最新沪科版七年级数学下册单元测试题及答案全册

合集下载

沪教版七年级(下)数学期末单元练习及模拟测试卷一和参考答案(最新整理)

沪教版七年级(下)数学期末单元练习及模拟测试卷一和参考答案(最新整理)

,根据:

2)若∠F=79º,则∠3=
,∠4=
.
7.如图,a//b,∠1 是∠2 的 2 倍,则∠3=
度。
8.如图,AB//CD,∠D=80º,∠CAD:∠BAC=3:2,则∠CAD=
, ∠ACD=

泽仕学堂教务处
3
上海中小学课外辅导专家
第 7 题图
第 8 题图
第 9 题图
第 10 题图
二、选择题(每题 3 分,共 15 分)
B. ② ④
C. ① ③ ④
D. ① ② ③ ④
11. 下列说法正确的是
()
A. 不相交的两条直线互相平行
B. 同位角相等
C. 同旁内角相等,两直线平行
D. 在同一个平面内,不平行的两条直线相交
12. ∠1 和∠2 是直线 AB、CD 被直线 EF 所截而成的内错角,那么∠1 和∠2 的大小关系是
()
1) 求∠BAC 的度数;2) 求∠B 的度数
28. 如图,∠A+∠C=∠AEC,判断 AB 与 CD 是否平行,并说明理由。
泽仕学堂教务处
7
上海中小学课外辅导专家
七年级(下)数学第十四章 三角形 单元练习卷一
姓名
一、选择题(每题 3 分,共 18 分)
1、如图,△ABC≌∠CDA,并且 AB=CD,那么下列结论错误的是
14、若 x x 有意义,则 x 1 =____________
15、比较大小: 5 2 ________ 2 5(
(第 16 题)
16、图中每一个小正方形的面积是 1,请利用图中的格点,画出一个面积是 5 的正方形,这个正方形的边长是_ _
二、选择题(每题 3 分,共 15 分)

沪科版七年级下册数学第6章测试题(附答案)

沪科版七年级下册数学第6章测试题(附答案)

沪科版七年级下册数学第6章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.和数轴上的点一一对应的数是()A. 整数B. 有理数C. 无理数D. 实数2.等于()A. aB. -aC. ±aD. 以上答案都不对3.在四个实数2,0,﹣,﹣中,最小实数的倒数是()A. 0B. ﹣2C.D. ﹣4.若,且a在两个相邻整数之间,则这两个整数是A. 1和2B. 2和3C. 3和4D. 4和55.﹣8的立方根是()A. 2B. -2C. ±2D.6.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A. 点AB. 点BC. 点CD. 点D7.大于-0.5而小于的整数共有( )A. 6个B. 5个C. 4个D. 3个8.实数5的相反数是()A. B. - C. -5 D. 59.2的算术平方根是()A. 4B. ±4C.D.10.小马虎做了下列四道题:① = ;②2+ =2 ;③ = ﹣=5﹣3=2;④ =﹣.他拿给好朋友聪聪看,聪聪告诉他只做对了()A. 4道B. 3道C. 2道D. 1道11.若6-的整数部分为x,小数部分为y,则(2x+)y的值是( )A. 5-3B. 3C. 3 -5D. -312.下列命题中正确的是()①0.027的立方根是0.3;② 不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A. ①③B. ②④C. ①④D. ③④二、填空题(共10题;共22分)13.的立方根是________.14.4的算术平方根是________.15.写出一个小于﹣1无理数,这个无理数可以是________.16.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,-a,-b中最大的是________。

达标测试沪科版七年级数学下册第6章 实数章节测试试题(含详解)

达标测试沪科版七年级数学下册第6章 实数章节测试试题(含详解)

