(北师大版)长沙市七年级数学上册第三单元《整式及其运算》测试(含答案解析)

合集下载

第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章整式及其加减(单元测试)2024-2025学年七年级上册数学北师大版一、单选题1.将化简得( )A .B .C .D .2.下列运算中,正确的是( )A .B .C .D .3.如图1所示,一块瓷砖表面有四条分割线,由分割线可构成一个正方形图案.图2由两块瓷砖铺成,分割线可构成3个正方形.图3由四块瓷砖铺成,分割线可构成9个正方形.若用十二块瓷砖铺成长方形,则由分割线可构成的正方形数最多是( )A .33B .34C .35D .364.下列式子:,,,,,中,整式的个数是( )A .3B .4C .5D .65.如果,那么代数式的值为( )A .B .C .D .6.多项式2x 2﹣x ﹣3的项分别是( )A .x 2,x ,3B .2x 2,﹣x ,﹣3C .2x 2,x ,﹣3D .2x 2,x ,37.下列说法正确的是( )A .单项式的系数是,次数是B .多项式的是二次三项式C .单项式的次数是1,没有系数D .单项式的系数是,次数是8.下列各题正确的是( )A .B .()()2x y x y +-+x y +x y --+x y x y--23325x x x +=235x x +=2222ab b a -=()222a b a b--=-+3x 3a c32d +32y --034a 2a b +=-18762a b a b ⎛⎫+--- ⎪⎝⎭3113-11-25xy π-15-422231x y x -+-a 2-xy z 1-4336x y xy +=0x x --=C .D .9.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第7个五边形数是( )A .62B .70C .84D .10810.多项式按字母的降幂排列正确的是( )A .B .C .D .二、填空题11.有一列数:1,3,2,,…,其规律是:从第二个数开始,每一个数都是其前后两个数之和,根据此规律,则第2023个数是12.已知a 是最小的正整数,b 是最大的负整数,c 是立方为的数,则 .13.单项式次数是 ,系数是 .14.已知,则.15.如图,点是线段上的一点,分别以、为边在的同侧作正方形和正方形,连接、、,当时,的面积记为,当,的面积记为,,以此类推,当时,的面积记为,则的值为 .16.已知两个代数式的和是,其中一个代数式是,则另一个为.17.用大小相同的棋子按如下规律摆放图形,第2022个图形的棋子数为 .396y y y -=22990a b ba -=2323573x y xy x y +--x 3232537x y x y xy -+-+2323537x y xy x y --+2323753x y xy x y +--2233735xy x y x y-+-1-27-abc =3213a bc -()2760m n ++-=()20m n +=C AB AC BC AB ACDE CBFG EG BG BE 1BC =BEG 1S 2BC =BEG 2S ⋯BC n =BEG n S 20232022S S -25412a a -+236a -18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为,则 .三、解答题19.先化简,再求值:(1)(6a ﹣3ab )+(ab ﹣2a )﹣2(ab +b ),其中a ﹣b =9,ab =6;(2)x ﹣2(x ﹣)+(﹣),其中|x +2|+(y ﹣1)2=0.20.先化简,再求值:,其中,.21.如图,在数轴上,三个有理数从左到右依次是:,x ,.(1)利用刻度尺或圆规,在数轴上画出原点;(2)直接写出x 的符号为______.(填“正号”或“负号”)22.七年级新学期,两摞规格相同准备发放的数学课本整齐地叠放在课桌面上,小英对其高度进行了测量,请根据图中所给出的数据信息,解答下列问题:312a =420a =n ()3n a n ≥10a =2312213y 23123x y +22221322212222a b ab ab a b ab ab ⎡⎤⎛⎫----+++ ⎪⎢⎥⎝⎭⎣⎦3a =-2b =1-1x +(1)每本数学课本的厚度是 cm ;(2)若课本数为(本),整齐叠放在桌面上的数学课本顶部距离地面的高度的整式为 (用含的整式表示);(3)现课桌面上有48本此规格的数学课本,整齐叠放成一摞,若从中取出13本,求余下的数学课本距离地面的高度.23.为了参加校园文化艺术节,书画社计划买一些宣纸和毛笔,现了解情况如下:甲、乙两家文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.甲商店的优惠办法是:买1支毛笔送1张宣纸;乙商店的优惠办法是:全部商品按定价的9折出售.书画社想购买毛笔10支,宣纸x 张.(1)若到甲商店购买,应付_____________元;若到乙商店购买,应付_____________元(用含x 的代数式表示);(2)若时,去哪家商店购买较合算?请计算说明;(3)若时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?24.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要______个三角形.(2)照此规律,摆成第n 个图案需要______个三角形.(用含n 的代数式表示)(3)照此规律,摆成第2022个图案需要几个三角形?x x (10)x >30x =30x =参考答案:1.D2.D3.C4.B5.A6.B7.D8.D9.B10.A11.112.13.14.115.16.17.606918.11019.(1)2a ﹣2b ﹣3ab ,0;(2)﹣3x +y 2,7.20.,21.(1)略;(2)正号22.(1);(2);(3)23.(1),(2)到甲商店购买较为合算(3)先到甲商店购买10支毛笔,送10张宣纸,再到乙商店购买张宣纸,费用为272元24.(1)16;(2);(3)6067个3613-4045222418a a -+2ab -18-0.5850.5x +102.5cm()4160x +()3.6180x +20(31)n +。

(常考题)北师大版初中数学七年级数学上册第三单元《整式及其运算》检测(包含答案解析)

(常考题)北师大版初中数学七年级数学上册第三单元《整式及其运算》检测(包含答案解析)

