小波包原理
小波分解和小波包分解

⼩波分解和⼩波包分解这篇⽂章介绍了⼩波分解和⼩波包分解。
⼩波分解(wavelet transform )⼩波傅⾥叶变换的基本⽅程是sin 和cos ,⼩波变换的基本⽅程是⼩波函数(basic wavelet),不同的⼩波在波形上有较⼤的差异,相似的⼩波构成⼀个⼩波族(family)。
⼩波具有这样的局部特性:只有在有限的区间内取值不为0。
这个特性可以很好地⽤于表⽰带有尖锐, 不连续的信号。
⼩波变换其中 表⽰变换得到的⼩波系数,W 是正交矩阵。
是输⼊信号。
正交矩阵构造特定的⼩波函数(basic wavelet )由⼀组特定的⼩波滤波系数(wavelet filter coefficients)构成。
当选定了⼩波函数,其对应的那组⼩波滤波器系数就知道。
⽤⼩波滤波器系数构造不同维度的低通滤波器和⾼通滤波器(下⾯的例⼦中W 就是由这些系数构造出来的)。
低通滤波器可以看作为⼀个平滑滤波器(smoothing filter)。
这两个滤波器,低通和⾼通滤波器,⼜分别被称为尺度(scaling)和⼩波滤波器(wavelet filter)。
⼀旦定义好了这两个滤波器,通过递归分解算法(也称为⾦字塔算法(pyramid algorithm),树算法(tree algorithm)将得到⽔平多分辨率表⽰的信号。
树算法原始信号通过低通滤波器得到低频系数 (approximate coefficients), 通过⾼通滤波器得到⾼频系数(detail coefficients )。
把第⼀层的低频系数作为信号输⼊,⼜得到⼀组approximate coefficients 和detail coefficients 。
再把得到的approximate coefficients 作为信号输⼊,得到第⼆层的approximate coefficients 和detail coefficients 。
以此类推,直到满⾜设定的分级等级。
小波包、多小波及第二代小波

M
因此,很容易得到小波子空间的各种分解如下: jW
3121++⊕=jjjUUW
72625242++++⊕⊕⊕=jjjjjUUUUW
M
121221.
+
+
++
+⊕⊕⊕=lllljljljjUUUWL 4.14
M
文本框:
jW空间分解的子空间序列可以写作,;mljlU+
+
212,,1,0.ቤተ መጻሕፍቲ ባይዱlmLjl,,2,1L=;。子空间
序列的标准正交基为:
L,2,1=jmljlU+
+
2
{}Znntwljmljl∈.+.
+
+.:)2(2)(
22/)( 4.15
当和时,子空间序列简化为,相应的正交基简化为0=l0=mmljlU+
+
2jjWU=1{})2(2)2(22/
在感兴趣的频率点上尽可能地提高频域分辨率,在感兴趣的时间点上尽可能地提高时间分辨率,这样当用
滤波器组对信号进行分解时,短时Fourier变换的等带宽或小波变换的恒-Q带宽都不一定合适,应该按信
号特性选择相应组合的滤波器组,这就是小波包(Wave1et Packet)。
小波包的概念是由M.V.WickerhaMser,R.R.Coifman等人在小波变换的基础上,根据实际应用的需求
()()0,122=.+ktWtwll
4.1.2 小波包分解
现在令、L,2,1=lL,2,1=j,并对式(4.11)进行迭代分解,有
小波包分解原理计算公式