沪科版七年级数学下册第6章 实数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式正确的是( ).A 8±B .8=C .8=±D 4=±2 )A B CD .33、在 1.414-,π12,2,3.212212221…(相邻两个1之间的2的个数逐次加1),3.14这些数中,无理数的个数为( )个.A .5B .2C .3D .44、在实数3.1415,227,2.8181181118…(相邻两个8之间1的个数逐次加1)中,无理数有( )A .1个B .2个C .3个D .4个52的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间6、在12-,227,2022这四个数中,无理数是( )A .12- B .227 C D .20227、下列各数中,无理数是( )A .227B .πC D8、下列数中,15,3.7,π-7之间的3的个数逐次加1),是无理数的有( )个.A .5B .4C .3D .29a a 的值不可能为( )A .2B .3C .4D .510、下列说法中正确的有( )①±2都是8的立方根=x32.A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、立方等于-27的数是__________.2、对于实数a ,b ,定义运算“*”如下:a *b =(a +b )2﹣(a ﹣b )2.若(m +2)*(m ﹣3)=24,则m 的值为______.3、下列各数:-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.4、比较大小:213-_____. 5、规定了一种新运算:11*11a b a b a b⨯=+,计算:(3*4)*5=___. 三、解答题(5小题,每小题10分,共计50分)1x ≠0,y ≠0,求x y的值. 2.3、如图是一个无理数筛选器的工作流程图.(1)当x 为16时,y 值为______;(2)是否存在输入有意义的x 值后,却始终输不出y 值?如果存在,写出所有满足要求的x 值;如果不存在,请说明理由;(3)如果输入x 值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况?(4)当输出的y x值是否唯一?如果不唯一,请写出其中的三个.4、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.5、已知a,b,c,d是有理数,对于任意a bc d,我们规定:a bbc adc d=-.例如:1223142 34=⨯-⨯=.根据上述规定解决下列问题:(1)2332=--_________;(2)若321711xx-=+,求x的值;(3)已知1153xk-=,其中k是小于10的正整数,若x是整数,求k的值.-参考答案-一、单选题1、C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A8,故此选项错误;B、8±,故此选项错误;C、由B得此选项正确;D4,故此选项错误.故选:C.【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.2、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.3、D【分析】有理数是整数与分数的统称,无理数就是无限不循环小数,据此逐一判断即可得答案.【详解】-是有限小数,是有理数,1.414π是无理数,1是分数,是有理数,22是无理数,3.212212221…(相邻两个1之间的2的个数逐次加1),是无限不循环小数,是无理数,3.14是有限小数,是有理数,∴无理数有π2和3.212212221…(相邻两个1之间的2的个数逐次加1),共4个,故选:D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.熟练掌握定义是解题关键.4、B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】2.818118111811118⋯(相邻两个8之间1的个数逐次增加1)是无理数,故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008⋯(每两个8之间依次多1个0)等形式.5、A【分析】先估算45=,然后再减去2即可求出范围.【详解】解:∵45=,4到5之间,2在2到3之间,故选:A.【点睛】本题考查了无理数的估值计算,属于基础题,熟练常见正整数的平方根是解题的关键.6、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、12-是分数,属于有理数,不符合题意;B、227是分数,属于有理数,不符合题意;CD、2022是整数,属于有理数,不符合题意;故选C.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.7、B【详解】解:A、是有理数,故本选项不符合题意;B、是无理数,故本选项符合题意;C2是有理数,故本选项不符合题意;D2是有理数,故本选项不符合题意;故选:B【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.8、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】,无理数有:-7之间的3的个数逐次加1),共3个.故选:C.【点睛】本题考查了无理数,解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.9、D【分析】a可能的值,判断求解即可.【详解】,a,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.10、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;=,9的平方根是±3,原说法错误;9,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.二、填空题1、-3【分析】根据立方根的定义解答即可.【详解】解:∵(-3)3=-27,∴立方等于-27的数是-3.故答案为-3.【点睛】本题考查了有理数的乘方,熟悉乘方和立方根的定义是解题的关键.2、3-或4【分析】先根据新运算的定义可得一个关于m 的方程,再利用平方根解方程即可得.【详解】解:由题意得:22(23)(23)24m m m m ++--+-+=,即2(21)2524m --=,2(21)49m -=,217m -=或217m -=-,解得4m =或3m =-,故答案为:3-或4.【点睛】本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.3、3【分析】无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.【详解】在-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1)中,无理数有2π1之间0的个数增加1)共3个. 故答案为:3.【点睛】本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.4、>【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】 解:2211 1.67,33 1.73,33 而1.67 1.73, 21 3.3故答案为:>【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键. 5、736【分析】根据新定义的运算法则先将3*4转化为常规运算,再计算(3*4)*5即可.【详解】解:(3*4)*5=11111751734755=5===11111736+7+134557⨯⎛⎫⨯ ⎪⎛⎫=** ⎪ ⎪⎝⎭ ⎪+⎝⎭. 故答案为736. 【点睛】本题考查新运算的理解,有理数乘除混合运算,倒数和与积,掌握新定义运算法则是解题关键.三、解答题1、32【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】0,即31120y x -+-=,∴32y x =, ∴32x y =. 【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.2、2【分析】根据算术平方根与立方根的定义即可完成.【详解】=+-233=2.【点睛】本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.3、(1(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=162,则y;.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x <0时,导致开平方运算无法进行;(4)解: x 的值不唯一.x =3或x =9或x =81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.4、-1【分析】由题意可知0a b +=,1cd =,38x =-,2x =-,将值代入即可.【详解】解:由题意得:0a b +=,1cd =;38x =-解得2x =-∴()330121a b cd x +++=⨯++-=-.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.5、(1)-5(2)11x =-(3)k =1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含k 的式子表示x ,利用k 是小于10的正整数,x 是整数,就可求出k 的值.(1)解:233322532=⨯--⨯-=---; (2)解:()3212131711x x x x -=--+=+ 即:()21317x x --+=21337x x ---=11x -=11x =-(3)解:()113153x x k k-=--=, 即:()315x k --=335x k --=38x k =+83k x += 因为k 是小于10的正整数且x 是整数,所以k =1时,x =3;k =4时,x =4;k =7时,x =5.所以k =1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.。