一、选择题1.下面两个多位数1248624…,6248624…,都是按照如下方法得到的:从首位数字开始,将左边数字乘以2,若积为一位数,将其写在右边数位上,若积为两位数,则将其个位数字写在右边数位上.依次再进行如上操作得到第3位数字…后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,按如上操作得到一个多位数,则这个多位数前2020位的所有数字之和是( ) A .10091B .10095C .10099D .101072.有依次排列的3个数:3,9,6,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,3-,6,这称为第一次操作:做第二次同样的操作后也可产生一个新数串:3,3,6,3.9,12-,3-,9,6,继续依次操作下去,问:从数串3,9,6开始操作第200次以后所产生的那个新数串的所有数之和是( ) A .600 B .618 C .680 D .718 3.一个正方形的边长减少10%,则它的面积减少( )A .19%B .20%C .1%D .10%4.数学课上,张老师出示了这样一道题目:“当1,22a b ==-时,求已知323237333101a a b a a b a ++---的值”.解完这道题后,小茗同学发现:“1,22a b ==-是多余的条件”.师生讨论后,一致认为小茗的发现是正确的.受此启发,张老师又出示了一道题目:无论,x y 取任何值,多项式222412(34)x ax y x x by +-+-+--的值都不变,则系数,a b 的值分别为( ) A .6,2a b == B .2,6a b ==C .6,2a b =-=D .6,2a b ==-5.下列运算正确的是( )A .2232x x -=B .()a b c a b c --+=---C .1(3)232-÷⨯=- D .11n =6.小文在做多项式减法运算时,将减去2235a a +-误认为是加上2235a a +-,求得的答案是24a a +-(其他运算无误),那么正确的结果是( ) A .221a a --+ B .234a a -+- C .24a a +-D .2356a a --+7.已知关于x 的多项式()34nm x x x mn --+-为二次三项式,则当1x =-时,这个二次三项式的值是( ) A .10- B .12- C .8D .148.一个三位数的百位上是a ,十位上是b ,个位上是c ,这个三位数可以表示为( )A .a b c ++B .abcC .10010c b a ++D .10010a b c ++9.下列运算正确的是( ) A .2347a a a += B .44a a -= C .32523a a a +=D .10.2504ab ab -+= 10.我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲要早三百多年,我们把这个三角形称为“杨辉三角”.根据图中的数字排列规律a 、b 、c 的值分别为( )A .1,6,15B .6,15,20C .20,15,6D .15,6,111.如图,数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么原点的位置可能是( )A .线段AM 上,且靠近点AB .线段AM 上,且靠近点MC .线段BM 上,且靠近点BD .线段BM 上,且靠近点M12.若327x y 和3211-m x y 的和是单项式,则代数式1224-m 的值是( ) A .3-B .4-C .5-D .12-二、填空题13.已知单项式﹣3a m ﹣1b 6与15ab 2n是同类项,则m+n 的值是_____. 14.多项式2231ab a b +-中次数最高项的系数是__________.15.做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步,算出a 2的各位数字之和得n 3,计算n 32+1得a 3;…………以此类推,则a 2021=_____.16.如图,是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,若输入x =10,则第一次输出y =5.若输入某数x 后,第二次输出y =3,则输入的x 的值为_________.17.如图是一个按某种规律排列的数阵,根据数阵的规律,第8行倒数第二个数是______.18.观察下列一组数:123451361015,,=,, (3591733)a a a a a ====它们是按一定规律排列的,请利用其中规律,写出第10个数10a = _________.19.如图是一个娱乐场,其中半圆形休息区和长方形游泳池以外的地方都是绿地,已知娱乐场的长为3a ,宽为2a ,游泳池的长、宽分别是娱乐场长、宽的一半,且半圆形休息区的直径是娱乐场宽的一半,则绿地的面积为______.(用含a 的代数式表示,将结果化为最简)20.若241x x -=,则2(2)x -=__________.三、解答题21.观察下面三行数:①-3,9,-27,81,-243,729,…; ②0,12,-24,84,-240,731,…; ③-6,18,-54,162,-486,1458,…. (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系? (3)取每行数的第n 个数,计算这三个数的和.22.如图在某居民区规划修建一个小广场(图中阴影部分).(1)用含m ,n 的代数式分别表示该广场的周长C 与面积S ; (2)当6m =米,5n =米时,分别求该广场的周长和面积. 23.(1)化简:2a 2﹣12(ab+a 2)﹣8ab . (2)先化简再求值:﹣(x 2y+3xy ﹣4)+3(x 2y ﹣xy+2),其中|x ﹣2|+(y+1)2=0. 24.()()322322(2)32x yx y x y x -----+,其中2,1x y =-=-.25.如图,将一张正方形纸片剪成四个大小、形状一样的小正方形,然后将其中一个小正方形再按同样的方法剪成四个小正方形,再将其中一个小正方形剪成四个小正方形,如此循环进行下去.(1)填表: 剪的次数1 2 3456正方形个数 4 7 10 13 16 ______ n (3)如果要剪出502个小正方形,那么需要剪多少次? 26.有一个整数x ,它同时满足以下的条件: ①小于π; ②大于443-;③在数轴上,与表示1-的点的距离不大于3.(1)将满足的整数x 代入代数式()2217x -++,求出相应的值; (2)观察上题的计算结果,你有什么发现?将你的发现写出来.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意进行计算,找到几个数字一循环,然后乘以循环的次数加上非循环的部分即可得到结果. 【详解】解:当第一个数字为3时, 这个多位数是362486248…, 即从第二位起,每4个数字一循环, (2020﹣1)÷4=504…3, 前2020个数字之和为:3+(6+2+4+8)×504+6+2+4=10095. 故选:B . 【点睛】本题考查循环类数字规律题,根据题意找到循环次数,即可求解;本题易错点为是否能找对几个数字循环,易错数目为505次,由于第一个数字不参与循环即易错点为2020漏减1.2.B解析:B 【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第200次以后所产生的那个新数串的所有数之和. 【详解】解:设A=3,B=9,C=6,操作第n 次以后所产生的那个新数串的所有数之和为S n . n=1时,S 1=A+(B-A )+B+(C-B )+C=B+2C=(A+B+C )+1×(C-A ),n=2时,S 2=A+(B-2A )+(B-A )+A+B+(C-2B )+(C-B )+B+C=-A+B+3C=(A+B+C )+2×(C-A ), …故n=200时,S 200=(A+B+C )+200×(C-A )=-199A+B+201C=-199×3+9+201×6=618, 故选:B . 【点睛】本题考查找规律-数字的变化,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.3.A解析:A 【分析】正方形的面积=边长×边长,设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a ,代入公式即可求解. 【详解】解:设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a , (1-10%)a×(1-10%)a =0.81a 2, (a 2-0.81a 2)÷a 2×100% =0.19 a 2÷a 2×100% =19% 故选:A 【点睛】本题主要考查了列代数式和整式的加减运算.通过设原边长为a ,根据已知条件求出原面积及边长减少10%后的面积是完成本题的关键.4.A解析:A 【分析】对多项式222412(34)x ax y x x by +-+-+--去括号,合并同类项,再由无论x ,y 取任何值,多项式222412(34)x ax y x x by +-+-+--的值都不变,可得关于a 和b 的方程,求解即可. 【详解】解:222412(34)x ax y x x by +-+-+-- =222412862x ax y x x by -+-+-++ =(246))9(a x b y --++∵无论,x y 取任何值,多项式222412(34)x ax y x x by +-+-+--的值都不变, ∴60a -=,240b -=, ∴6a =,2b = 故选:A . 【点睛】本题考查了整式的加减-化简求值,熟练掌握相关运算法则是解题的关键.5.D解析:D 【分析】根据合并同类项法则,去括号法则,有理数的混合运算法则以及有理数的乘方运算法则,对各选项分析判断后利用排除法求解. 【详解】解:A 、22223(31)2x x x x -=-=,故本选项计算错误,不符合题意;B 、()+a b c a b c --+=--,故本选项错误,不符合题意;C 、1113(3)23=2224-÷⨯=-⨯⨯-,故本选项错误,不符合题意; D 、11n =,故本选项正确,符合题意. 故选D . 【点睛】本题考查了有理数的混合运算,去括号法则,合并同类项法则,是基础题,熟记运算法则是解题的关键.6.D解析:D 【分析】根据加减互逆运算关系得出这个多项式为:()()224235a a a a +--+-,去括号,合并同类项可得该多项式为:221a a --+,再根据题意列出()()2221235aa a a --+-+-进一步求解即可 【详解】根据题意,这个多项式为:()()224235aa a a +--+-,222423521a a a a a a =+---+=--+ ,则正确的结果为:()()2221235aa a a --+-+-,2221235a a a a =--+--+ , 2356a a =--+ ,故选:D . 【点睛】本题主要考查多项式的运算,解题关键是掌握整式的加减运算顺序和运算法则及加减互逆的运算关系.7.A解析:A 【分析】根据二次三项式的定义得出m-4=0,n=2,求出m=4,n=2,代入二次三项式,最后把x=-1代入求出即可. 【详解】解:∵关于x 的多项式(m-4)x 3-x n +x-mn 为二次三项式, ∴m-4=0,n=2, ∴m=4,n=2, 即多项式为-x 2+x-8,当x=-1时,-x 2+x-8=-(-1)2-1-8=-10. 故选:A . 【点睛】本题考查了代数式求值的应用,关键是求出二次三项式.8.D解析:D 【分析】百位上的数乘以100得到实际数的大小,十位上的数乘以10得到实际数的大小,个位上的数乘以1得到实际数的大小,即可表示出这个三位数. 【详解】解:百位上是a ,则实际数字是100a , 十位上是b ,则实际数字是10b , 个位上是c ,则实际数字是c , 这个三位数可以表示为10010a b c ++. 故选:D . 【点睛】本题考查列代数式,解题的关键是掌握数字问题列代数式的方法.9.D解析:D 【分析】根据合并同类项得法则计算即可. 【详解】解:A.347a a a +=,故A 选项错误; B.43a a a -=,故B 选项错误;C.3a 与22a 不是同类项,不能合并,故C 选项错误;D.10.2504ab ab -+=,故D 选项正确; 故选:D . 【点睛】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.10.C解析:C 【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a 、b 、c 的值.【详解】解:根据图形得:每个数字等于上一行的左右两个数字之和, ∴a=10+10=20,b=10+5=15,c=5+1=6, 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.A解析:A 【分析】根据数轴上点的位置可以判断出0a <,0b >,由AM 和BM 的长度关系可以判断出b a >,即可得出结论.【详解】解:根据数轴上点的位置得a a b b <+<, ∴0a <,0b >,()BM b a b a =-+=-, AM a b a b =+-=, ∵AM BM >,∴b a >,∴点B 离原点的距离大于点A 离原点的距离, ∴原点的位置在线段AM 上,且靠近点A . 故选:A . 【点睛】本题考查数轴,解题的关键是掌握数轴上点的性质,数轴上两点之间的距离.12.D解析:D 【分析】根据单项式的和是单项式,可得同类项,根据同类项的意义,可得答案. 【详解】由题意,得3m =3,解得m =1, 12m−24=12-24=-12. 故选:D . 【点睛】本题考查了合并同类项,利用单项式的和是单项式得出同类项是解题关键.二、填空题13.5【分析】根据同类项是字母相同且相同的字母的指数也相同可得mn 的值再代入所求式子计算即可【详解】解:∵单项式﹣3am﹣1b6与ab2n是同类项∴m﹣1=12n=6解得m=2n=3∴m+n=2+3=5解析:5【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m、n的值,再代入所求式子计算即可.【详解】解:∵单项式﹣3a m﹣1b6与15ab2n是同类项,∴m﹣1=1,2n=6,解得m=2,n=3,∴m+n=2+3=5.故答案为:5.【点睛】本题考查了同类项,掌握同类项的定义:同类项是字母相同,且相同的字母的指数也相同,是解题的关键.14.3【分析】根据多项式的次数和系数的定义去求解即可【详解】解:多项式中次数最高项是的系数是3故答案为:3【点睛】本题考查了多项式能熟记多项式的次数和系数的定义的内容是解此题的关键注意:项的系数带着前面解析:3【分析】根据多项式的次数和系数的定义去求解即可.【详解】解:多项式2231ab a b+-中次数最高项是23a b,23a b的系数是3.故答案为:3.【点睛】本题考查了多项式,能熟记多项式的次数和系数的定义的内容是解此题的关键,注意:项的系数带着前面的符号.15.65【分析】根据题意可以写出这列数的前几个数从而可以发现数字的变化特点然后即可计算出a2021的值【详解】解:由题意可得a1=52+1=26a2=(2+6)2+1=65a3=(6+5)2+1=122解析:65【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,然后即可计算出a2021的值.【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a 3=(6+5)2+1=122,a 4=(1+2+2)2+1=26,…,由上可得,这列数字依次以26,65,122循环出现,∵2021÷3=673…2,∴a 2021的值为65,故答案为:65.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出a 2021的值.16.9或10或11或12【分析】由运算流程图先求出第一次输出的数分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可【详解】解:根据题意∵第二次输出设第一次输出的数是奇数m 时则解得:;设第一次输出的数 解析:9或10或11或12.【分析】由运算流程图,先求出第一次输出的数,分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可.【详解】解:根据题意,∵第二次输出3y =,设第一次输出的数是奇数m 时,则132m +=,解得:5m =; 设第一次输出的数是偶数n 时,则32n =,解得:6n =. 当第一次输出为5时,又可以分为两种情况:当x 为奇数时,则152x +=,解得:9x =; 当x 为偶数时,则52=x ,解得:10x =; 当第一次输出为6时,又可以分为两种情况: 当x 为奇数时,则162x +=,解得:11x =; 当x 为偶数时,则62x =,解得:12x =; 故答案为:9或10或11或12.【点睛】本题考查有理数的运算,结合编程的流程图出题,题目新颖,并且运用到了分类讨论这一重要数学思想.熟练掌握有理数的运算法则是解题的关键.17.【分析】由数阵规律可知被开方数是连续的自然数根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数可得结论【详解】解:第1行的最后一个数是;第2行的最后一个数是;第3行的最后一个数是;第4行的【分析】由数阵规律可知,被开方数是连续的自然数,根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数,可得结论.【详解】 解:第1第2第3;第4∴第8∴第8【点睛】本题考查观察与归纳,要善于发现数列的规律性特征.18.【分析】分子的规律是:11+21+2+3第n 个数的分子为第1个分母为1+2第2个分母为1+第3个分母为1+第n 个分母为1+这样就可以确定第n 个分数让n=10即可得到答案【详解】∵分子的规律是:11+ 解析:11205【分析】 分子的规律是:1,1+2,1+2+3,第n 个数的分子为(1)2n n +, 第1个分母为1+2,第2个分母为1+22,第3个分母为1+32,第n 个分母为1+2n , 这样就可以确定第n 个分数,让n=10即可得到答案.【详解】∵分子的规律是:1,1+2,1+2+3,第n 个数的分子为(1)2n n +, 第1个分母为1+2,第2个分母为1+22,第3个分母为1+32,第n 个分母为1+2n ,∴第n 个分数为(1)212nn n ++, 当n=10时,10a =10101155112121025205⨯==+. 故答案为:11205. 【点睛】本题考查了有理数的规律探索,分别确定分子与分数序号,分母与分数序号之间的关系是解题的关键.19.【分析】先求出游泳池的长宽及半圆形休息区的直径再根据绿地的面积是:总面积-游泳区的面积-休息区的面积求解即可【详解】解:休息区的直径是:=a 游泳池的长宽分别是=a ∴绿地的面积是:3a·2a-·a-= 解析:229128a a π- 【分析】先求出游泳池的长、宽及半圆形休息区的直径,再根据绿地的面积是:总面积-游泳区的面积-休息区的面积,求解即可.【详解】 解:休息区的直径是:22a =a ,游泳池的长、宽分别是32a ,22a =a , ∴绿地的面积是:3a·2a-32a ·a-21()22a π=6a²-232a -28a π=229128a a π-, 故答案为229128a a π-. 【点睛】 本题考查了列代数式,解题的关键是掌握:绿地的面积是=总面积-游泳区的面积-休息区的面积.20.【分析】根据等式左边利用完全平方公式展开求出x2-4x+4的值即可【详解】解:因为x2-4x=1所以(x-2)²=x2-4x+4=1+4=5;故答案为:5【点睛】本题考查了代数式求值利用了整体代入的解析:5【分析】根据等式左边利用完全平方公式展开求出x 2-4x+4的值即可.【详解】解:因为x 2-4x=1,所以(x-2)²=x 2-4x+4=1+4=5;故答案为:5.【点睛】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解题的关键.三、解答题21.(1)第①行数是3-,()23-,()33-,()43-,…,(3)n -;(2)第②行数是第①行相应的数加3,第③行数是第①行相应的数乘2;(3)()433n ⨯-+.【分析】(1)因为:﹣3=(﹣3)1,9=(﹣3)2,﹣27=(﹣3)3,81=(﹣3)4…,所以,第n 个数为:(3)n -;(2)因为:0═(﹣3)1+3,12=(﹣3)2+3,﹣24═(﹣3)3+3,84═(﹣3)4+3…,所以:第n 个数为:()33n -+;因为:﹣6=-3×2,18=9×2,﹣54=﹣27×2,162=81×2,所以:第n 个是为:()32n -⨯;(3)根据以上规律分别取出第n 个数求和即可.【详解】(1)第①行数是3-,()23-,()33-,()43-,…,(3)n -,其中n 为正整数; (2)第②行数是第①行相应的数加3,即()33-+,()233-+,()333-+,()433-+,…,(3)3n -+; 第③行数是第①行相应的数乘2,即()32-⨯,()232-⨯,()332-⨯,()432-⨯,…,()32n -⨯;(3)由(1),(2)可知:第①行数的第n 个数为()3n -;第②行数的第n 个数为()33n -+;第③行数的第n 个数为()32n -⨯.所以这三个数的和为()3n -+()33n -++()32n -⨯=()433n⨯-+.【点睛】本题考查了数字的变化规律问题,解答本题的关键是弄清楚数字变化的规律. 22.(1)46C m n =+, 3.6S mn =;(2)54C =米;108S =平方米.【分析】(1)观察图形,根据周长的定义即可计算周长,广场的面积等于大长方形的面积减去小长方形的面积;(2)分别将m 和n 的值分别代入计算即可.【详解】解:(1)2(22)46C m n n n m n =+++=+, 22(20.4) 3.6S m n n m m m mn =⋅-⋅--=;(2)当6m =米,5n =米时46466554C m n =+=⨯+⨯=米;3.6 3.665108S mn ==⨯⨯=平方米.【点睛】本题考查了列代数式及整式的化简求值,能数形结合并熟练掌握相关运算法则是解题的关键.23.(1)32 a 2﹣172ab ,(2)2 x 2y-6xy+10,14. 【分析】(1)按照整式加减的法则进行计算即可;(2)先化简,求出x 、y 值,代入即可.【详解】解:(1)2a 2﹣12(ab+a 2)﹣8ab , =2a 2﹣12ab-12a 2﹣8ab , =32a 2﹣172ab , (2)﹣(x 2y+3xy ﹣4)+3(x 2y ﹣xy+2),=﹣x 2y-3xy+4+3x 2y ﹣3xy+6,=2 x 2y-6xy+10.∵|x ﹣2|+(y+1)2=0,∴x=2,y=-1,把x=2,y=-1,代入,原式=2×22×(-1)-6×2×(-1)+10=14.【点睛】本题考查了整式的运算和化简求值,解题关键是熟练进行整式计算和求值. 24.化简结果为:222y x y --+,值为1.【分析】先去括号,合并同类项,把整式进行化简,然后把2,1x y =-=-代入计算,即可得到答案.【详解】解:()()322322(2)32x y x y x y x -----+=322324232x y x y x y x --+--+=222y x y --+;当2,1x y =-=-时,则原式=22(2)2((1)111)42-⨯-+⨯-=-+--=-.【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则,正确的进行化简.25.(1)19;(2)()31n +个;(3)167次【分析】(1)根据后一个图形中的个数总比前一个图形中的个数多3个,即可得出答案; (2)列出前几次的再总结规律即可;(3)令31502n +=,求解即可.【详解】解:(1)由表知,后一个图形中的个数总比前一个图形中的个数多3个,∴第6次剪成的小正方形的个数是19;(2)第一次剪出的小正方形的个数:4=131⨯+;第二次剪出的小正方形的个数:7231=⨯+;第三次剪出的小正方形的个数:10=331⨯+;第四次剪出的小正方形的个数:13=431⨯+;第五次剪出的小正方形的个数:16=531⨯+;…如果剪了n 次,那么共剪出()31n +个小正方形.(3)令31502n +=,解得167n =.答:剪出502个小正方形时,需要167次.【点睛】本题考查规律型中的图形变化问题,同时考查学生观察、分析、归纳和总结规律的能力. 26.(1)满足的整数x 为2、1、0、1-、2-、3-、4-;相应的值为-11、-1、5、7、5、-1、-11;(2)随着x 逐渐减小,代数式的值先增大再减小(或在数轴上,若x 与表示1-的点的距离相等,则代数的值相等)【分析】画出数轴,找出x 的整数值;(1)分别代入求值即可;(2)观察计算结果得出规律即可.【详解】解:根据题意画数轴得:∴满足的整数x 为2、1、0、1-、2-、3-、4-(1)当2x =时,原式()2221711=-⨯++=-当1x =时,原式()221171=-⨯++=-当0x =时,原式()220175=-⨯++=当1x =-时,原式()221177=-⨯-++=当2x =-时,原式()222175=-⨯-++=当3x =-时,原式()223171=-⨯-++=-当4x =-时,原式()2241711=-⨯-++=-(2)发现:随着x 逐渐减小,代数式的值先增大再减小(或在数轴上,若x 与表示1-的点的距离相等,则代数的值相等)(答案不唯一,有理即可)【点睛】本题考查了代数式求值,熟练掌握运算法则是此题的关键.。