小波包分解原理计算公式小波包分解是一种信号处理方法,它可以将信号分解成不同频率的子信号,从而更好地理解信号的特性和结构。
小波包分解的计算公式是其核心,下面我们将介绍小波包分解的原理和计算公式。
1. 小波包分解原理。
小波包分解是基于小波变换的一种信号分解方法。
小波变换是一种多尺度分析方法,它可以将信号分解成不同尺度的子信号,从而揭示信号的局部特征。
小波包分解是小波变换的一种推广,它可以更灵活地选择小波基函数,从而更好地适应信号的特性。
小波包分解的原理是将信号分解成不同频率的子信号。
在小波包分解中,我们首先选择一个小波基函数作为分解的基础,然后根据需要选择不同的尺度和频率,将信号分解成不同频率的子信号。
这样可以更好地理解信号的频率特性,从而更好地分析和处理信号。
2. 小波包分解计算公式。
小波包分解的计算公式是其核心。
在小波包分解中,我们首先需要选择一个小波基函数作为分解的基础。
常用的小波基函数包括Haar小波、Daubechies小波、Symlet小波等。
这些小波基函数具有不同的频率特性和尺度特性,可以根据需要选择合适的小波基函数。
假设我们选择了一个小波基函数ψ(t),我们可以将信号f(t)进行小波包分解。
小波包分解的计算公式如下:\[D_{j,k} = \int_{-\infty}^{\infty} f(t)\psi_{j,k}(t)dt\]其中,\(D_{j,k}\)表示信号f(t)在尺度为j,频率为k的小波基函数ψ(t)上的分解系数。
ψj,k(t)表示小波基函数ψ(t)在尺度为j,频率为k时的尺度变换和平移变换。
通过计算分解系数\(D_{j,k}\),我们可以得到信号f(t)在不同频率和尺度上的子信号。
3. 小波包分解的应用。
小波包分解在信号处理领域有着广泛的应用。
它可以用于信号的去噪、压缩、特征提取等方面。
通过小波包分解,我们可以更好地理解信号的频率特性和尺度特性,从而更好地处理信号。
在实际应用中,我们可以根据需要选择不同的小波基函数和尺度、频率,进行小波包分解。
小波包PPT课件

引言
小波分解示意图----每层分解只对低频部分细分
S
A1
D1
A2
D2
A3
D3
4
引言
小波包分解,在小波分解的基础上进一步细分高频部分,达 到更优的时频局部化效果
S
A1
D1
A2,1
D2,1
A2,2
D2,2
5
A3,1
D3,1
A3,2
D3,2
A3,3
D3,3
A3,4
D3,4
小波包原理
❖ 所谓小波包,简单地说就是一个函数族。由 它们构造出的规范正交基库。从此库中可以 选出的许多规范正交基,小波正交基只是其 中的一组,所以小波包是小波概念的推广。
包,称为小波包系数。G,H为小波分解滤波器, H与尺度函数 有关,G与 j (t)有关。二进小波包 分解的快速算法为:
p01 (t) p 2i 1
j
f
(t) H (k
2t
)
p
i j
1
(t
)
k
p
2i j
k
G(k
2t
)
p
i j
1
(t
)
9
重构算法为:
p
i j
(t
)
2[
h(t
2k
)
p
2 i 1 j 1
(t
)
g
(t
2k
)
p
2i j 1
(t
)]
k
k
式中,j J 1, J 2,,1,0;i 2 j ,2 j1,,2,1;
J
log
N 2
, h,
g为小波重构滤波器,
小波包分析用于重叠分析化学信号的处理

2
2. 1
实验部分
仪器与试剂 Spect rasystem F L2000 高效液相色谱仪 ( Spectra P hysics, U SA) , 其中包括自动进样器 ,
Spect ra F ocus 紫外 可见多波长检测器 , 及一台联机的控制和数据处理 Spect rasystem 工作站 ; Shim adzu LC 6A 输液泵 ( 日本岛 津) 用于 柱后显色剂的注入; 色谱柱为 10 m 进口固定相
Fig. 1 The overlapping chromatograms
Curves a # f are respect ively corresponding to the sam ples N o. 1 # 6 in Table 1.
3
3. 1
结果与讨论
小波包分析用于重叠色谱图的解析 为了考察小波包分析对重叠色谱信号的解析情况 , 我们用小波包分析 ( Daubechies, N = 4
小波基) 对图 1( f ) 的重叠色谱图进行了 6 次分解 , 得到了 127 个不同的频率成分 . 其中的一 部分频率成分如图 2 所示 . 为了清楚地说明问题 , u( 6 , 2) 和 u ( 6, 3) 分别放大了 10 倍 . 由图 2 可见 , 当分解次数 j & 4 时 , 色 谱信 息 几 乎 完 全 保 留 在 最 低 频 的 成 分 u( j , 0) 中 , 其它的频率成分由高频的噪音 组成, 直 到 分 解 次 数 为 5 时 , 对 应 于 u( 4 , 0) 的高频部分 u ( 5, 1 ) 才出现了色谱 信息 . 因此, 第六次分解的前 4 个频率成 分均表示色谱信息的不同频率成分 . 比较 图 2 中 u( 6 , b) 可以 看出, 在 较低频 的 3 个频率成分中 L u 和 Yb 两个 组分的色谱 峰仍有一定程度的重叠, 但在 u ( 6, 3) 中 所有组分的色谱峰均得到了较好的解离. 另外 , T b 的色谱峰表明 , 在小波包分析分 解得到的信号中色谱峰的形状和位置基本 保持不变 . 由于小波包变换是一种线性变 换, u ( 6, 3) 可以直接用于定量分析
8.6小波包变换