(完整版)七年级下册数学《第6章实数》单元检测试卷(沪科版含答案)

(完整版)七年级下册数学《第6章实数》单元检测试卷(沪科版含答案)

.精品文档.七年级下册数学?第6章实数?单元检测试卷(沪科版含答案)第6实数一、选择题1.9的立方根是〔〕A. ±3B.3.±D.2.和数轴上的点一一对应的是〔〕A.整数B.有理数.无理数D.实数3.假设a为实数,那么以下说法正确的选项是〔〕A.|﹣a|是正数 B.﹣|a|是负数.是非负数 D.|﹣a|永远大于﹣|a|4.在﹣2、、0、1这四个数中,最小的数是〔〕A.﹣2B..0D.15.把几个数用大括号围起,中间用逗号断开,如:{1,2,3}、{﹣2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.以下集合为好的集合的是〔〕A.{1,2}B.{1 ,4,7}.{1 ,7,8}D.{ ﹣2,6}a,b两数在数轴上对应的点如下列图,以下结论正确的选项是〔〕A.a&lt;bB. ab&lt;0.b-a&gt;0D.a+b&lt ;02021全新精品资料-全新公文范文-全程指导写作–独家原创1/7.精品文档.7.以下说法中,正确的个数有〔〕①不带根号的数都是有理数;②无限小数都是无理数;③任何实数都可以进行开立方运算;④不是分数.A.0 个B.18.化简|1-|+1个.2 个D.3的结果是〔个〕A.2-B.2+.D.2估算﹣的值在相邻整数〔〕之间.A.4 和5B.5 和6.6 和7D.7 和810.以下说法中错误的选项是()A.0的算术平方根是0B.36的平方根为±6.=5D.-4的算术平方根是-211.正方形的面积是17,那么它的边长在〔A.5 与6之间B.4 与5之间.3 与4之间D.2〕与3之间12.实数 a在数轴上对应的点如下列图,那么a、-a、1 的大小关系正确的选项是〔〕A. -a<a<1B.a <-a<1.1 <-a<aD.a <1<a二、填空题比较大小:________.〔填“>〞“<〞或“=〞〕2021全新精品资料-全新公文范文-全程指导写作–独家原创2/7.精品文档.无理数5﹣的整数局部为________.比较大小:2________5.16.如果4是5+1的算术平方根,那么2﹣10=________〔Ⅰ〕阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|B|=|b|=|a ﹣b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|B|﹣|A|=|b|﹣|a|=ba=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|B| ﹣|A|=|b||a|=﹣b﹣〔﹣a〕=|a﹣b|;③如图4,点A、B 在原点的两边,|AB|=|B|+|A|=|a|+|b|=a+ 〔﹣b〕=|a﹣b|;〔Ⅱ〕答复以下问题:①数轴上表示2和5的两点之间的距离是________,数轴上表示﹣2和﹣5的两点之间的距离是________;数轴上表示1和﹣3的两点之间的距离是________;②数轴上表示x和﹣1的两点A和B之间的距离是________;③如果|x+3|=2,那么x为________;④代数式|x+3|+|x ﹣2|最小值是________,当代数式|x+3|+|x ﹣2|取最小值时,相应的x的取值范围是________.2021全新精品资料-全新公文范文-全程指导写作–独家原创3/7.精品文档.假设x2=4,y2=9,|x+y|=________把以下各数分填入相的大括号5,||,0,3.14,,12,0.1010010001⋯,+1.5,30%,〔6〕,正有理数集合:{________⋯}非正整数集合:{________⋯}分数集合:{________⋯}无理数集合:{________⋯}.写出一个小于1无理数,个无理数可以是________.21.取=1.4142135623731⋯的近似,假设要求精确到0.01,=________.22.假设一正数的两个平方根分是a 3和3a 1,个正数是________.三、解答:2+2的平方根是±4,3+n+1的平方根是±5,求+2n的.a的算平方根是3,b的立方根是2,求ab的平方根.下面材料:随着人的不断深入,达哥拉斯学派逐承不是有理数,并出了明.假是有理数,那么存在两个互的正整数p,q,使得= ,于是p=2021全新精品资料-全新公文范文-全程指导写作–独家原创4/7.精品文档.q,两平方得p2=2q2.因2q2是偶数,所以p2是偶数,而只有偶数的平方才是偶数,所以p也是偶数.因此可p=2s,代入上式,得4s2=2q2,即q2=2s2,所以q也是偶数,,p和q都是偶数,不互,与假p,q互矛盾,个矛盾明,不能写成分数的形式,即不是有理数.你有似的方法,明不是有理数.26.〔1〕假设5+的小数局部a,5 的小数局部b,求a2 b2的.2〕假设:x=,y=,求的.参考答案一、DDABD ADBD二、填空<1&lt;-283;3;4;+1;1或5;5;3≤x≤21或519.| | ,,+1.5,〔6〕;5,0,12;3.14,30%,;0.1010010001⋯,2021全新精品资料-全新公文范文-全程指导写作–独家原创5/7.精品文档.、1.101001⋯,π〔答案不唯一〕1.414三、解答解:∵2+2的平方根是±4,3+n+1的平方根是±5,∴2+2=16,3+n+1=25,立解得,=7,n=3,+2n=7+2×3=13解:根据意得:a=9,b=8,∴ab=98=1,1的平方根±1,ab的平方根±1解:假是有理数,存在两个互的正整数,n,使得= ,于是有23=n3,n3是2的倍数,∴n是2的倍数,n=2t〔t是正整数〕,n3=8t3,即8t3=23,∴4t3=3,∴也是2的倍数,∴,n都是2的倍数,不互,与假矛盾,∴假,∴不是有理数2021全新精品资料-全新公文范文-全程指导写作–独家原创6/7.精品文档.〔1〕解:5+的小数局部为a=﹣3,5﹣的小数局部为b=5﹣=4﹣,所以a2﹣b2=〔﹣3〕2﹣〔4﹣〕2=212〕解:∵x==5﹣2,y==5+2,∴===982021全新精品资料-全新公文范文-全程指导写作–独家原创7/7。