北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)

北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)

北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)一、单选题1.关于多项式2231x y xy -+-,下列说法正确的是( ).A .次数是3B .常数项是1C .次数是5D .三次项是22x y2.代数式1x , 2x +y , 13a 2b , x y π-, 54y x , 0.5 中整式的个数( ) A .3个 B .4个 C .5个 D .6个3.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .164.已知单项式13m a b +与13n b a --可以合并同类项,则m ,n 分别为( )A .2,2B .3,2C .2,0D .3,05.若7,24m n n p +=-=,则3m n p +-=( )A .11-B .3-C .3D .116.设a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于自身的有理数,则a b c -+的值为 ( )A .2B .0C .0或2D .0或-27.如果0xy ≠,22103xy axy +=,那么a 的值为( ) A .-3 B .13- C .0 D .38.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-9.代数式3x 2y-4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( )A .-4x 3y 2+3x 2y-5xy 3-1B .-5xy 3+3x 2y-4x 3y 2-1C .-1+3x 2y-4x 3y 2-5xy 3D .-1-5xy 3+3x 2y-4x 3y 210.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为m ,则图②与图①的阴影部分周长之差是( )A .2m -B .2mC .3mD .3m -二、填空题11.多项式2333325467a c bc ab a -+--最高次项为__________,常数项为__________. 12.计算42a a a +-的结果等于_____.13.已知2310x x -+=,则2395x x -+=_________.14.张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩___________________元钱(用含a ,b 的代数式表示). 15.若|1||2|0a b -+-=,则3333232a b a b ++-的值为________.16.若实数a ,b 满足2=a ,41b a -=-||,则a b +=________.三、解答题17.计算(1)()()33223410310a b b a b b -+-+; (2)22135322x x x x ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦.18.化简:(1)()()193213x x --+ (2)()()222233a b ab ab a b --+19.定义:若a b 2+=,则称a 与b 是关于1 的平衡数.()1 5与_________是关于1的平衡数;()273x -与________是关于1的平衡数;(用含x 的代数式表示)()3若()22a 2x 3x x =-+,()2b 43x 6x x =-++,判断a 与b 是否是关于1的平衡数,并说明理由.20.计算下列各式,将结果写在横线上:1×1=________;11×11=________;111×111=________;1111×1111=_________.(1)你发现了什么?(2)你能直接写出111111111×111111111=的结果吗?21.某教辅书中一道整式运算的参考答案污损看不清了,形式如下:解:原式=█()2232y x +- 118x y =-+.(1)求污损部分的整式;(2)当x =2,y =﹣3时,求污损部分整式的值.22.观察下列各式的计算结果:2113131124422-=-==⨯; 2118241139933-=-==⨯; 2111535114161644-=-==⨯; 2112446115252555-=-==⨯… (1)用你发现的规律填写下列式子的结果:1﹣216= × ;1﹣2110= × . (2)用你发现的规律计算:(1﹣212)×(1﹣213)×(1﹣214)×…×(1﹣212020)×(1﹣212021)×21(1)2022-.23.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.24.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.25.观察算式:213142⨯+==;224193⨯+==;2351164⨯+==;2461255⨯+==,…(1)请根据你发现的规律填空:681⨯+=()2;(2)用含n的等式表示上面的规律:;(n为正整数)(3)利用找到的规律解决下面的问题:计算:11111111132********⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯⨯+⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭.26.如图,甲、乙两人(看成点)分别在数轴上表示-3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是______(填“谁对谁错”)(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是参考答案1.A2.B3.A4.A5.D6.C7.B8.D9.D10.B11.35ab4-12.5a13.214.(100-3a-2b)15.-316.−1或517.(1)32243a b a b-;(2)293 2x x--18.(1)3x-;(2)22ab-19.(1)-3;(2)3x5-;(3)20.(1)n位(各位数字都是1)的数自乘,得到(2n-1)位的数,最中间位的数字为n,它的两边位上的数字依次减1,第一位和最后一位是1(2)1234567898765432121.(1)2687.y y x -+-(2)92.-22.(1)56,76,910,1110; (2)2023404423.(1)5xy +3y -1(2)-5 (3)35x =- 24.(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2; 25.(1)7;(2)n •(n +2)+1=(n +1)2;(3)9950. 26.(1)甲对乙错(2)①-6n +25 ;②4(3)3或5。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。

(北师大版)长沙市七年级数学上册第三单元《整式及其运算》检测卷(包含答案解析)

(北师大版)长沙市七年级数学上册第三单元《整式及其运算》检测卷(包含答案解析)

