两地的距离是8 厘米。

一辆汽车从甲地开往乙地,每小时行80 千米,几小时能到达乙地?答案:实际距离:8×5000000 = 40000000(厘米)= 400(千米)时间:400÷80 = 5(小时)答:5 小时能到达乙地。

题目4:一项工程,甲单独做10 天完成,乙单独做15 天完成。

甲乙合作,几天可以完成这项工程?答案:1÷(1/10 + 1/15)= 1÷(3/30 + 2/30)= 1÷5/30= 6(天)答:甲乙合作,6 天可以完成这项工程。

题目5:小明看一本120 页的故事书,第一天看了全书的1/4,第二天看了全书的1/3。

还剩下多少页没有看?答案:第一天看的页数:120×1/4 = 30(页)第二天看的页数:120×1/3 = 40(页)剩下的页数:120 - 30 - 40 = 50(页)答:还剩下50 页没有看。

题目6:一个圆形花坛的周长是31.4 米,这个花坛的半径是多少米?答案:31.4÷3.14÷2 = 5(米)答:这个花坛的半径是5 米。

奥数比赛六年级试题及答案

奥数比赛六年级试题及答案

奥数比赛六年级试题及答案1. 计算题问题:计算 \((2^3 + 3^2) \times 5\) 的值。

答案:首先计算括号内的值,\(2^3 = 8\),\(3^2 = 9\),然后将它们相加得到 \(8 + 9 = 17\)。

最后,将结果乘以5,即 \(17\times 5 = 85\)。

2. 应用题问题:一个班级有48名学生,其中男生人数是女生人数的两倍。

问这个班级有多少男生和女生?答案:设女生人数为 \(x\),则男生人数为 \(2x\)。

根据题意,\(x + 2x = 48\),解得 \(3x = 48\),所以 \(x = 16\)。

因此,女生有16人,男生有 \(2 \times 16 = 32\) 人。

3. 几何题问题:一个直角三角形,两条直角边分别为3厘米和4厘米,求斜边的长度。

答案:根据勾股定理,斜边的长度 \(c\) 可以通过公式 \(c =\sqrt{a^2 + b^2}\) 计算,其中 \(a\) 和 \(b\) 分别是两条直角边的长度。

将3厘米和4厘米代入公式,得到 \(c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5\) 厘米。

4. 逻辑推理题问题:如果一个数的个位数是6,那么这个数的两倍的个位数是什么?答案:设这个数为 \(10a + 6\),其中 \(a\) 是十位数。

那么这个数的两倍就是 \(2(10a + 6) = 20a + 12\)。

个位数是2,因为\(20a\) 是10的倍数,不影响个位数。

5. 组合计数题问题:有5个不同的球和3个不同的盒子,将球放入盒子中,每个盒子至少有一个球,有多少种不同的放法?答案:首先,从5个球中选择2个球放入一个盒子,有 \(C_5^2 = 10\) 种选择方式。

剩下的3个球分别放入另外两个盒子,有 \(3! = 6\) 种排列方式。

但是,由于盒子是不同的,所以需要考虑盒子的排列,因此总的放法是 \(10 \times 6 = 60\) 种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数竞赛试题(通用20篇)六年级的数学有着一定的难度,更别说是奥数了,以下是小编整理的六年级奥数竞赛试题,欢迎参考阅读!六年级奥数竞赛试题篇1一、填空(第8题4分,其他每小题均为2分共20分)1、75公顷= 平方千米 100分钟=( )天2、把一根3米长的钢材,从一头到另一头截成每段长米的小段要截( )次,每段占全( )3、1天的和( )小时的一样长。