工程振动测试技术小波包变换小波包变换快速算法每次仅仅是对信号的低频分量(近似部分) 进行分解,而没有分解高频分量(细节部分)。
当我们需要把信号分解的很细时,仅仅靠快速算法可能不足以满足分析的需要。
d 1(f s /22-f s /2)a 1 (0-f s /22)a 2 (0-f s /23)d 2(f s /23-f s /22)d 3(f s /24-f s /23)x (t) (0-f s /2)a 3 (0-f s /24)有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)类似与快速算法,小波包分解也是按照分解尺度由低到高逐层向下分解,每层分解信号的所有子带均被一分为二,并传至下一层。
一般情况下,子带的频域将按照由低到高的顺序排列。
因为分解时每一层的小波基个数较多(第j层共有2j 个小波基),所以此算法称为小波包变换。
设 x (t )为一时间信号,p i j 表示第 j 层上的第 i 个小波包,称为小波包系数,G 、H 为小波分解滤波器,H 与尺度函数有关,G 与小波函数有关。
二进小波包分解的快速算法为:1021121()()()(2)()()(2)()i i jj ki i j j kp t x t p t H k t pt p t G k t pt −−−==−=−∑∑其中 21,2,...,2;1,2,...,2;log J jjt i J N −==。
二进小波包分解树形原理图原始信号经过以分析频率fs 的n 层小波包分解后,频域将被分成2n 段,各小波包分量对应的频段分别为2(1)(22)(21)(21)[0,],[,],...,[,],...,[,],[,]22222222nnns s s s s s s s s n n n n n n n nf f f k f kf f f f f −−−−二进小波包分解树形原理图应注意:分解得到的p是小波包系数,不是原信号在某个频段的分量,根据小波变换理论,可将信号的原始数据作为处于最低层的小波包系数。
小波包变换的基本原理和使用方法

小波包变换的基本原理和使用方法引言:小波包变换(Wavelet Packet Transform)是一种信号分析技术,它在小波变换的基础上进一步拓展,能够提供更丰富的频域和时域信息。
本文将介绍小波包变换的基本原理和使用方法,帮助读者更好地理解和应用这一技术。
一、小波包变换的基本原理小波包变换是一种多分辨率分析方法,它利用小波基函数对信号进行分解和重构。
与传统的傅里叶变换相比,小波包变换能够提供更精细的频域和时域信息,适用于非平稳信号的分析。
小波包变换的基本原理如下:1. 信号分解:首先将原始信号分解为不同频率的子信号,通过迭代地将信号分解为低频和高频部分,形成小波包树结构。
2. 小波基函数:在每一层分解中,选取合适的小波基函数进行信号分解。
小波基函数具有局部性和多分辨率特性,能够更好地捕捉信号的局部特征。
3. 分解系数:分解过程中,每个子信号都会生成一组分解系数,用于表示信号在不同频率上的能量分布。
分解系数可以通过滤波和下采样得到。
二、小波包变换的使用方法小波包变换在信号处理领域有广泛的应用,包括信号去噪、特征提取、模式识别等。
下面将介绍小波包变换的常见使用方法。
1. 信号去噪:小波包变换可以提供更丰富的频域和时域信息,因此在信号去噪领域有较好的效果。
通过对信号进行小波包分解,可以将噪声和信号分离,然后对噪声进行滤波处理,最后通过重构得到去噪后的信号。
2. 特征提取:小波包变换可以提取信号的局部特征,对于信号的频率变化和时域特征有较好的描述能力。
通过对信号进行小波包分解,可以得到不同频率下的分解系数,进而提取出信号的主要特征。
3. 模式识别:小波包变换在模式识别中也有广泛的应用。
通过对信号进行小波包分解,可以得到不同频率下的分解系数,进而提取出信号的特征向量。
利用这些特征向量,可以进行模式分类和识别。
4. 压缩编码:小波包变换可以将信号进行有效的压缩编码。
通过对信号进行小波包分解,可以将信号的主要信息集中在少量的分解系数中,从而实现信号的压缩。
小波包变换(WaveletPacketTransform)的学习笔记