一、选择题1.任意大于1的正整数m 的三次幂均可“分裂”成m 个连接奇数的和,如:3235=+,337911=++,3413151719=+++,…按此规律,若3m 分裂后,其中一个奇数是2021,则m 的值是( )A .46B .45C .44D .432.如图为O A B C 、、、四点在数轴上的位置图,其中O 为原点,且1AC =,OA OB =,若点C 所表示的数为x ,则点B 所表示的数为( )A .(1)x -+B .(1)x --C .1x +D .1x -3.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( )A .160 B .1168 C .1252 D .12804.若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式201520172016a b c ++的值为( ) A .2014B .2016C .2-或0D .05.已知3a b +=,2c d -=,则()()a c b d +--+的值是( ) A .5B .5-C .1D .1-6.求23201312222+++++的值,可令220131222S =++++,则23201422222S =++++,因此2014221S S -=-.仿照以上推理,计算出23201315555+++++的值为( )A .201451- B .201351-C .2014514-D .2013514-7.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,剪的次数记为n ,得到的正三角形的个数记为n a ,则2020a =( )A .6053B .6058C .6061D .60628.甲、乙、丙三人进行骑自行车比赛,三人的骑行情况如下表: 甲 一半路程速度为6/m s ,一半路程速度为4/m s 乙 全程速度均为5/m s丙 一半时间速度为6/m s ,一半时间速度为4/m s 设三人到达终点所用时间分别为甲、乙、丙,则( ) A .t t t <=乙甲丙 B .t t t =<乙甲丙 C .t t t <<乙甲丙D .t t t <<乙甲丙9.小张在做数学题时,发现了下面有趣的结果321-=87654+--=1514131211109++---=242322212019181716+++----=……根据以上规律可知,第20行左起第一个数是( ) A .360B .339C .440D .48310.若代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关,则代数式2+a b 的值为( ) A .0B .1-C .2或2-D .611.如图,四张大小不一的正方形纸片,,,A B C D 分别放置于长方形的角落或边上,其中B C 、和D 纸片之间既不重叠也无空隙,在长方形的周长已知的情况下,知道下列哪个正方形的边长,就可以求得阴影部分的周长( ).A .AB .BC .CD .D12.图①②③④……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第100个“广”字中的棋子个数是( )A .105B .205C .305D .405二、填空题13.若一个正整数能表示为两个正整数的平方差,则称它为“平方差数”(如22321=-,221653=-,则3和16都是“平方差数”),已知“平方差数”按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,……,则数字2019是第______个“平方差数”,第2019个“平方差数”是______.14.当1x =-时,多项式31mx nx ++的值等于2,那么当1x =时,则该多项式的值为________.15.两堆棋子,将第一堆的3个棋子移动到第二堆之后,现在第二堆的棋子数是第一堆棋子数的3倍,设第一堆原有m 个棋子,则第二堆的棋子原有_______个. 16.如图,若数轴上的有理数a ,b 满足|a+2b|﹣|a ﹣b|=|a|,则ab=_____.17.若1x ≠-,则把11x -+称为x 的“和1负倒数”,如:2的“和1负倒数”为13-,3-的“和1负倒数”为12,若123x =,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”,…依此类推,则2020x 的值为____.18.已知2m n -=-,那么()233m n m n --+=___________.19.如图是一个娱乐场,其中半圆形休息区和长方形游泳池以外的地方都是绿地,已知娱乐场的长为3a ,宽为2a ,游泳池的长、宽分别是娱乐场长、宽的一半,且半圆形休息区的直径是娱乐场宽的一半,则绿地的面积为______.(用含a 的代数式表示,将结果化为最简)20.若241x x -=,则2(2)x -=__________.三、解答题21.先化简,再求值:2222211233358()35x x xy y x xy y ⎛⎫ --+-++⎝+⎪⎭,其中2x =-,1y =22.先化简,再求值:()()222232214a b ab a b a b +----,其中23a =,12b =-.23.综合与探究某餐厅中1张餐桌可坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.(1)当有4张桌子时,第一种摆放方式能坐______人,第二种摆放方式能坐人; (2)当有n 张桌子时,第一种摆放方式能坐______人,第二种摆放方式能坐______人; (3)该餐厅有30张这样的长方形桌子,按方式一每3张拼成一张大桌子,则30张桌子可拼成10张大桌子,共可坐______人?按方式二呢?(4)一天中午,该餐厅来了98名顾客共同就餐客(即桌子要摆在一起),但餐厅中只有25张这样的长方形桌子可用,若你是这家餐厅的经理,你打算选用哪种方式来摆餐桌呢? 24.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如: 已知:432432106a x a x a x a x a x ++++=,则 (1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到42a 22a +020+=a ,结合(1)00a =的结论,从而得出420a a +=. 请类比上例,解决下面的问题:已知654654(1)(1)(1)a x a x a x -+-+-323210(1)(1)(1)4a x a x a x a x +-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值; (3)642a a a ++的值. 25.先化简,再求值(1)已知()2a 1b-20++=,求()()2222225a -b 2a -b-5a -3b -ab +(2)已知a 2+5ab =76,3b 2+2ab =51,求代数式a 2+11ab +9b 2的值. 26.计算:(1)2|6|3(12)(3)--+⨯-÷- (2)5113(2)248⎛⎫-⨯--⎪⎝⎭ (3)3[52(1)]xy xy xy --+ (4)()()2222732ab b aaab b --+--+【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2021的是从3开始的第1010个数,然后确定出1007所在的范围即可得解. 【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=(2)(1)2m m +-,∵2n+1=2021,n=1010,∴奇数2021是从3开始的第1010个奇数, ∵(442)(441)(452)(451)989,103422+⨯-+⨯-==,∴第1010个奇数是底数为45的数的立方分裂的奇数的其中一个, 即m=45. 故选:B . 【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.2.B解析:B【分析】首先表示A所表示的数,再根据O为原点,OA=OB可得B表示的数和A表示的数是互为相反数,进而可得答案.【详解】解:∵AC=1,点C所表示的数为x,∴点A表示的数为x-1,∵O为原点,OA=OB,∴点B所表示的数为-(x-1),故选:B.【点睛】此题主要考查了列代数式,关键是正确表示出点A所表示的数.3.B解析:B【分析】根据给出的数据可得:第n行的第三个数等于112n n--的结果再乘11n-,再把n的值代入即可得出答案.【详解】解:根据给出的数据可得:第n行的第三个数等于112n n--的结果再乘11n-,则第8行第3个数(从左往右数)为1111 82881168⎛⎫-⨯=⎪--⎝⎭;故选:B.【点睛】本题考查与实数运算相关的规律题,通过阅读题意归纳总结有关规律再运算是解题关键.4.D解析:D【分析】确定a、b、c的值,再代入计算即可.【详解】解:∵a是最大的负整数,∴1a=-,∵b是绝对值最小的有理数,∴0b=,∵c 是倒数等于它本身的自然数, ∴1c =,2015220011572017(1)20160021610a b c =-+⨯++=+,故选:D . 【点睛】本题考查了与有理数有关负整数、绝对值和倒数,解题关键是确定a 、b 、c 的值.5.A解析:A 【分析】先把()()a c b d +--+变形为()()a b c d ++-,然后再整体代入即可. 【详解】解:∵3a b +=,2c d -=, ∴()()a c b d +--+ =()()a b c d ++- =3+2 =5. 故选:A . 【点睛】本题主要考查了代数式求值,解答此题的关键是灵活运用整体代入法.6.C解析:C 【分析】类比题目中所给的解题方法解答即可. 【详解】解:设a =1+5+52+53+ (52013)则5a =5(1+5+52+53+…+52013)=5+52+53+…+52013+52014,∴5a -a =(5+52+53+…+52013+52014)-(1+5+52+53+…+52013)=52014-1,即a =2014514-.故选:C . 【点睛】本题是阅读理解题,类比题目中所给的解题方法是解决问题的基本思路.7.C解析:C 【分析】根据规律得出数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有()43131n n +-=+.【详解】解:所剪次数1次,正三角形个数为4个, 所剪次数2次,正三角形个数为7个, 所剪次数3次,正三角形个数为10个, …剪n 次时,共有()43131n n +-=+, 把2020n =代入313202016061n , 故选:C . 【点睛】本题考查图形的规律,从数据中,很容易发现规律,再分析整理,得出结论.8.B解析:B 【分析】根据题意可知三人的总路程是相等的,则分别表示出用时,再比较大小即可 【详解】 设总路程为s , 对于甲:5642224甲s s t s =÷+÷=; 对于乙:5乙s t =; 对于丙:6422丙丙t t s ⨯+⨯=,即:5丙st =;∵s 表示总路程,即0s >,∴5524s s <, ∴t t t =<乙甲丙, 故选:B 【点睛】本题考查列代数式,灵活根据题意结合行程问题中基本公式进行计算是解题关键.9.C解析:C 【分析】根据左起第一个数3,8,15,24的变化规律,得出第n 行的左起第一个数为2(11)n +-,由此即可求出第20行的左起第一个数.【详解】根据题意可知,每行的左起第一个数依次为:2321=-, 2831=-,21541=-,22451=-,第n 行的左起第一个数为2(11)n +-.∴第20行的左起第一个数为2(201)1440+-=. 故选:C . 【点睛】本题考查数字的变化规律.根据题意找到规律并利用规律解决问题是关键.10.B解析:B 【分析】利用去括号、合并同类项法则化简代数式,得到()()22237b x a x -+++,根据代数式()()2226231xax bx x ++---(,a b 为常数)的值与字母x 的取值无关可得220b -=,30a +=,求出a 和b 的值即可. 【详解】解:()()2226231x ax bx x ++---2226231x ax bx x ++-++= ()()22237b x a x -+++=,∵代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关, ∴220b -=,30a +=, ∴1b =,3a =-, ∴2321a b +=-+=-, 故选:B . 【点睛】本题考查整式的加减—字母无关型,掌握去括号、合并同类项法则是解题的关键.11.B解析:B 【分析】先表示出阴影部分所有竖直的边长之和和所有水平的边长之和,再表示出阴影部分的周长,然后进行整理即可得出答案. 【详解】 解:根据题意得:阴影部分所有竖直的边长之和=2×长方形的宽, 所有水平的边长之和=2×(长方形的长-B 的边长), 则阴影部分的周长=2×长方形的宽+2×(长方形的长-B 的边长)=长方形的周长-B的边长×2所以知道B的边长,就可以求得阴影部分的周长;故选:B.【点睛】本题考查了整式的加减和长方形的周长公式,根据长方形的周长公式推导出所求的答案是解题的关键.12.B解析:B【分析】首先观察每个广字横有几个原点,然后观察撇有几个原点,找到规律后即可解答.【详解】解:由题目得,第1个“广”字中的棋子个数是7;第2个“广”字中的棋子个数是9;第3个“广”字中的棋子个数是11;4个“广”字中的棋子个数是13;发现第5个“广”字中的棋子个数是15…进一步发现规律:第n个“广”字中的棋子个数是(2n+5).所以第100个“广”字中的棋子个数为2×100+5=205,故选:B.【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.2695【分析】根据题意观察探索规律知全部智慧数从小到大可按每三个数分一组从第2组开始每组的第一个数都是4的倍数归纳可得规律再分别计算结果【详解】解:观察探索规律知全部平方差数从小到大可按每三个数分解析:2695【分析】根据题意观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.归纳可得规律,再分别计算结果.【详解】解:观察探索规律,知全部平方差数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得第n组的第一个数为4n,第二个数为4n+1,第三个数为4n+3,∵2019=4×504+3,∴2019是第504组的第3个数,即第1515个平方差数;因为2019=3×673,所以第2019个平方差数是第673组中的第3个数,即为4×673+3=2695,故答案为:1515,2695.【点睛】本题考查了探索规律的问题,解题的关键是根据题意找出规律,从而得出答案,此题难度较大.14.0【分析】把代入多项式得出关于mn 的等式再代入计算即可;【详解】把代入中得解得:当时=;故答案是0【点睛】本题主要考查了代数式求值准确计算是解题的关键解析:0【分析】把1x =-代入多项式得出关于m ,n 的等式,再代入1x =计算即可;【详解】把1x =-代入31mx nx ++中得,12--+=m n ,解得:1m n +=-,当1x =时,31mx nx ++=1m n ++110=-+=;故答案是0.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.15.3m-12【分析】第一堆的3个棋子移动后有(m-3)个表示出第二堆的数量然后减去3即可【详解】解:第一堆原有m 个棋子移动后有(m-3)个则它的三倍为3(m-3)即第二堆的现有棋子为3(m-3)第二堆解析:3m-12【分析】第一堆的3个棋子移动后有(m-3)个,表示出第二堆的数量,然后减去3即可.【详解】解:第一堆原有m 个棋子,移动后有(m-3)个,则它的三倍为3(m-3),即第二堆的现有棋子为3(m-3),第二堆的棋子原有棋子为:3(m-3)-3=(3m-12)个.【点睛】本题考查了列代数式和整式计算,解题关键是依据问题中与数量有关的词语,列出代数式,并进行计算.16.【分析】根据点ab在数轴上的位置可判断出a+2b>0a﹣b<0a<0然后化简绝对值从而可求得答案【详解】解:由题意可知:a+2b>0a﹣b<0a<0∵|a+2b|﹣|a﹣b|=|a|∴a+2b+a﹣解析:1 3 -【分析】根据点a、b在数轴上的位置可判断出a+2b>0,a﹣b<0,a<0,然后化简绝对值,从而可求得答案.【详解】解:由题意可知:a+2b>0,a﹣b<0,a<0,∵|a+2b|﹣|a﹣b|=|a|,∴a+2b+a﹣b=﹣a.整理得:3a+b=0,∴13 ab=-.故答案为:13 -.【点睛】本题考查了绝对值的化简和数轴上表示的数以及整式加减,解题关键是通过数轴能够确定绝对值内各式的正负,进而依据绝对值的意义化简绝对值.17.【分析】根据和1负倒数的定义分别计算出x1x2x3x4…则得到从x1开始每3个值就循环据此求解可得【详解】解:∵∴……∴此数列每3个数为一周期循环∵2020÷3=673…1∴x2020=故答案为:【解析:2 3【分析】根据和1负倒数的定义分别计算出x1,x2,x3,x4…,则得到从x1开始每3个值就循环,据此求解可得.【详解】解:∵12 3x=,∴21325 13x=-=-+,31532 15x=-=--,4125312x =-=-,…… ∴此数列每3个数为一周期循环,∵2020÷3=673…1,∴x 2020=123x =, 故答案为:23. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 18.10【分析】把(m-n )看作一个整体并代入代数式进行计算即可得解【详解】解:∵∴(m-n)²-3(m-n)=(-2)²-3×(-2)=4+6=10故答案为:10【点睛】本题考查了代数式求值整体思想的解析:10【分析】把(m-n )看作一个整体并代入代数式进行计算即可得解.【详解】解:∵2m n -=-,∴()233m n m n --+=(m-n)²-3(m-n)=(-2)²-3×(-2)=4+6=10, 故答案为:10.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.19.【分析】先求出游泳池的长宽及半圆形休息区的直径再根据绿地的面积是:总面积-游泳区的面积-休息区的面积求解即可【详解】解:休息区的直径是:=a 游泳池的长宽分别是=a ∴绿地的面积是:3a·2a-·a-= 解析:229128a a π- 【分析】先求出游泳池的长、宽及半圆形休息区的直径,再根据绿地的面积是:总面积-游泳区的面积-休息区的面积,求解即可.【详解】 解:休息区的直径是:22a =a ,游泳池的长、宽分别是32a ,22a =a , ∴绿地的面积是:3a·2a-32a ·a-21()22a π=6a²-232a -28a π=229128a a π-,故答案为229128a a π-. 【点睛】 本题考查了列代数式,解题的关键是掌握:绿地的面积是=总面积-游泳区的面积-休息区的面积.20.【分析】根据等式左边利用完全平方公式展开求出x2-4x+4的值即可【详解】解:因为x2-4x=1所以(x-2)²=x2-4x+4=1+4=5;故答案为:5【点睛】本题考查了代数式求值利用了整体代入的解析:5【分析】根据等式左边利用完全平方公式展开求出x 2-4x+4的值即可.【详解】解:因为x 2-4x=1,所以(x-2)²=x 2-4x+4=1+4=5;故答案为:5.【点睛】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解题的关键.三、解答题21.2223x y -+;53- 【分析】先去括号,再根据整式的加减运算法则化简,再代入数值计算即可.【详解】 解:原式2222213823333535x x xy y x xy y =---++++ ()2218233333355x xy y ⎛⎫⎛⎫=--++-++ ⎪ ⎪⎝⎭⎝⎭2223x y =-+, 当2x =-,1y =时,原式=22(2)13-⨯-+=53-. 【点睛】 本题考查整式的加减-化简求值、有理数的混合运算,熟练掌握整式的加减运算法则是解答的关键.22.262ab -,-1【分析】先根据整式的混合运算顺序和运算法则化简原式,再将a 、b 的值代入计算可得;【详解】解:()()222232214a b ab a b a b +---- = 222236224a b ab a b a b +-+--=262ab - 当23a =,12b =-时,原式=2216212132⎛⎫⨯⨯--=-=- ⎪⎝⎭【点睛】此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.23.(1)18;12;(2)()42n +;()24n +;(3)140;100;(4)方式一【分析】(1)仔细观察图形的变化规律解答即可;(2)通过观察图形变化,发现第一种方式每增加一张桌子,就增加4人,第二种方式是每增加一张桌子,就增加2人,由此规律解答即可;(3)根据(2)中发现的规律分别求出每一张大桌子能坐的人数,即可求出10张大桌子共可坐的人数;(4)分别求出25张桌子按两种方式摆放可坐的人数,即可做出判断.【详解】(1)观察发现:第一种摆放方式,多一张桌子多4人,故有4张桌子能坐18人, 第二种摆放方式,多一张桌子多2人,故有4张桌子能坐12人,故答案为:18,12;(2)观察发现,第一种摆放方式,有n 张桌子能坐的人数为6+4(n ﹣1)=4n+2, 第二种摆放方式,有n 张桌子能坐的人数为6+2(n ﹣1)=2n+4,故答案为:()42n +,()24n +;(3)第一种方式:30张桌子拼成10张大桌子可坐的人数为10×(4×3+2)=140人, 第二种方式:30张桌子拼成10张大桌子可坐的人数为10×(2×3+4)=100人, 故答案为:140,100;(4)方式一:当25n =时,425210298⨯+=>,方式二:当25n =时,22545498⨯+=<,所以,选用第一种摆放方式来摆放餐桌.【点睛】本题考查图形的变化规律探索、列代数式、有理数的混合运算,解答的关键是理解题意,认真观察,找到图形的变化规律.24.(1)4;(2)8;(3)0.【分析】(1)观察等式可发现只要令x=1即可求出0a .(2)观察等式可发现只要令x=2即可求出6543210++++++a a a a a a a .(3)令x=0即可求出等式一,令x=2即可求出等式二,两个式子相加即可求出来.【详解】解:(1)当1x =时,041=4=⨯a(2)当2x =时,可得654321042=8++++++=⨯a a a a a a a(3)当0x =时,可得65432100+-++=--a a a a a a a ①由(2)得654321042=8++++++=⨯a a a a a a a ②②+①得:406282222++=+a a a a ,()64202=828240∴++-=-⨯=a a a a ,6420=∴++a a a .【点睛】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键. 25.(1)2a²-ab ,4;(2)229【分析】(1)根据绝对值和偶次方的非负性分别求出a 、b ,根据整式的加减运算法则把原式化简,代入求值即可得出答案;(2)先将a 2+11ab +9b 2化为与a 2+5ab 和3b 2+2ab 相关的式子再将值代入即可得出答案.【详解】(1)解:()()2222225a -b 2a -b-5a -3b -ab + =5a²-b²+2a²-2b²-5a²+3b²-ab=2a²-ab∵|a+1|+(b-2)²=0∴|a+1|=0,(b-2)²=0解得a=-1 ,b=2代入2a²-ab得2×(-1)²-(-1)×2=4(2)解:∵3b²+2ab=51∴3(3b²+2ab )=9b²+6ab=51×3=153又a²+5ab=76∴a²+11ab+9b²=a²+5ab+(9b²+6ab )=229.【点睛】本题考查了整式的化简求值、非负数的性质,熟练掌握整式的加减运算是解题的关键. 26.(1)-10;(2)4;(3)2;(3)2224a ab b +-.【分析】(1)原式先计算乘方和化简绝对值,再计算乘除法,最后进行加减运算即可得到答案; (2)原式先进行乘方运算,然后再根据乘法分配律进行计算即可;(3)原式去括号,再合并同类项即可得到答案;(4)原式去括号,再合并同类项即可得到答案.【详解】解:(1)2|6|3(12)(3)--+⨯-÷-6369=--÷=-6-410=-.(2)5113(2)248⎛⎫-⨯-- ⎪⎝⎭ 11332248⎛⎫=-⨯-- ⎪⎝⎭ 11332+32+32248=-⨯⨯⨯ =-16+8+124=.(3)3[52(1)]xy xy xy --+3522xy xy xy =-++2=.(4)()()2222732ab b a a ab b --+--+ 22227633ab b a a ab b =--+-+-2224a ab b =+-.【点睛】本题考查了有理数的混合运算和整式的加减,熟练掌握运算法则是解答此题的关键.。