2021-2022学年最新沪科版七年级数学下册第10章相交线、平行线与平移单元测试试题(含详细解析)

2021-2022学年最新沪科版七年级数学下册第10章相交线、平行线与平移单元测试试题(含详细解析)

七年级数学下册第10章相交线、平行线与平移单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的有()①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2、在如图中,∠1和∠2不是同位角的是()A.B.C.D.3、如图,直线AB 与CD 相交于点O ,OE 平分∠AOC ,且∠BOE =140°,则∠BOC 为( )A .140°B .100°C .80°D .40°4、如图,AC ⊥BC ,CD ⊥AB ,则点C 到AB 的距离是线段( )的长度A .CDB .ADC .BD D .BC5、如图,已知//AD BC ,32B =︒∠,DB 平分ADE ∠,则DEC ∠=( )A .32°B .60°C .58°D .64°6、一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是( )A .第一次向右拐40°,第二次向右拐140°.B .第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.7、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于()A.25°B.27°C.29°D.45°8、直线AB、BC、CD、EG如图所示.若∠1=∠2,则下列结论错误的是()A.AB∥CD B.∠EFB=∠3C.∠4=∠5D.∠3=∠59、如图,若AB∥CD,CD∥EF,那么∠BCE=()A.180°-∠2+∠1 B.180°-∠1-∠2 C.∠2=2∠1 D.∠1+∠210、下列命题正确的是()(1)两条直线被第三条直线所截,同位角相等;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;(3)平移前后连接各组对应点的线段平行且相等;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)在同一平面内,三条直线的交点个数有三种情况.A.0个B.1个C.2个D.3个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为_____度.2、如图,小明同学在练习本上的相互平行的横格上先画了直线a,度量出∠1=112°,接着他准备在点A处画直线b.若要使b∥a,则∠2的度数为_____度.3、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )(2)如果两个角相等,那么这两个角是对顶角( )(3)有一条公共边的两个角是邻补角( )(4)如果两个角是邻补角,那么它们一定互补( )(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )4、如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,若∠ABC =m °,∠ADC =n °,则∠E =_________°.5、已知直线AB 、CD 相交于点O ,且A 、B 和C 、D 分别位于点O 两侧,OE ⊥AB ,40DOE =︒∠,则AOC ∠=____________.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB 与CD 相交于点O ,OE 是∠COB 的平分线,OE ⊥OF ,∠AOD =74°,求∠COF 的度数.2、如图,AB 与EF 交于点B ,CD 与EF 交于点D ,根据图形,请补全下面这道题的解答过程.∴∥CD()∴∠ABD+∠CDB = ()(2)∵∠BAC=65°,∠ACD=115°,( 已知 )∴∠BAC+∠ACD=180° (等式性质)∴AB∥CD()(3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)∴∠ABD=∠CDF=90°(垂直的定义)∴∥(同位角相等,两直线平行)又∵∠BAC=55°,(已知)∴∠ACD = ()3、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.4、完成下面的证明如图,点B在AG上,AG∥CD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.求证:∠F=90°.证明:∵AG∥CD(已知)∴∠ABC=∠BCD(____)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCD∵CF平分∠BCD(已知)∴∠BCF=∠FCD(____)∴____=∠BCF(等量代换)∴BE∥CF(____)∴____=∠F(____)∵BE⊥AF(已知)∴____=90°(____)∴∠F=90°.5、如图,①过点Q作QD⊥AB,垂足为点D;②过点P作PE⊥AB,垂足为点E;③过点Q作QF⊥AC,垂足为点F;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.-参考答案-一、单选题1、A【分析】根据平行线的性质,平行线的判定判断即可.