⼩波包变换(WaveletPacketTransform)的学习笔记对于⼀个连续的周期信号,可以将其分解为⼀组频率不同的三⾓函数信号的线性组合,这就是傅⾥叶级数的本质,将信号从时域投影到频域中的不同频段上来完成分解。
当这个周期信号的周期趋近于⽆穷⼤时,傅⾥叶级数就变成了傅⾥叶变换。
此时的信号本质上是⼀个连续⾮周期信号,傅⾥叶变换的意义就在于对其进⾏分解,同样也是以⼀组三⾓函数作为正交基,并通过这组三⾓函数基的线性组合来表⽰原信号。
数学表达为:由于三⾓函数是⼀个⽆限长的信号,在时域上不具有局部性,因此以其作为正交基对信号进⾏拟合时,具有以下两个不⾜:第⼀,对于突变信号,如阶跃信号或尖峰信号,其需要⼤量的三⾓函数基进⾏组合才能完成较好的信号拟合;第⼆,由于三⾓函数不具备在时域上的局部性,因此在对信号进⾏傅⾥叶变换时,仅仅只能获取到信号在频域上的分布信息,并不能获取到这些不同频率的信号分量在时域上出现的位置。
因此傅⾥叶变换对于⾮平稳信号的分解会遗失其在时域上的变化信息。
⼩波变换就是为了解决对⾮平稳信号的分解问题⽽产⽣的数学⽅法。
相⽐于傅⾥叶变换使⽤⼀组⽆限长的三⾓函数基进⾏信号拟合,⼩波变换使⽤的是⼀组正交的、迅速衰减的⼩波函数基进⾏信号拟合。
这种⼩波函数基可通过其尺度变量和平移变量,获得不同的频率和时间位置。
因此在利⽤这种⼩波函数基对信号进⾏分解时,可以⽤较少的⼩波函数基就拟合出突变信号(稀疏编码特性),同时也能获得不同频率的信号分量在时域上的出现位置。
⽤于⽣成⼀组不同频率和时移的⼩波函数的⼩波函数,称为基本⼩波(Basic Wavelet),由其⽣成的⼀组⼩波函数,是该基本⼩波的⼀个⼩波族(Wavelet Family),表⽰为:,其中为尺度参数,通过伸缩控制⼩波的尺度(频率),为平移参数,通过移位控制⼩波在时域中的出现位置。
这两个参数的作⽤顺序是先作平移,再作伸缩。
对这⼀族⼩波函数进⾏归⼀化,即得到⼀组⼩波函数基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波包原理
小波包原理是一种信号分析方法,它是在小波分析基础上进一步发展而来的。
小波包原理通过将信号分解成不同频率范围的子信号,从而更全面地分析信号的频谱特性。
在信号处理领域,小波包原理被广泛应用于信号压缩、信号去噪、信号分析等方面。
小波包原理的核心思想是将信号分解成具有不同频率和时间分辨率的小波基函数。
与小波分析相比,小波包分析能够提供更细致的频率分辨率和更准确的时间分辨率。
小波包分解的过程是一个逐层的过程,首先将信号分解成低频子信号和高频子信号,然后再对高频子信号进行进一步的分解,直到达到所需的频率精度为止。
小波包分解的结果是一棵小波包树,树的每个节点代表一个小波基函数。
树的根节点代表整个信号,叶子节点代表最细致的频率分量。
通过分析小波包树的节点,可以得到信号在不同频率范围内的能量分布情况。
根据信号的特点和需求,可以选择合适的小波基函数和分解层数,从而实现对信号的有效分析。
小波包原理的应用非常广泛。
在信号压缩方面,小波包分解可以将信号的冗余信息去除,从而实现信号的高效压缩。
在信号去噪方面,小波包分析可以提取信号的主要成分,去除噪声等干扰,使信号更清晰。
在信号分析方面,小波包分析可以帮助我们了解信号的频谱结构,从而更好地理解信号的特性。
除了上述应用,小波包原理还可以用于图像处理、语音识别、生物医学工程等领域。
在图像处理中,小波包分析可以提取图像的纹理信息,实现图像的纹理特征提取和图像分类。
在语音识别中,小波包分析可以提取语音信号的频谱特征,实现语音的特征提取和语音识别。
在生物医学工程中,小波包分析可以帮助医生对生物信号进行诊断,如心电图信号的分析和识别。
小波包原理是一种强大的信号分析方法,它通过将信号分解成不同频率范围的子信号,实现对信号的全面分析。
小波包分析具有很多优点,如精确的频率分辨率、准确的时间分辨率和灵活的分析能力。
通过合理地选择小波基函数和分解层数,可以实现对信号的高效分析和处理。
小波包原理在各个领域都有广泛的应用前景,将为我们带来更多的便利和突破。