2022学年北师大版七年级数学上册第三章《整式及其加减》测试卷附答案解析

2022学年北师大版七年级数学上册第三章《整式及其加减》测试卷附答案解析

2022-2023学年七年级数学上册第三章《整式及其加减》测试卷一、单选题1.填在下面各正方形中的四个数之间都有一定的规律,按此规律可得到+++a b c d 的值为()A .355B .356C .435D .4362.若单项式25m x y +-与单项式2136n y x -的和仍为单项式,则2m n -的值为()A .6B .1C .3D .1-3.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是()A .51x --B .51x +C .131x --D .131x +4.下列结论正确的个数是()①2-不是单项式②多项式3527x y xy --是三次三项式③232π3a b c的系数是23,次数是6④233m n -的次数为4A .0个B .1个C .2个D .3个5.多项式23211332x y xy -+的次数为()A .5B .3C .7D .86.已知53x y -=-,则55x y -+的值为()A .0B .2C .5D .87.一本笔记本的原价为a 元,降价后每本比原来便宜了b 元,小明买了4本这样的笔记本,则他一共花费了()A .()44a b -元B .()4a b -元C .()4a b -元D .4b 元8.按如图所示的运算程序,当输入3x =,6y =时,输出的结果为()A .1B .6C .45D .819.若()22m -与3n +互为相反数,则m n 的值是()A .8-B .8C .9-D .910.当=1x -时,3238ax bx -+的值为18,则1282b a -+的值为()A .40B .42C .46D .56二、填空题11.在式子1x,1x y ++,2022,a -,23x y -,13x +中,整式的个数是______个.12.已知520a b ++-=,则27a b -+的值为___________13.a ,b 两数平方的和除以3的商可以表示为______.14.已知有理数a 、b 、c 满足1,2,3a b c ===,且a b c a b c +-=+-,则a b c ++=__________.15.如关于x ,y 的多项式2347514x y mxy y xy +-+化简后不含二次项,则m =______.16.已知关于x 的多项式||2(4)31m m x x ---+是二次三项式,则m =________,当=1x -时,该多项式的值为________.17.对于任何有理数,我们规定符号a b cd的意义是a b ad bc c d =-,如121423234=⨯-⨯=-,当23(1)0x y -++=时,2221x y x --值为______.18.规定:()3f x x =-,()2g y y =+,例如()2235f -=--=,()2220g -=-+=.则式子()()11f x g x -++的最小值是__________.三、解答题19.已知()2230a b -++=,求代数式2222332232a b ab ab a b ab ab ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦的值.20.已知代数式2=2+3+21A x xy y -,22B x xy x -=++.(1)当=1x -,2y =时,求2A B -的值;(2)若2A B -的值与x 的取值无关,求y 的值.21.某超市销售茶壶、茶杯,每只茶壶定价20元,每只茶杯定价4元.今年“双十一”期间开展促销活动,向顾客提供两种优惠方案:方案一:每买一只茶壶就赠一只茶杯;方案二:茶壶和茶杯都按定价的90%付款.某顾客计划到这家超市购买6只茶壶和x 只茶杯茶(杯数多于6只).(1)用含x 的代数式分别表示方案一与方案二各需付款多少元?(2)当25x =时,若规定每位顾客只能在以上两种方案中任选一种,请通过计算说明该顾客选择上面两种购买方案中哪一种更省钱?22.某超市新进了一批百香果,进价为每斤8元,为了合理定价,在前五天试行机动价格,售出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录的前五天百香果的销售单价和销售数量如下表所示,第1天第2天第3天第4天第5天销售单价(元)1+2-3+1-2+销售数量(斤)2035103015(1)前5天售卖中,单价最高的是第___________天;单价最高的一天比单价最低的一天多___________元;(2)求前5天售出百香果的总利润;(3)该超市为了促销这种百香果,决定推出一种优惠方案:购买不超过6斤百香果,每斤12元,超出6斤的部分,每斤9.6元.若嘉嘉在该超市买(6)x x >斤百香果,用含x 的式子表示嘉嘉的付款金额.23.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过10吨,则每吨水收费2.6元;若每户每月用水超过10吨,则超过的部分按每吨3元收费.8月份李老师家里用水a 吨(10a >).(1)请用含a 的代数式表示李老师8月份应交的水费.(2)当13a =时,求李老师8月份应交水费多少元?24.已知若a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022.(1)直接写出a b +,cd ,m 的值;(2)求a bm cd m+++的值.25.已知多项式2134331m x y x y x +-+--是五次四项式,单项式333n m x y z -与该多项式的次数相同.(1)求m 、n 的值.(2)若2|1|(2)0x y -+-=,求这个多项式的值.26.阅读下面的材料,完成相关的问题.在学习绝对值时,我们已经知道绝对值的几何含义,如|5-1|表示5,1在数轴上对应的两点之间的距离;|5+1|=|5-(-1)|,所以|5+1|表示5,-1在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示数m ,n ,那么点m ,n 之间的距离等于|m -n |.(1)利用数轴探究:①若点P 表示数2,则在同一数轴上到点P 的距离为5个单位长度的点表示的数是;②|x +3|+|x -2|有最值(填“大”或“小”),此时整数x 的值为;(2)若点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x .若12PM PN +=,则x 的值为;(3)已知多项式32235x y xy --的常数项是a ,次数是b ,a 、b 两数在数轴上所对应的点分别为A 、B ,若点A ,点B 同时沿数轴正方向运动,点A 的速度是点B 的3倍,且2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,求点B 的速度.27.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如表(注:水费按一个月结算一次):请根据价目表的内容解答下列问题:每月用水量(m 3)单价(元/m 3)不超出26m 3的部分3超出26m 3不超出34m 3的部分4超出34m 3的部分7(1)填空:若该户居民1月份用水20立方米,则应收水费元;若该户2月份用水30立方米,则应收水费元;(2)若该户居民3月份用水x 立方米(其中2634x £<),则应收水费多少元?(结果用含x 的代数式表示)(3)若该户居民3月份用水a 立方米(其中34a >),则应收水费多少元?(结果用含a 的代数式表示)28.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的【探究】.【提出问题】两个不为0的有理数a ,b 满足a ,b 同号,求a a b b+的值.【解决问题】解:由a 、b 同号且都不为0可知a 、b 有两种可能:①a 、b 都是正数:②a 、b 都是负数.①若a 、b 都是正数,即0a >,0b >,有a a =及b b =,则112aa bba b++==+=;②若a 、b 都是负数,即0a <,0b <,有a a =-及b b =-,()()()()112a b a b a b a b--+=+=-+-=-;所以a a bb+的值为2或2-.【探究】请根据上面的解题思路解答下面的问题:(1)已知3a =且7b =,且a b <,求a b +的值.(2)两个不为0的有理数a ,b 满足a ,b 异号,求a a b b+的值.(3)若0abc >,则||||||a b c a b c++的值可能是多少?参考答案:1.D2.D3.A4.B5.A6.D7.A8.A9.D10.B11.512.-513.223a b +14.4-或0或615.2-16.4-4-17.28-18.719.解:2222332232a b ab ab a b ab ab⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦()222232233a b ab ab a b ab ab =--+++222232233a b ab ab a b ab ab =-+--+2ab ab =+,∵()2230a b -++=,()22030a b -≥+≥,,∴()22030a b -=+=,,∴2030a b -=+=,,∴23a b ==-,,∴原式()()2232318612=⨯-+⨯-=-=.20.(1)解:由题意可得,22223212(2)A B x xy y x xy x -=++---++2223212224x xy y x xy x =++--+--5225xy x y =-+-,当=1x -,2y =时,252255(1)22(1)225102459A B xy x y -=-+-=⨯-⨯-⨯-+⨯-=-++-=-;(2)解:由题意可得,2(52)25A B x y y -=-+-,∵2A B -的值与x 的取值无关,∴520y -=,解得:25y =;21.(1)解:某顾客计划到这家超市购买6只茶壶和x 只茶杯(茶杯数多于6只),根据题意可得:方案一:()()62046496x x ⨯+-=+元;方案二:()()620490% 3.6108x x ⨯+⨯=+元;(2)当25x =时,方案一需付款42596196⨯+=(元),方案二需付款3.625108198⨯+=(元),∵196198<,∴选择方案一更省钱.22.、(1)解:∵+3+2+1>1>2>>--,∴前5天售卖中,单价最高的是第3天;∵+3(2)=5--∴价最高的一天比单价最低的一天多5元,故答案为:3,5;(2)解:以10元为标准每斤百香果所获的利润为108=2-(元),前5天售出百香果的总利润为:20(12)35(22)10(32)30(12)15(22)⨯++⨯-++⨯++⨯-++⨯+=203350105301154⨯+⨯+⨯+⨯+⨯=200(元),答:前5天售出百香果的总利润为200元;(3)解:根据题意得,()()1269.669.614.4x x ⨯+-=+元,即嘉嘉在该超市买(6)x x >斤百香果,付款金额为()9.614.4x +元.23.、(1)()26310a +-(2)当13a =时())26310(35a +-=元24.(1)解: a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022,012022a b cd m ∴+===±,,;(2)解:当2022m =时,02022120232022a b m cd m +++=++=,当2022m =-时,02022120212022a b m cd m +++=-++=--,∴a bm cd m+++的值为2023或2021-.25.、解:(1)∵多项式2134331m x y x y x +-+--是五次四项式,∴13m +=,解得2m =,∵单项式333n m x y z -与该多项式的次数相同,∴3315n m +-+=,即33215n +-+=,解得1n =,∴2m =,1n =;(2)∵2|1|(2)0x y -+-=,∴10x -=,20y -=,∴1x =,2y =,由(1)得这个多项式为:2334331x y x y x -+--,∴2334331x y x y x -+--=233431212311-⨯⨯+⨯-⨯-=24231-+--=26-,所以这个多项式的值为26-.26.、解:(1)①设在同一数轴上到点P 的距离为5个单位长度的点表示的数是x ,由题意得:25x -=,∴25x -=±,∴3x =-或7x =,故答案为:-3或7;②当2x >时,3232215x x x x x ++-=++-=+>;当3x <-时,()()3232215x x x x x ++-=-+--=-->;当32x -≤≤时,()32325x x x x ++-=+--=;∴32x x ++-有最小值,此时32x -≤≤;故答案为:小,32x -≤≤;(2)∵点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x ,∴4PM x =-,2PN x =+,∵12PM PN +=,∴4212x x -++=,当>4x 时,42422212x x x x x -++=-++=-=,解得7x =;当<2x -时,()()42422212x x x x x -++=---+=-+=,解得5x =-;当24x -≤≤时,()()4242612x x x x -++=--++=≠;∴综上所述,5x =-或7x =,故答案为:-5或7;(3)∵多项式32235x y xy --的常数项是a ,次数是b ,∴53a b =-⎧⎨=⎩,设B 的运动速度为v ,则A 的运动速度为3v ,则2s 后A 表示的数为56v -+,B 表示的数为32v +,∴B 到原点的距离32v =+,A 到原点的距离为56v -+,∵2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,∴32=256v v +-+,解得12v =或1310v =.27.(1)∵2026<∴用水20立方米,则应收水费为20360⨯=元;∵263034<<∴用水30立方米,则应收水费为()2633026494⨯+-⨯=元;故答案为:60;94.(2)依题意得:应收水费为326426x ´+´-()426x -=()元.故应收水费426x -()元;(3)依题意得:应收水费为32643426734a ´+´-+-()()7128a -=()元.故应收水费7128a -()元.28.(1)解:∵3a =,7b =,∴3a =或3-,7b =或7-,∵a b <,∴3a =,7b =或3a =-,7b =,当3a =,7b =时3710a b +=+=,当3a =-,7b =时374a b +=-+=,综上,a b +的值10或4;(2)解:由a 、b 异号,可知:①0a >,0b <;②a<0,0b >,当0a >,0b <时,110a ba b +=-=;当a<0,0b >时,110a ba b+=-+=,综上,a ab b+的值为0;(3)解:由题意得:a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:||||||1113a b c a b ca b c a b c++=+=++=;②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:||||||1111a b c a b c a b c a b c --++=++=--=-所以:||||||a b c a b c++的值为3或1-.。

北师大版七年级上册数学第三章《整式及其加减》试题(带答案)

北师大版七年级上册数学第三章《整式及其加减》试题(带答案)

七年级数学上册第三章《整式及其加减》试题姓名:学号:分数:一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知:化简后只有一项,则的值为()A. B. C. D.2. 已知,则的值为( )A. B. C. D.不能确定3. 若与相加后,结果仍是个单项式,则相加后的结果为( )A. B. C. D.4. 如果与是同类项,则的值为()A. B. C. D.5. 下列运算正确的是()A. B.C. D.6. 若,则的值为()A. B. C. D.7. “减去的倒数的差”可以用代数式表示为( )A. B. C. D.8. 多项式的次数及最高次项的系数分别是A.,B.,C.,D.,9. 下列说法,哪个是正确的( )A.两个含相同字母的单项式一定是同类项B.单独的一个数或一个字母一定是单项式C.单项式中次数最高的那个字母的次数就是该单项式的次数D.多项式的次数就是它包含的各单项式的次数之和10. 想象有一条很长的绳子可以绕地球赤道一圈,且绳子与地球之间的间隙是厘米,设地球半径为千米,则绳子的长度比地球赤道的长度长A.厘米B.厘米C.厘米D.厘米二、填空题(本题共计6 小题,每题3 分,共计18分,)11. 设某数为,则某数的一半减去某数的平方的差可以表示为________.12. 已知,则________.13. 已知一组按规律排列的式子:,,,,…,则第(为正整数)个式子是________.14. 从运算来讲,核心思想是化归,多项式(单项式)乘多项式,归结为项与项相乘,即________乘________,单项式乘单项式归结为系数相乘和________的乘法.幂的运算是整式运算的基础.15. 如图,由等圆组成的一组图中,第个图由个圆组成,第个图由个圆组成,第个图由个圆组成,…,按照这样的规律排列下去,则第个图形由________个圆组成,16. 如图是一组有规律排列的图案,它们是由边长为的正方形组成,第个图案有边长为的小正方形个,第个图案有边长为的小正方形个,第个图案有边长为的小正方形个,依此规律,则第个图案中,边长为的小正方形有________个.三、解答题(本题共计4 小题,共计50分,)17. 化简(1)(2)18.分解因式:;计算:.19 已知,如图,某长方形广场的四角都有一块边长为米的正方形草地,若长方形的长为米,宽为米.请用代数式表示阴影部分的面积;若长方形广场的长为米,宽为米,正方形的边长为米,求阴影部分的面积.20 小王家买了一套新房,其结构如图所示(单位:).他打算将卧室铺上木地板,其余部分铺上地砖.木地板和地砖分别需要多少平方米?如果地砖的价格为每平方米元,木地板的价格为每平方米元,那么小王一共需要花多少钱?21. 某同学进行整式的加减,在计算某整式减去时,因为粗心,把减去误作加上,得结果.试求:(1)原整式是怎样的一个整式;(2)正确结果是什么.22. 先观察下列算式,再解答问题.,,.按上述规律填空:________________,________________;计算:….23. 如图所示,将一个边长为的正方形纸片分割成个部分,部分①是边长为的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依次类推.根据图形填写下表:①②③面积阴影部分的面积是多少?计算:……(用两种方法计算).猜想:.。