【详解】∵一条直线的平行线有无数条,∴①的说法不正确;∵经过直线外一点有且只有一条直线与已知直线平行,∴②的说法不正确,④的说法正确;∵a∥b,c∥d,无法判定a∥d∴③的说法不正确.只有一个是正确的,故选A.【点睛】本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.2、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3、B【分析】根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.【详解】解:∵∠AOE+∠BOE=180°,∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,又∵OE平分∠AOC,∴∠AOE=∠COE=40°,∴∠BOC=∠BOE﹣∠COE=140°﹣40°=100°,故选:B.【点睛】本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.4、A【分析】⊥和点到直线的距离的定义即可得出答案.根据CD AB【详解】⊥,解:CD AB∴点C到AB的距离是线段CD的长度,故选:A.【点睛】本题考查了点到直线的距离,理解定义是解题关键.5、D【分析】先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.【详解】解:∵AD∥BC,∠B=32°,∴∠ADB=∠B=32° .∵DB平分∠ADE,∴∠ADE=2∠ADB=64°,∵AD∥BC,∴∠DEC=∠ADE=64°.故选:D.【点睛】题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.6、B【分析】画出图形,根据平行线的判定分别判断即可得出.【详解】A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.故选:B.【点睛】本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.7、B【分析】根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.【详解】解:∵AD∥BC,∴∠ABC=∠DAB=54°,∠EBC=∠E,∵BE平分∠ABC,∠ABC=27°,∴∠EBC=12∴∠E=27°.故选:B.【点睛】本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.8、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.9、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD,∠ECD+∠2=180°,∴∠BCE=∠BCD+∠ECD=180°-∠2+∠1,故选A.【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.10、B【分析】根据平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系逐个判断即可得.【详解】解:(1)两条平行线被第三条直线所截,同位角相等;则原命题错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;则原命题正确;(3)平移前后连接各组对应点的线段平行(或在同一条直线上)且相等;则原命题错误;(4)从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离;则原命题错误;(5)在同一平面内,三条直线的交点个数可能为0个或1个或2个或3个,共有四种情况;则原命题错误;综上,命题正确的是1个,故选:B .【点睛】本题考查了平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系,熟练掌握各定义和性质是解题关键.二、填空题1、30【分析】先证明90,A FMB ∠=∠=︒再证明,FG AB ∥再利用平行线的性质与对顶角的性质可得答案.【详解】解:如图,记,AB DF 交于点,M由题意得:90,30,A F B ∠=∠=︒∠=︒,AC DF ∥90,A FMB ∴∠=∠=︒180,F FMB ∴∠+∠=︒,FG AB ∴∥30,B BGE ∴∠=∠=︒30.CGF BGE ∴∠=∠=︒故答案为:30【点睛】本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.2、68【分析】根据平行线的性质,得出23∠∠=,根据平行线的判定,得出13180∠+∠=︒,即可得到368∠=︒,进而得到2∠的度数.【详解】解:∵练习本的横隔线相互平行,∴23∠∠=,b a,∵要使//∠+∠=︒,∴13180又1112∠=︒,∴368∠=︒,即268∠=︒,故答案为:68.【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.3、(1)×;(2)×;(3)×;(4)√;(5)×【分析】根据对顶角与邻补角的定义与性质分析判断即可求解.【详解】(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;(2)如果两个角相等,那么这两个角不一定是对顶角,错误;(3)有一条公共边的两个角不一定是邻补角,错误;(4)如果两个角是邻补角,那么它们一定互补,正确;(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.