4、六年(1)班女生占男生的,则男生占全班的( )。

5、甲比乙多,乙比丙少25%,则甲是丙的( )%。

6、一个半圆的直径是10厘米,它的周长是( )7、把360本书按4∶5∶6分给四、五、六、年级,分得最多的年级比分得最少的年级多( )本。

8、在一张长12厘米,宽8厘米的长方形纸上,剪下两个最大的圆,那么每个圆的周长是( ),剩下部分占这张纸面积的( )。

9、两个质数倒数相加,和的分子是25,分母是( )。

二、判断题:(10分)1、1米的25%是25%米。

( )2、一个数的倒数,有可能与这个数相等。

( )3、如果ab=1,则a是倒数。

( )4、直径是4分米的圆,它的周长和面积相等。

( )5、生产101个零件,101个合格,合格100%。

( )三、选择题。

(10分)1、如果a、b、c都为自然数,并都不为零,若a÷ >a,则b( )c。

A> B= C< D不能比较2、一个数和它的倒数之和一定( )1。

A> B= C< D无法比较3、两件衣服都按80元出售,其中一件赚了25%,另一件亏了25%,那么两件衣服合算在一起,结果是( )。

A赚了 B亏了 C不赚不亏 D无法比较4、一个三角形的三个内角度数比是4∶1∶1,这个三角形是( )三角形。

A直角 B等边 C等腰 D直角等腰5、甲乙两数的和是2 ,甲减去乙的差为1,则乙数是( )。

A1 B2 C8 D0四、计算:1、直接写出的得数:(8分)45÷4 = ( 256+14 )×12=152 ÷ 12=2、能简算的要简算。

(18分)12.5%× 0.25÷ 1÷(0.075+.089 )=五、解决问题:(4+4+4+5+5=22分)1、一堆煤,用去总数的40%后,又运进24吨,现在的吨数是原来总数的,这堆煤原有多少吨?2、有一项工程,甲、乙二人共同做需要6天完成。

现在两人做了2天后,剩下的由乙单独做,结果又做了10天才完成。

乙单独做这项工程需要多少天完成?3、一条绳子用去全长的多4米,剩下的部分比用去的部分多2米。

这条绳子全长多少米?4、从一张面积是16平方分米的正方形铁皮中,剪下一个面积为最大的圆,剩下铁皮的面积是多少平方分米?5、甲、乙两列火车从相距480千米的两地同时相对开出,甲车每小时行80千米,小时后两车相距全程的70%。

乙车每小时行驶多少千米?六年级奥数竞赛试题篇2数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。

王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌。

"结果王老师只猜对了一个。

那么小明得多少牌,小华得多少牌,小强得多少牌。

逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答。

这里以小明所得奖牌进行分析。

逻辑推理问题奥数竞赛题:解:①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意。

②若小明得银牌时,再以小华得奖情况分别讨论。

如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意。

③若小明得铜牌时,仍以小华得奖情况分别讨论。

如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。

综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。

六年级奥数竞赛试题篇3标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的。

小方先拉一下A的开关,然后拉B、C……直到G的开关各一次,接下去再按A到G的顺序拉动开关,并依此循环下去。

他拉动了1990次后,亮着的灯是哪几盏?答案:B、C、D、G解析:小方循环地从A到G拉动开关,一共拉了1990次。

由于每一个循环拉动了7次开关,1990÷7=284……2,故一共循环284次。

然后又拉了A和B的开关一次。

每次循环中A到G的开关各被拉动一次,因此A和B的开关被拉动248+1=285次,C到G的开关被拉动284次。

A和B的状态会改变,而C到G的状态不变,开始时亮着的灯为A、C、D、G,故最后A变灭而B变亮,C到G的状态不变,亮着的灯为B、C、D、G。

六年级奥数竞赛试题篇41.某书店一月份出售书1235本,二月份出售1009本,三月份出售1340本,四月份比三月份少出售208本,五月份至年终书的出售量比前4个月的3.5倍少198本。

这年平均每月出售多少本书?2.前进化肥厂去年上半年平均每月生产化肥9800吨,下半年平均每月生产化肥18700吨,今年计划比去年增产15000吨,今年计划平均每月生产化肥多少吨?3.一列火车前5小时行驶了260千米,后7小时比前5小时每小时平均多行驶9千米,这列火车平均每小时行驶多少千米?4.某农场35人用一周时间锄一块地,前3天共锄地70.3亩,后4天共锄地120.8亩,平均每人每天锄地多少亩?解析:1.[(1235+1009+1340+1340-208)+(1235+1009+1340+1340-208)]3.5-198=1752(本)2.(9800×6+18700×6+15000)÷12=15500(吨)3.260+(260÷5+9)7÷(5+7)=57.25千米4.(70.3+120.8)÷(3+4)÷35=0.78(亩)六年级奥数竞赛试题篇5有一本书,叫做《一千零一夜》。