(常考题)北师大版初中数学七年级数学上册第三单元《整式及其运算》测试(含答案解析)(4)

(常考题)北师大版初中数学七年级数学上册第三单元《整式及其运算》测试(含答案解析)(4)

一、选择题1.图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n - 2.列式表示“x 的3倍与y 的平方的和”正确的是( ) A .223+x yB .23()x y +C .23x y +D .2(3)x y + 3.观察一列单项式:x ,3 x 2,5 x 2,7x ,9x 2,11 x 2 ,…,则第2020个单项式是( ).A .4040xB .4040 x 2C .4039 xD .4039 x 2 4.若代数式210k x y x ky +-+-的值与x 、y 的取值无关,那么k 的值为( ) A .0 B .±1 C .1D .1- 5.下列合并同类项正确的是 ( ) A .22232x y yx x y -=-B .224x y xy +=C .43xy xy -=D .23x x x +=6.下列变形正确的是( )A .2a +3(b+c )=2a +3b+cB .2a -(3b -4c )=2a -3b +4cC .2a -3b +4c=2a -(3b+4c )D .2a -3b +4c=2a+(4c+3b ) 7.有依次排列的3个数:3,9,6,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,3-,6,这称为第一次操作:做第二次同样的操作后也可产生一个新数串:3,3,6,3.9,12-,3-,9,6,继续依次操作下去,问:从数串3,9,6开始操作第200次以后所产生的那个新数串的所有数之和是( )A .600B .618C .680D .718 8.若231a a +=,则代数式25152a a +-的值为( ) A .0 B .1 C .2D .3 9.若代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关,则代数式2+a b 的值为( )A .0B .1-C .2或2-D .610.已知222y y +-的值为3,则2421y y ++的值为( )A .11B .10C .10或11D .3或1111.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,…,第2021次输出的结果为( )A .1B .3C .9D .27 12.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7 B .18 C .5 D .9二、填空题13.若533m x y +与7n x y 的和是单项式,则mn =_______________________.14.若多项式2x 2﹣3x +7的值为10,则多项式9﹣4x 2+6x 的值为_____.15.计算:-2x 2+3x 2=__________;16.下列单项式:-x ,2x 2,-3x 3,4x 4,… -19x 19,20x 20, …根据你发现的规律,第2021个单项式是______________.17.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.18.用相同的黑色棋子如图所示的方式摆放,第1个图由6个棋子组成,第2个图由15个棋子组成,第3个图由28个棋子组成……按照这样的规律排列下去,第6个图由__________个棋子组成……19.找规律:22a -,34a ,48a -,516a ,……则第2020个数是______.20.如果2x =-,12y =,那么代数式()2214333x xy x xy ⎛⎫--- ⎪⎝⎭的值是__________. 三、解答题21.先化简,再求值:4y 2﹣(x 2+y )+(x 2﹣4y 2),其中x =﹣28,y =18.22.已知A =2x 2﹣6ax+3,B =﹣7x 2﹣8x ﹣1,按要求完成下列各小题.(1)当a =﹣2时,求A ﹣3B 的结果.(2)若A+B 的结果中不存在含x 的一次项,求a 的值.23.先化简,再求值:(1)当52,25x y =-=时,求2222(22))3(xy y x xy y x xy ++----的值; (2)222222124224233xy y xy y x y y ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭,其中31,23x y ==-. 24.观察下列一组单项式:2a ,2a -,345a ,457a -,…. (1)直接写出第5个单项式为____,第6个单项式_____;(2)直接写出第n 个单项式(n 为正整数); (3)是否存在某一项的系数为713-的情况?如果存在,求出这是第几项;如果不存在,请说明理由.25.先化简,再求值: ()()2222432a b ab ab a b --+,其中1,2a b =-=.26.(1)计算:()()()22021353682146⎛⎫-⨯-+-÷--- ⎪⎝⎭(2)先化简,再求值:33131122233x x y x y ⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭,其中1 2.x y =-=-,【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数.【详解】解:由题意得:第一个图形三角形的个数为4×1-3=1个,第二个图形三角形的个数为4×2-3=5个,第三个图形三角形的个数为4×3-3=9个,第四个图形三角形的个数为4×4-3=13个,……∴第n 个图形三角形的个数为()43n -个;故选:D .【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可.2.C解析:C【分析】认真阅读,列式分三步:第一步计算x 的3倍,第二步计算y 的平方,第三步计算前两步的和即可.【详解】∵x 的3倍为3x ,y 的平方为2y ,∴x 的3倍与y 的平方的和为:23x y +,故选C .【点睛】本题考查了代数式的布列,准确理解题意,找准分布计算与整体计算是解题的关键. 3.C解析:C【分析】先看系数的变化规律,然后看x 的指数的变化规律,从而确定第2013个单项式,进而得出第n 个单项式.【详解】解:系数依次为1,3,5,7,9,11,…2n -1;x 的指数依次是1,2,2,1,2,2,1,2,2,可见三个单项式一个循环,故可得第2020个单项式的系数为4039; ∵202067313=, ∴第2020个单项式指数与第一个数相同,为1,故可得第2020个单项式是4039 x ,故选:C .【点睛】本题考查了单项式的知识,属于规律型题目,解答本题关键是观察系数及指数的变化规律.4.D解析:D【分析】直接利用合并同类项得运算法则得出k 的值,进而得出答案.【详解】210k x y x ky +-+-合并同类项得()()21110k x k y -++-210k x y x ky +-+-的值与x 、y 无关210,10k k ∴+=-=解得1k =-故选:D .【点睛】本题考查了合并同类项以及代数式求值,正确得出x ,y 的系数关系是解题的关键. 5.A解析:A【分析】先判断是否是同类项,后合并即可.【详解】∵22232x y yx x y -=-,∴选项A 正确;∵2x 与2y 不是同类项,无法计算,∴选项B 错误;∵43xy xy xy -=,∴选项C 错误;∵2x 与x 不是同类项,无法计算,∴选项D 错误;故选A.【点睛】本题考查了整式的加减,熟练判断同类项并灵活进行合并同类项是解题的关键. 6.B解析:B【分析】根据去括号和添括号的法则进行判断即可【详解】解:A 选项,2a +3(b+c )=2a +3b+3c ,故错误;B 选项,2a -(3b -4c )=2a -3b +4c .正确;C 选项,2a -3b +4c=2a -(3b-4c ),故错误;D 选项,2a -3b +4c=2a+(4c-3b ),故错误;故选:B .【点睛】本题考查了去括号和添括号法则,解题关键是熟记去括号和添括号的法则,不要忘了变号,不要漏乘.7.B解析:B【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第200次以后所产生的那个新数串的所有数之和.【详解】解:设A=3,B=9,C=6,操作第n 次以后所产生的那个新数串的所有数之和为S n . n=1时,S 1=A+(B-A )+B+(C-B )+C=B+2C=(A+B+C )+1×(C-A ),n=2时,S 2=A+(B-2A )+(B-A )+A+B+(C-2B )+(C-B )+B+C=-A+B+3C=(A+B+C )+2×(C-A ),…故n=200时,S 200=(A+B+C )+200×(C-A )=-199A+B+201C=-199×3+9+201×6=618, 故选:B .【点睛】本题考查找规律-数字的变化,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.8.D解析:D【分析】把2515a a +变形为25a 3)a +(,整体代入计算即可. 【详解】∵231a a +=,∴25152a a +-=25a 3)2a +-(=5-2=3.故选D.【点睛】本题考查了代数式的值,通过变化系数,实施整体思想代入计算是解题的关键. 9.B解析:B【分析】利用去括号、合并同类项法则化简代数式,得到()()22237b x a x -+++,根据代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关可得220b -=,30a +=,求出a 和b 的值即可.【详解】解:()()2226231x ax bx x ++--- 2226231x ax bx x ++-++=()()22237b x a x -+++=,∵代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关, ∴220b -=,30a +=,∴1b =,3a =-,∴2321a b +=-+=-,故选:B .【点睛】本题考查整式的加减—字母无关型,掌握去括号、合并同类项法则是解题的关键. 10.A解析:A【分析】观察题中的两个代数式可以发现2(2y 2+y )=4y 2+2y ,因此可整体求出4y 2+2y 的值,然后整体代入即可求出所求的结果.【详解】解:∵2y 2+y-2的值为3,∴2y 2+y-2=3,∴2y 2+y=5,∴2(2y 2+y )=4y 2+2y=10,∴4y 2+2y+1=11.故选:A .【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式4y 2+2y 的值,然后利用“整体代入法”求代数式的值.11.B解析:B【分析】分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1, 由此可得,从第三次开始,每两次一个循环.【详解】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,由此可得,从第三次开始,每两次一个循环,()20212210091-÷=, 第2021次输出结果与第3次输出结果一样, 第2021次输出的结果为3,故选:B .本题考查数字的变化规律,找到循环规律是解题的关键.12.C解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键.二、填空题13.【分析】是单项式说明两式可以合并从而可以判断两式为同类项根据同类项的相同字母的指数相等可得出mn 的值相乘即可【详解】解:由题意与是同类项故且解得所以故答案为:6【点睛】本题考查合并同类项解题关键在于 解析:6【分析】是单项式说明两式可以合并,从而可以判断两式为同类项,根据同类项的相同字母的指数相等可得出m 、n 的值相乘即可.【详解】解:由题意533m x y +与m n x y 是同类项,故57m +=且3n =,解得2m =,3n =,所以,6mn =,故答案为:6.【点睛】本题考查合并同类项,解题关键在于掌握同类项得定义.14.3【分析】由2x2﹣3x+7的值为10可得2x2﹣3x =3再将9﹣4x2+6x 变形为9﹣2(2x2﹣3x )后再整体代入计算即可【详解】∵2x2﹣3x+7的值为10即2x2﹣3x+7=10∴2x2﹣3【分析】由2x2﹣3x+7的值为10,可得2x2﹣3x=3,再将9﹣4x2+6x变形为9﹣2(2x2﹣3x)后,再整体代入计算即可.【详解】∵2x2﹣3x+7的值为10,即2x2﹣3x+7=10,∴2x2﹣3x=3,∴9﹣4x2+6x=9﹣2(2x2﹣3x)=9﹣2×3=9﹣6=3,故答案为:3.【点睛】本题考查了代数式的求值,熟练掌握运算法则及整体代入思想是解题关键.15.x2【分析】合并同类项是指同类项的系数的相加并把得到的结果作为新系数要保持同类项的字母和字母的指数不变据此计算即可【详解】解:-2x2+3x2=(-2+3)x2=x2故答案为:x2【点睛】本题主要考解析:x2【分析】合并同类项是指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【详解】解:-2x2+3x2=(-2+3)x2= x2故答案为:x2.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.16.【分析】根据单项式之间的规律第n个单项式是即可求出结果【详解】解:第n个单项式的系数是第n个单项式的次数是∴第n个单项式是∴第2021个单项式是故答案是:【点睛】本题考查找规律解题的关键是找出题目中解析:2021-2021x【分析】-,即可求出结果.根据单项式之间的规律,第n个单项式是()1n n nx【详解】-,解:第n个单项式的系数是()1n n第n个单项式的次数是n,∴第n 个单项式是()1nn nx -, ∴第2021个单项式是20212021x -.故答案是:20212021x -.【点睛】本题考查找规律,解题的关键是找出题目中单项式之间的规律,并用代数式表示出来. 17.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想 解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.18.91【分析】根据前3个图形中棋子的个数归纳类推出一般规律由此即可得出答案【详解】由图可知第1个图形中棋子的个数为第2个图形中棋子的个数为第3个图形中棋子的个数为归纳类推得:第n 个图形中棋子的个数为其 解析:91【分析】根据前3个图形中棋子的个数归纳类推出一般规律,由此即可得出答案.【详解】由图可知,第1个图形中棋子的个数为623(11)(211)=⨯=+⨯⨯+,第2个图形中棋子的个数为1535(21)(221)=⨯=+⨯⨯+,第3个图形中棋子的个数为2847(31)(231)=⨯=+⨯⨯+,归纳类推得:第n 个图形中棋子的个数为(1)(21)n n ++,其中n 为正整数,则第6个图形中棋子的个数为(61)(261)71391+⨯⨯+=⨯=,故答案为:91.