【点睛】本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.4、2m n +⎛⎫ ⎪⎝⎭【分析】作EF ∥AB ,证明AB ∥ EF ∥CD ,进而得到∠BED =∠ABE +∠CDE ,根据角平分线定义得到11,22ABE m CDE n ∠=︒∠=︒,即可求出2m n BED +⎛⎫∠=︒ ⎪⎝⎭. 【详解】解:如图,作EF ∥AB ,∵AB ∥CD ,∴AB ∥ EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∴∠BED =∠BEF +∠DEF =∠ABE +∠CDE ,∵BE 平分∠ABC ,DE 平分∠ADC , ∴1111,2222ABE ABC m CDE ADC n ∠=∠=︒∠=∠=︒, ∴ 2m n BED ABE CDE +⎛⎫∠=∠+∠=︒⎪⎝⎭.故答案为:2m n +⎛⎫⎪⎝⎭【点睛】 本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.5、130°或50°【分析】根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可【详解】①如图,OE AB ⊥,90AOE ∴∠=︒40DOE =︒∠,∴ 904050COB AOD ∠=∠=︒-︒=︒180130AOC COB ∴∠=︒-∠=︒②如图,OE AB ⊥,90BOE40DOE =︒∠,904050BOD BOE DOE ∴∠=∠-∠=︒-︒=︒50AOC BOD ∴∠=∠=︒综上所述,50AOC ∠=︒或130︒故答案为:130°或50°【点睛】本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.三、解答题1、53°【分析】首先根据对顶角相等可得∠BOC =74°,再根据角平分线的性质可得∠COE =12∠COB =37°,再利用余角定义可计算出∠COF 的度数.【详解】解:∵∠AOD=74°,∴∠BOC=74°,∵OE是∠COB的平分线,∠COB=37°,∴∠COE=12∵OE⊥OF,∴∠EOF=90°,∴∠COF=90°-37°=53°.【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.2、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.【分析】(1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;(2)由题意直接依据同旁内角互补,两直线平行进行分析即可;(3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.【详解】解:(1)∵∠1=∠2 (已知)∴AB∥CD(内错角相等,两直线平行)∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)∵∠BAC=65°,∠ACD=115°,(已知)∴∠BAC +∠ACD =180° (等式性质 )∴AB ∥CD (同旁内角互补,两直线平行)故答案为:同旁内角互补,两直线平行;(3)∵CD ⊥AB 于D ,EF ⊥AB 于F ,∠BAC =55°,(已知)∴∠ABD =∠CDF =90°(垂直的定义)∴AB ∥CD (同位角相等,两直线平行)又∵∠BAC =55°,(已知)∴∠ACD = 125°.(两直线平行,同旁内角互补)故答案为:AB ;CD ;125°;两直线平行,同旁内角互补.【点睛】本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.3、60°【分析】由CD ⊥AB ,FE ⊥AB ,则CD EF ∥,则∠2=∠4,从而证得BC DG ∥,得∠B =∠ADG ,则答案可解.【详解】解:CD ⊥AB 于D ,FE ⊥AB 于E ,∴CD EF ∥,∴∠2=∠4,又∵∠1=∠2,∴∠1=∠4,∴BC DG ∥,∴60ADG B ∠=∠=︒.【点睛】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.4、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义【分析】根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.【详解】证明:∵AG∥CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABE=∠FCB(已知),∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,即∠EBC=∠FCD,∵CF平分∠BCD(已知),∴∠BCF=∠FCD(角平分线的定义),∴∠EBC=∠BCF(等量代换),∴BE∥CF(内错角相等,两直线平行),∴∠BEF=∠F(两直线平行,内错角相等),∵BE⊥AF(已知),∴∠BEF=90°(垂直的定义),∴∠F=90°.故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.5、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.。