用数字1、2、3、4、5组成一个式子,使它等于1001,每个数字各用一次,数的排列顺序可以打乱,添什么运算符号也随便,只要运算结果等于1001。

能做到吗?可以做到。

下面就是一个满足条件的式子:53×4×2+1=1001。

在这里,记号53表示3个5连乘:53=5×5×5。

记号53读成5的3次方,简称为5的立方。

一个每边长度为5的正方体,它的体积等于5的立方。

六年级奥数竞赛试题篇6浓度为60%的酒精溶液200g,与浓度为30%的酒精溶液300g,混合后所得到的酒精溶液的浓度是( )。

分析:溶液质量=溶质质量+溶剂质量溶质质量=溶液质量×浓度浓度=溶质质量÷溶液质量溶液质量=溶质质量÷浓度要求混合后的溶液浓度,必须求出混合后溶液的总质量和所含纯酒精的质量。

混合后溶液的总质量,即为原来两种溶液质量的和:200+300=500(g)。

混合后纯酒精的含量等于混合前两种溶液中纯酒精的和:200×60%+300×30%=120+90=210(g)那么混合后的酒精溶液的浓度为:210÷500=42%解答:答:混合后的酒精溶液的浓度为42%。

点津:当两种不同浓度的溶液混合后,其中的溶液总量和溶质总量是不变的。

六年级奥数竞赛试题篇7小华解答数学判断题,答对一题给4分,答错一题扣4分,她答了20道判断题,结果只得 56分。

小华答对了几题?假设小华全部答对:该得4×20=80(分),现在实际只得了56分,相差80-56=24(分),因为答对一题得4分,答错一题扣4分,这样,一对一错相比,一题就差8分(4+4=8),根据总共相差的分数以及做错一题相差的分数,就可以求出做错的题数:24÷8=3(题),一共做20题,答错3题,答对的应该是:20-3=17(题)4×17=68(分)(答对的应得分)4×3=12(分)(答错的应扣分)68-12=56(分)(实际得分)某校有100名学生参加数学竞赛,平均得63分,其中男生平均得60分,女生平均得70分,那么,男生比女生多多少名?假设100名同学都是男生,那么应得分60×100=6000(分)比实际少得63×100-6000=300(分)原因是男生平均分比女生少70-60=10(分)求出女生人数为300 ÷ 10=30(名)六年级奥数竞赛试题篇8奥数题一一项工作由甲、乙两人合作,恰可在规定时间内完成,如果甲效率提高三分之一,则只需用规定时间的六分之五即可完成;如果乙效率降低四分之一,那么就要推迟75分钟才能完成,请问:规定时间是多少小时?答案与解析:假设甲效率为“6”(不一定设1,为迎合分数凑成整数设数),原合作总效率为6+乙效率那么甲效率提高三分之一后,合作总效率为8+乙效率所以根据效率比等于时间的反比,6+乙效率:8+乙效率=5:6,得出乙效率为4原来总效率=6+4=10乙效率降低四分之一后,总效率为6+3=9所以同样根据效率比等于时间的反比可得:10:9=规定时间+75:规定时间解得规定时间为675分答:规定时间是11小时15分钟奥数题二甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60 米。

当乙从A处返回时走了lO米第二次与甲相遇。

A、B相距多少米?答案与解析:“第一次相遇点距B处60 米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180米,第二次相遇是距A地10米。

画图我们可以发现乙走的路程是一个全程多了10米,所以A、B相距=180-10=170米。

奥数题三把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?答案与解析:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

解题:首先,任意连续9个自然数之和能被9整除,也就是说,一直写到2007能被9整除。

所以答案为1奥数题四现有浓度为10%的盐水20千克,在该溶液中再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?答案与解析:10%与30%的盐水重量之比为(30%-22%):(22%-10%)=2:3,因此需要30%的盐水20÷2×3=30克。

相关文档
最新文档