【点睛】本题考查了用代数式表示图形的规律,正确归纳类推出一般规律是解题关键. 19.【分析】根据式子得到规律:系数为-2的n 次方字母为a 其指数为n+1依此列式计算得出答案【详解】∵这列数为:……∴第n 个数为:∴第2020个数是故答案为:【点睛】此题考查整式的变化规律探究乘方计算发现解析:202020212a ⋅【分析】根据式子得到规律:系数为-2的n 次方,字母为a ,其指数为n+1,依此列式计算得出答案.【详解】∵这列数为:22a -,34a ,48a -,516a ,……,∴第n 个数为:1(2)n n a +-⋅,∴第2020个数是20202020120202021(2)2a a +-⋅=⋅,故答案为:202020212a ⋅【点睛】此题考查整式的变化规律探究,乘方计算,发现变化规律并总结、应用解决问题是解题的关键.20.【分析】原式去括号合并得到最简结果把x 与y 的值代入计算即可求出值;【详解】解:原式=4x2-3xy-3x2+xy=x2-2xy 当x=-2时原式=(-2)²-2×(-2)×=4+2=6故答案为6【点睛解析:【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】解:原式=4x 2-3xy-3x 2+xy=x 2-2xy ,当x=-2,12y =时, 原式=(-2)²-2×(-2)×12=4+2=6, 故答案为6.【点睛】本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键.三、解答题21.-y ,-18【分析】先去括号合并同类项,再把x =﹣28,y =18代入计算即可.【详解】解:4y 2﹣(x 2+y )+(x 2﹣4y 2)=4y 2﹣x 2-y +x 2﹣4y 2= -y ,当x =﹣28,y =18时,原式=-18.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.22.(1)23x 2+36x+6;(2)a =﹣43 【分析】(1)先去括号,然后合并同类项,再把a =﹣2代入计算即可求解;(2)先代入计算,合并同类项后,根据A+B 结果中不含x 的一次项,得到6a+8=0,解方程即可求解.【详解】解:(1)∵A =2x 2﹣6ax+3,B =﹣7x 2﹣8x ﹣1,a =﹣2,∴A ﹣3B ,=2x 2﹣6ax+3+21x 2+24x+3,=23x 2+(24﹣6a )x+6,=23x 2+36x+6;(2)∵A =2x 2﹣6ax+3,B =﹣7x 2﹣8x ﹣1,∴A+B =2x 2﹣6ax+3﹣7x 2﹣8x ﹣1=﹣5x 2﹣(6a+8)x+2,由A+B 结果中不含x 的一次项,得到6a+8=0,解得:a =﹣43. 【点睛】本题主要考查了整式化简求值,准确计算是解题的关键.23.(1)xy -;1;(2)223y x y -+;1312-【分析】(1)根据整式的加减运算法则化简原式,再代入数值计算即可解答;(2)同样根据整式的加减运算法则化简原式,再代入数值计算即可解答;【详解】解:(1)2222(22))3(xy y x xy y x xy ++---- =2222232xy y x xy y x xy ++---+=xy -, 当52,25x y =-=时,原式5225⎛⎫=-⨯ ⎪⎝⎭-=1; (2)222222124224233xy y xy y x y y ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭222222244433xy y xy y x y y =---+- 223y x y =-+, 当31,23x y ==-时,原式221313323⎛⎫⎛⎫⎛⎫=-⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1334=-- 1312=-. 【点睛】 本题考查整式的加减-化简求值、有理数的混合运算,熟练掌握整式加减运算法则是解答的关键.24.(1)523a ,6711a -;(2)()11121n n n a n ++--;(3)存在,第20个单项式 【分析】(1)根据已知单项式的系数和指数的排列规律,即可得出结论;(2)根据已知单项式的系数和指数的排列规律,即可归纳公式;(3)根据72120113392201+-=-=-⨯-,即可判断出n 的值,从而得出结论. 【详解】解:(1)第1个单项式2a =()111111211a ++-⨯⨯-; 第2个单项式2a -=()212211221a ++-⨯⨯-; 第3个单项式345a =()313311231a ++-⨯⨯-; 第4个单项式457a -=()414411241a ++-⨯⨯-; ∴第5个单项式为()515511251a ++-⨯⨯-=523a ; 第6个单项式为()616611261a ++-⨯⨯-=6711a -; 故答案为:523a ;6711a -; (2)由(1)得,第n 个单项式为()11121n n n a n ++--; (3)可能 ∵72120113392201+-=-=-⨯- ∴当20n =时,其系数为()()121121*********n n n ++-=-⨯=--∴第20个单项式的系数为713-. 【点睛】 此题考查的是探索规律题,找出单项式系数和次数的排列规律并归纳公式是解题关键. 25.22105a b ab -,40【分析】整式的加减运算,先去括号,合并同类项进行化简,然后代入求值.【详解】解:()()2222432a b ab ab a b --+22221242a b ab ab a b =---22105a b ab =-当1,2a b =-=时,原式2210(1)25(1)2202040=⨯-⨯-⨯-⨯=+=【点睛】本题考查整式的加减运算,掌握运算顺序和计算法则正确计算是解题关键.26.(1)-4;(2)34x y -;4【分析】(1)直接利用有理数混合运算法则计算得出答案,(2)先去括号,根据合并同类项法则化简出最简结果,再将1,2x y =-=-代入其中即可求解.【详解】(1)()()()22021353682146⎛⎫-⨯-+-÷--- ⎪⎝⎭ ()13684112⎛⎫=⨯-+-÷+ ⎪⎝⎭3214=--+=- (2)33131122233x x y x y ⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭ 33131222233x x y x y =+-+- 34x y =- 当12x y,时,原式()()()3412484=⨯---=---=. 【点睛】本题考查了有理数混合运算,整式的加减——化简求值,熟练掌握合并同类项的法则,和有理数混合运算法则是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n - 2.计算若3x =-,则5x -的结果是( )A .2-B .8-C .2D .83.下列图形都是由同样大小的笑脸按一定的规律组成,其中第①个图形一共有2个笑脸,第②个图形一共有8个笑脸,第③个图形一共有18 个笑脸…按此规律,则第⑥个图形中笑脸的个数为( )A .98B .72C .50D .364.若代数式210k x y x ky +-+-的值与x 、y 的取值无关,那么k 的值为( ) A .0B .±1C .1D .1-5.如图,数轴上的三个点对应的数分别是a ,a ,b ,化简a b a b -++的结果是( )A .2aB .2a -C .2bD .2b -6.单项式13m x y -与4n xy -是同类项,则n m 的值是( ) A .1B .3C .6D .87.下列说法正确的是( ) A .单项式x 的系数是0B .单项式﹣32xy 2的系数是﹣3,次数是5C .多项式x 2+2x 的次数是2D .单项式﹣5的次数是18.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=11649,…,那么:71+72+73+…+72022的末位数字是( ) A .0B .6C .7D .99.下列图形都是由同样大小的矩形按一定的规律组成,其中,第1个图形中一共有6个矩形,第2个图形中一共有11个矩形,第3个图形中一共有16个矩形,…,按此规律,第7个图形中矩形的个数为( )A .30B .36C .41D .4510.若代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关,则代数式2+a b 的值为( ) A .0B .1-C .2或2-D .611.一个三位数,百位上的数字为x ,十位上的数字比百位上的数字少3,个位上的数字是百位上的数字的2倍,这个三位数用含有x 的代数式表示为( ) A .11230x - B .10030x - C .11230x +D .10230x +12.我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲要早三百多年,我们把这个三角形称为“杨辉三角”.根据图中的数字排列规律a 、b 、c 的值分别为( )A .1,6,15B .6,15,20C .20,15,6D .15,6,1二、填空题13.一个三角形的每条边上都有相同数目的小球,设每条边上的小球个数为m ,则该三角形上小球总数为__________(结果用含m 的代数式表示).14.如图,在2020个“□”中依次填入一列数字m 1,m 2,m 3,……,m 2020,使得其中任意四个相邻的“□”中所填的数字之和都等于15.已知32m =,67m =,则12020m m +的值为_________.2 …15.观察下面的式子:111122=-⨯,1112323=-⨯,1113434=-⨯,…,可以发现它们的计算规律是()11111n n n n =-++(n 为正整数).若一容器装有1升水,按照如下要求把水倒出:第一次倒出12升水,第二次倒出的水量是12升水的13,第三次倒出的水量是13升水的14,第四次倒出的水量是14升水的15,…,第n 次倒出的水量是1n 升水的11n +,…按这种倒水方式,前n 次倒出水的总量为______升.16.对于多项式-x 2yz +2xy 2-xz -1是____次____项式,最高次项的系数是____,常数项是____.17.如图,第1个图形由4枚棋子摆成,第2个图形由9枚棋子摆成,第3个图形由14枚棋子摆成,…,按照此规律,由399枚棋子摆成的是第________图形.18.已知数a 、b ,c 在数轴上的位置如图所示,化简│a +b│-│c -b│的结果是__________;19.已知2m n -=-,那么()233m n m n --+=___________.20.下列图形都是由同样大小的黑色正方形纸片组成,其中图①有3张黑色正方形纸片,图②有5张黑色正方形纸片,图③有7张黑色正方形纸片,……按此规律排列下去,图n 中黑色正方形纸片的张数为________.(用含有n 的代数式表示)三、解答题21.先化简,再求值:2222211233358()35x x xy y x xy y ⎛⎫ --+-++⎝+⎪⎭,其中2x =-,1y =22.计算(1)()()664 2.50.1-⨯--÷-(2)()()322524-⨯--÷ (3)()()225214382a a a a +---+(4)22135322x x x x ⎡⎤⎛⎫---+⎪⎢⎥⎝⎭⎣⎦23.计算(1)()()224125-+-÷ (2)2202023154122⎛⎫-+-⨯-- ⎪⎝⎭(3)22225432x y xy x y xy +-- (4)()224322a ab a ab --+24.已知22243,22X a ab Y a ab b =+=-+. (1)化简3X Y -(2)当2a =,1b =-时,求3X Y -的值.25.公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若 1.5a =,2b =,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元? 26.阅读下面的材料,解决有关问题:在如图1的“数表”中,数字按一定规律排列,我们分别在“数表”中涂抹出两个“H”,在每个“H”所覆盖的7个数字中,将最上端两数的和与最下端两数的和相减,计算结果称为“H 值”.(计算与发现)分别计算图1中的两个不同位置的“H”所对应的“H 值”:(2+4)−(20+22)= ;(24+26)−(42+44)= ,我们可以初步发现:__________________________;(探究与证明)图2是从图1中截出的一部分,在“H”所覆盖的7个数字中,若设中心数为x ,则A 、B 、C 、D 所对应的数可分别表示为 , , , (用含x 的代数式表示),并请你利用整式的运算,对(计算与发现)中发现的规律进行验证.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数. 【详解】 解:由题意得:第一个图形三角形的个数为4×1-3=1个, 第二个图形三角形的个数为4×2-3=5个, 第三个图形三角形的个数为4×3-3=9个, 第四个图形三角形的个数为4×4-3=13个, ……∴第n 个图形三角形的个数为()43n -个; 故选:D . 【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可.2.B解析:B 【分析】直接将x=-3,代入求值即可; 【详解】 ∵ x=-3, ∴ x-5=-3-5=-8, 故选:B . 【点睛】本题考查了代数式求值的运算,正确掌握运算方法是解题的关键.3.B解析:B 【分析】先根据题意求找出其中的规律,即可求出第⑥个图形中笑脸的个数. 【详解】解:第①个图形一共有2个笑脸, 第②个图形一共有:2+(3×2)=8个笑脸, 第③个图形一共有8+(5×2)=18个笑脸, ……第n 个图形一共有: 1×2+3×2+5×2+7×2+…+2(2n-1) =2[1+3+5+…+(2n-1)], =[1+(2n-1)]×n =2n 2,则第⑥个图形一共有: 2×62=72个笑脸; 故选:B . 【点睛】本题考查了规律型:图形变化类,把图形分成三部分进行考虑,并找出第n 个图形的个数的表达式是解题的关键.4.D解析:D 【分析】直接利用合并同类项得运算法则得出k 的值,进而得出答案. 【详解】210k x y x ky +-+-合并同类项得()()21110k x k y -++-210k x y x ky +-+-的值与x 、y 无关210,10k k ∴+=-=解得1k =- 故选:D . 【点睛】本题考查了合并同类项以及代数式求值,正确得出x ,y 的系数关系是解题的关键.5.C解析:C 【分析】根据数轴观察可以确定原点的位置,再由数轴可得a <0,b >0,且且b a >,依此再化简原式即可. 【详解】解:如下图数轴可得原点0的位置,且可得a >0, a 点在原点左边,a <0, b 点在原点的右边,b >0,且b a >,.因此可得:0a b -<,0a b +>. 则:a b a b -++()()=b a a b -++=b a a b -++=2b故选:C . 