沪教版七年级(下)数学一课一练及单元测试卷和参考答案

沪教版七年级(下)数学一课一练及单元测试卷和参考答案

沪教版七年级(下)数学⼀课⼀练及单元测试卷和参考答案七年级下数学⼀课⼀练及单元测试卷和参考答案⽬录第⼗⼆章实数12.1 实数的概念(1) 3 12.2 平⽅根和开平⽅(1) 6 12.3 ⽴⽅根和开⽴⽅(1)9 12.4 n次⽅根(1)13 12.5 ⽤数轴上的点表⽰数(1)17 12.6 实数的运算(1)22 12.7 分数指数幂(1)26 七年级(下)数学第⼗⼆章实数单元测试卷⼀30 第⼗三章相交线平⾏线13.1 邻补⾓、对顶⾓(1)34 13.2 垂线(1)38 13.3 同位⾓、内错⾓、同旁内⾓(1)42 13.4 平⾏线的判定(1)46 13.5 平⾏线的性质(1)50 七年级(下)数学第⼗三章相交线平⾏线单元测试卷⼀54 第⼗四章三⾓形14.1 三⾓形的有关概念(1)59 14.2 三⾓形的内⾓和(1)63 14.3 全等三⾓形的概念与性质(1)67 14.4 全等三⾓形的判定(1)7114.5等腰三⾓形的性质(1)77 14.6等腰三⾓形的判定(1)81 14.7等边三⾓形(1)85 七年级(下)数学第⼗四章三⾓形单元测试卷⼀90第⼗五章平⾯直⾓坐标系15.1 平⾯直⾓坐标系(1)94 15.2直⾓坐标平⾯内点的运动(1)98 七年级(下)数学第⼗五章平⾯直⾓坐标系单元测试卷⼀103 参考答案107数学七年级下第⼗⼆章实数12.1 实数的概念(1)⼀、选择题1.|-32| 的值是()A .-3 B. 3 C .9 D .-92.下列说法不正确的是() A .没有最⼩的有理数 B .没有最⼤的有理数C .有绝对值最⼩的有理数D .有最⼤的负数 3.在3.0,2,2313,1010010001.0,4,0,)3(0π-,这七个数中,⽆理数有() A .1个 B .2个 C .3个 D .4个4.下列命题中正确的是() A .数轴上的点与有理数⼀⼀对应 B .有限⼩数是有理数 C .数轴上的点与实数⼀⼀对应 D .⽆限⼩数是⽆理数5.下列说法:①⽆限⼩数都是⽆理数;②正数、负数统称为有理数;③⽆理数的相反数还是⽆理数;④⽆理数与有理数的和⼀定是⽆理数;⑤⽆理数与⽆理数的和⼀定还是⽆理数;⑥⽆理数与有理数的积⼀定仍是⽆理数。

沪科版七年级数学下册第六章实数单元试题含答案解析

沪科版七年级数学下册第六章实数单元试题含答案解析

沪科版七年级数学下册第六章实数单元试题含答案解析一、选择题(本大题共10小题,共40分) 1. 下列说法正确的是( )A. 116的平方根是14B. -16的算术平方根是4C. (-4)2的平方根是-4D. 0的平方根和算术平方根都是0 2. 立方根等于它本身的有( )A. −1,0,1B. 0,1C. 0,−1D. 13. 在实数:3.14159,√643,1.010010001…,4.2⋅1⋅,π,227中,无理数有( )A. 1个B. 2个C. 3个D. 4个 4. 已知√3743≈7.205,√37.43≈3.344,则√-0.0003743约等于( )A. -0.07205B. -0.03344C. -0.007205D. -0.003344 5. 估计√40的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间 6. 下列各式中,正确的是( )A. √25=±5B. ±√16=4C. √−273=−3D. √(−4)2=±47. 下列说法:①实数和数轴上的点是一一对应的; ②无理数是开方开不尽的数; ③负数没有立方根;④16的平方根是±4,用式子表示是√16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0, 其中错误的是( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 实数√9的平方根为( ).A. 3B. −3C. ±3D. ±√39. 实数a 、b 在数轴上的位置如图,则|a +b|−|a −b|等于( )A. 2aB. 2bC. 2b −2aD. 2b +2a 10. 一个正数的两个平方根分别是2a −1与−a +2,则a 的值为( )A. 1B. −1C. 2D. −2二、填空题(本大题共4小题,共20分) 11. 2−√5的相反数是______.12. 比较大小:3______2√3(填“>”,“=”或“<”)13. 如图,将一个直径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴滚动1周,点A 所在位置表示的数是______ .14. 已知5+√11的小数部分为m ,5−√11的小数部分为n ,则m +n =______ .三、计算题(本大题共2小题,共24分) 15. 计算:①|√3−√2|+|√3−2|−|√2−1|②√83+√(−2)2−√14+(−1)2016.16. 解方程:①(x −4)2=4;②13(x +3)3−9=0.四、解答题(本大题共6小题,共66分)17. 将下列各数的序号填在相应的集合里:①−√83,②2π,③3.1415926,④−0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2√2,⑦20162017,⑧−√(−1)2. 有理数集合:{______ }.无理数集合:{______ }. 负实数集合:{______ }.18.按要求填空:已知:√7.2=2.638,则√720=______ ,√0.00072=______ ;已知:√0.0038=0.06164,√x=61.64,则x=______ .19.按要求填空:已知:√7.2=2.638,则√720=______ ,√0.00072=______ ;已知:√0.0038=0.06164,√x=61.64,则x=______ .20.正数x的两个平方根分别为3-a和2a+7.(1)求a的值;(2)求44-x这个数的立方根.21.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为√2,f的算术平方根是8,求12ab+c+d5+e2+√f3的值.22.已知√2a−1=3,3a+b−1的平方根是±4,c是√60的整数部分,求a+2b+c的算术平方根。