【点睛】本题考查数轴的基本知识结合绝对值的综合运用,看清题中条件即可.6.D解析:D 【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,可得n ,m 的值,根据代数式求值,可得答案. 【详解】解:由题意,得:m-1=1,n=3. 解得m=2.当m=2,n=3时,3=2=8n m . 故选:D . 【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意一是所含字母相同,二是相同字母的指数也相同,两者缺一不可,准确掌握同类项定义是解答此题的关键.7.C解析:C 【分析】直接利用单项式和多项式的有关定义分析得出答案. 【详解】解:A 、单项式x 的系数是1,故此选项错误;B 、单项式﹣32xy 2的系数是﹣9,次数是3,故此选项错误;C 、多项式x 2+2x 的次数是2,正确;D 、单项式﹣5次数是0,故此选项错误.故选:C . 【点睛】此题考查单项式系数和次数定义,及多项式的次数定义,熟记定义是解题的关键.8.B解析:B 【分析】先根据已知算式得出规律,再求出即可. 【详解】解:∵71=7,72=49,73=343,74=2401,75=16807,76=117649,…, 2022÷4=505…2,∴505×(7+9+3+1)+7+9=10116, ∴71+72+73+…+72022的末位数字是6, 故选:B . 【点睛】本题考查了尾数特征和数字变化类,能根据已知算式得出规律是解此题的关键.9.B解析:B 【分析】根据前3个图形中矩形的个数归纳类推出一般规律,由此即可得出答案. 【详解】由图可知,第1个图形中矩形的个数为6511=⨯+, 第2个图形中矩形的个数为11521=⨯+, 第3个图形中矩形的个数为16531=⨯+,归纳类推得:第n 个图形中矩形的个数为51+n ,其中n 为正整数, 则第7个图形中矩形的个数为57136⨯+=, 故选:B . 【点睛】本题考查了用代数式表示图形的规律,正确归纳类推出一般规律是解题关键.10.B解析:B 【分析】利用去括号、合并同类项法则化简代数式,得到()()22237b x a x -+++,根据代数式()()2226231xax bx x ++---(,a b 为常数)的值与字母x 的取值无关可得220b -=,30a +=,求出a 和b 的值即可. 【详解】解:()()2226231x ax bx x ++---2226231x ax bx x ++-++=()()22237b x a x -+++=,∵代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关, ∴220b -=,30a +=, ∴1b =,3a =-, ∴2321a b +=-+=-, 故选:B . 【点睛】本题考查整式的加减—字母无关型,掌握去括号、合并同类项法则是解题的关键.11.A解析:A 【分析】先分别用x 表示十位上和个位上的数字,再利用十位制列出代数式、计算整式的加减即可得. 【详解】由题意得:十位上的数字为3x -,个位上的数字为2x ,则这个三位数用含有x 的代数式表示为10010(3)211230x x x x +-+=-, 故选:A . 【点睛】本题考查了列代数式、整式的加减,依据题意,正确得出十位上和个位上的数字是解题关键.12.C解析:C 【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a 、b 、c 的值. 【详解】解:根据图形得:每个数字等于上一行的左右两个数字之和, ∴a=10+10=20,b=10+5=15,c=5+1=6, 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题13.3m 或3m -1或3m -2或3m -3【分析】分三个顶点都没有小球只有一个顶点上有小球有两个顶点上有小球三个顶点上都有小球四类分类讨论即可求解【详解】解:根据题意三角形的三条边上都分别有m 个小球但不知小解析:3m 或3m -1或3m -2或3m -3【分析】分三个顶点都没有小球、只有一个顶点上有小球、有两个顶点上有小球、三个顶点上都有小球四类分类讨论即可求解.【详解】解:根据题意,三角形的三条边上都分别有m个小球,但不知小球的位置,所以需要分情况讨论.第一种情况:如图1,三角形每条边上都有m个小球,但三个顶点上都没有小球,此时小球总数为3m.第二种情况:如图2,三角形每条边上都有m个小球,但是只有一个顶点上有小球,三条边上总共有3m个小球,但是该顶点上的小球算了两次,所以此时小球总数为3m-1.第三种情况:如图3,三角形每条边上都有m个小球,但是有两个顶点上有小球,三条边上总共有3m个小球,但是两个顶点上的两个小球计算重复,所以此时小球总数为3m-2.第四种情况:如图4,三角形每条边上都有m个小球,此时三个顶点上都有小球,三条边上总共有3m个小球,但是三个顶点上的三个小球计算重复,所以此时小球总数为3m-3.故答案为:3m或3m-1或3m-2或3m-3【点睛】本题考查了根据题意列代数式,根据题意进行分类讨论是解题关键.14.6【分析】根据任意四个相邻□中所填数字之和都等于15可以发现题目中数字的变化规律从而可以求得结论【详解】解:∵任意四个相邻□中所填数字之和都等于15∴m1+m2+m3+m4=m2+m3+m4+m5m解析:6【分析】根据任意四个相邻“□”中,所填数字之和都等于15,可以发现题目中数字的变化规律,从而可以求得结论.【详解】解:∵任意四个相邻“□”中,所填数字之和都等于15,∴m1+m2+m3+m4=m2+m3+m4+m5,m2+m3+m4+m5=m3+m4+m5+m6,m3+m4+m5+m6=m4+m5+m6+m7,m4+m5+m6+m7=m5+m6+m7+m8,∴m1=m5,m2=m6,m3=m7,m4=m8,同理可得,m1=m5=m9=…,m2=m6=m10=…,m3=m7=m11=…,m4=m8=m12=…,∵2020÷4=505,∴m2020=m4,又m3+m6=2+7=9∵m3+m4+m5+m6=15∴m4+m5=6∴12020m m=6,故答案为:6.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出x的值.15.【分析】根据题意列出关系式利用得出的规律化简即可;【详解】前n次倒出的水总量为11【点睛】本题考查规律型:数字的变化类解答本题的关键是根据所给式子找出规律并利用规律解答 解析:1n n + 【分析】根据题意列出关系式,利用得出的规律化简即可;【详解】前n 次倒出的水总量为()1111223341n n ++++=⨯⨯+11111111223341n n -+-+-++-=+1111n n n -=++,【点睛】 本题考查规律型:数字的变化类,解答本题的关键是根据所给式子找出规律,并利用规律解答.16.四四-1-1【分析】根据多项式的项和次数的定义确定最高次项和常数项注意要带有符号【详解】解:多项式-x2yz +2xy2-xz -1是四次四项式最高次项的系数是-1常数项是-1故答案为:四四-1-1【点解析:四 四 -1 -1【分析】根据多项式的项和次数的定义,确定最高次项和常数项,注意要带有符号.【详解】解:多项式-x 2yz +2xy 2-xz -1是四次四项式,最高次项的系数是-1,常数项是-1. 故答案为:四,四,-1,-1.【点睛】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.17.80【分析】从图形中可以发现规律第n 个图形需棋子的个数是:5n-1再假设第n 个图形的棋子数为399可列方程即可解得【详解】因为从图中可以看出第1个图形需棋子的个数是:1×4+0=4(枚)第2个图形需解析:80【分析】从图形中可以发现规律,第n 个图形需棋子的个数是:5n-1,再假设第n 个图形的棋子数为399,可列方程,即可解得.【详解】因为从图中可以看出第1个图形需棋子的个数是:1×4+0=4(枚),第2个图形需棋子的个数是:2×4+1=9(枚),第3个图形需棋子的个数是:3×4+2=14(枚),第n 个图形需棋子的个数是:n×4+(n-1)=5n-1,设第399枚棋子摆成的是第n 个图形5n-1=399解得:n=80故答案为:80.【点睛】本题考查图形的变化,具有规律性,解题的关键是,根据图形发现规律.18.a+c 【分析】由数轴上右边的数总比左边的数大且离原点的距离大小即为绝对值的大小判断出a+b 与c-b 的正负利用绝对值的代数意义化简所求式子去掉绝对值符号合并同类项即可得到结果【详解】解:由数轴上点的位解析:a+c【分析】由数轴上右边的数总比左边的数大,且离原点的距离大小即为绝对值的大小,判断出a+b 与c-b 的正负,利用绝对值的代数意义化简所求式子去掉绝对值符号,合并同类项即可得到结果.【详解】解:由数轴上点的位置可得:c <b <0<a ,且|b|<|a|,∴a+b >0,c-b <0,则|a+b|-|c-b|=a+b+c-b=a+c .故答案为:a+c .【点睛】此题考查了整式的加减运算以及数形结合的能力,能利用数轴的性质判断各个字母所代表的数的大小去掉绝对值符号是解答此题的关键.19.10【分析】把(m-n )看作一个整体并代入代数式进行计算即可得解【详解】解:∵∴(m-n)²-3(m-n)=(-2)²-3×(-2)=4+6=10故答案为:10【点睛】本题考查了代数式求值整体思想的解析:10【分析】把(m-n )看作一个整体并代入代数式进行计算即可得解.【详解】解:∵2m n -=-,∴()233m n m n --+=(m-n)²-3(m-n)=(-2)²-3×(-2)=4+6=10, 故答案为:10.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.20.【分析】设图n 中有an (n 为正整数)张黑色正方形纸片观察图形根据各图形中黑色正方形纸片张数的变化可找出变化规律an=2n+1(n 为正整数)此题得解【详解】解:设图n 中有an (n 为正整数)张黑色正方形解析:21n【分析】设图n 中有a n (n 为正整数)张黑色正方形纸片,观察图形,根据各图形中黑色正方形纸片张数的变化可找出变化规律“a n =2n+1(n 为正整数)”,此题得解.【详解】解:设图n 中有a n (n 为正整数)张黑色正方形纸片,观察图形,可知:a 1=3=2×1+1,a 2=5=2×2+1,a 3=7=2×3+1,a 4=9=2×4+1,…,∴a n =2n+1(n 为正整数).故答案是:2n+1.【点睛】本题考查了规律型:图形的变化类,根据图形中黑色正方形纸片张数的变化,找出变化规律“a n =2n+1(n 为正整数)”是解题的关键.三、解答题21.2223x y -+;53- 【分析】先去括号,再根据整式的加减运算法则化简,再代入数值计算即可.【详解】 解:原式2222213823333535x x xy y x xy y =---++++ ()2218233333355x xy y ⎛⎫⎛⎫=--++-++ ⎪ ⎪⎝⎭⎝⎭2223x y =-+, 当2x =-,1y =时,原式=22(2)13-⨯-+=53-. 【点睛】 本题考查整式的加减-化简求值、有理数的混合运算,熟练掌握整式的加减运算法则是解答的关键.22.(1)-289;(2)22;(3)23a 3413a -+-;(4)29x 32x -- 【分析】(1)先算乘除,再算加减即可;(2)先算乘方,再算乘除,后算加减即可;(3)去括号合并同类项即可;(4)先去小括号,再去中括号,然后合并同类项即可;【详解】(1)原式=26425--=-289;(2)原式=()4584⨯--÷=()202--=22;(3)原式=2252112328a a a a +--+-=233413a a -+-;(4)原式=22135322x x x x ⎛⎫--++ ⎪⎝⎭ =22135322x x x x -+-- =2932x x --. 【点睛】本题考查了有理数的混合运算,整式的加减,熟练掌握运算法则是解答本题的关键. 23.(1)6;(2)3-;(3)2222x y xy +;(4)227a ab -【分析】(1)按照有理数混合运算顺序和法则计算即可;(2)按照有理数混合运算顺序和法则计算即可;(3)按照法则合并同类项即可;(4)先去括号,再合并同类项.【详解】解:(1)()()224125-+-÷=5144+⨯ =15+=6(2)2202023154122⎛⎫-+-⨯-- ⎪⎝⎭ =()21563-+---=113=-3(3)22225432x y xy x y xy +--=22(53)(42)x y xy -+-=2222x y xy +(4)()224322a ab a ab --+ =224324a ab a ab ---=227a ab -.【点睛】本题考查了有理数的混合运算和整式加减,解题关键是熟练运用有理数运算法则和整式加减法则进行计算.24.(1)22266a ab b -+-;(2)-26【分析】(1)将已知代入3X Y -计算即可;(2)将2a =,1b =-代入(1)所求结果即可解答.【详解】解:(1)()()222343322X Y a ab a ab b -=+--+,22243636a ab a ab b =+-+-22266a ab b =-+-;(2)当2,1a b ==-时,()()223226216126X Y -=-⨯+⨯⨯--⨯-=-.【点睛】本题考查了整式的加减-化简求值:先去括号,然后合并同类项,再把满足条件的字母的值代入计算得到对应的整式的值.25.(1)10ab ,15ab ;(2)每套公租房铺地面所需费用为10500元.【分析】(1)根据长方形的面积公式,用代数式直接表示即可;(2)分别求出木地板和瓷砖的费用,再相加,即可求解.【详解】(1)木地板面积=(5b-b-2b )×2a+(5a-2a )×2b=2b×2a+3a×2b=10ab (平方米),瓷砖面积=5a×5b-10ab=15ab (平方米),(2)当 1.5a =,2b =时,10ab=10×1.5×2=30(平方米),30×200=6000(元),15ab=15×1.5×2=45(平方米),45×100=4500(元),4500+6000=10500(元),答:每套公租房铺地面所需费用为10500元.【点睛】本题主要考查列代数式以及代数式求值,明确题意,根据数量关系,列出代数式,是解题的关键.26.【计算与发现】−36;−36;不同位置的“H”所对应的“H 值”都是−36;【探究与证明】x ﹣10,x+8,x+10,x ﹣8;见解析【分析】【计算与发现】直接根据有理数的加减运算法则计算即可;根据结果即可得出规律;【探究与证明】先分别表示出A、B、C、D所对应的数,再代入(A+D)−(B+C)即可验证规律.【详解】解:【计算与发现】(2+4)−(20+22)=6-42=-36;(24+26)−(42+44)=50-86=-36;我们可以初步发现:不同位置的“H”所对应的“H值”都是−36.【探究与证明】A、B、C、D所对应的数分别为:x﹣10,x+8,x+10,x﹣8;(A+D)−(B+C)=(x﹣10+ x﹣8)﹣(x+8+ x+10)=2x﹣18﹣2x﹣18=−36.【点睛】本题考查了有理数的加减运算及整式的加减的应用,熟练掌握运算法则是解题的关键.。

相关文档
最新文档