最新沪科版七年级数学下册单元测试题及答案全册

最新沪科版七年级数学下册单元测试题及答案全册

最新沪科版七年级数学下册单元测试题及答案全册第6章 实数时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列各数中最大的数是( )A .5 B. 3 C .π D .-8 2.4的算术平方根是( ) A .2B .±2 C. 2 D .±23.下列各数:0,32,(-5)2,-4,-|-16|,π,其中有平方根的个数是( ) A .3个 B .4个 C .5个 D .6个4.如图,数轴上的A ,B ,C ,D 四点中,与数-3表示的点最接近的是( )A .点AB .点BC .点CD .点D5.下列式子中,正确的是( ) A.3-7=-37 B.36=±6C .- 3.6=-0.6 D.(-8)2=-86.在-3.5,227,0,π2,-2,-30.001,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个7.下列说法中,正确的是( ) A .不带根号的数不是无理数B.64的立方根是±2C .绝对值等于3的实数是3D .每个实数都对应数轴上一个点8.-27的立方根与81的平方根之和是( ) A .0 B .-6 C .0或-6 D .6 9.比较7-1与72的大小,结果是( ) A .后者大 B .前者大 C .一样大 D .无法确定10.如果0<x <1,那么在x ,1x ,x ,x 2中,最大的是( )A .x B.1xC.x D .x 2二、填空题(本大题共4小题,每小题5分,满分20分)11.-5的绝对值是________,116的算术平方根是________.12.已知x -1是64的算术平方根,则x 的算术平方根是________.13.若x ,y 为实数,且|x +2|+y -1=0,则(x +y )2018=________.14.对于“5”,有下列说法:①它是一个无理数;②它是数轴上离原点5个单位长度的点所表示的数;③若a <5<a +1,则整数a 为2;④它表示面积为5的正方形的边长.其中正确的说法是________(填序号).三、(本大题共2小题,每小题8分,满分16分) 15.将下列各数的序号填在相应的集合里:①0,②3-827,③3.1415,④π5, ⑤-0.3507··,⑥-2.3131131113…, ⑦-6133,⑧-8,⑨(-4)2,⑩0.9.16.计算:(1)|-5|+(-2)2+3-27-(-2)2-1;(2)30.125-3116×3×⎝⎛⎭⎫-182.四、(本大题共2小题,每小题8分,满分16分) 17.求下列各式中x 的值: (1)25x 2=9; (2)(x +3)3=8.18.计算:(1)3π-132+78(精确到0.01);(2)210×5÷6(精确到0.01).五、(本大题共2小题,每小题10分,满分20分)19.已知2a-1的平方根为±3,3a+b-1的算术平方根为4,求a+2b的平方根.20.如图,数轴的正半轴上有A,B,C三点,表示1和2的对应点分别为点A,B,点B到点A的距离与点C到点O的距离相等.设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-2)2的立方根.六、(本题满分12分)21.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=d3900,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(已知3900≈9.65,结果精确到0.1km)?七、(本题满分12分)22.如图是一个数值转换器.(1)当输入x=25时,求输出的y的值;(2)是否存在输入x的值后,始终输不出y的值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由;(3)输入一个两位数x,恰好经过三次取算术平方根才能输出无理数y,则x=________(只填一个即可).八、(本题满分14分)23.如图①,把2个边长为1的正方形沿对角线剪开,将所得到的4个三角形拼成第1个大的正方形(如图②).(1)拼成的第1个大正方形的边长是________;(2)再把2个图②这样的大正方形沿对角线剪开,将所得的4个三角形拼成第2个大的正方形,则这个正方形的边长是________;(3)如此下去,写出拼成的第n 个正方形的边长.参考答案与解析1.A 2.C 3.B 4.B 5.A 6.C 7.D 8.C 9.B 10.B 11.51412.3 13.1 14.①③④ 15.解:①②③⑤⑦⑨(2分) ⑥⑧(4分) ③④⑨⑩(6分) ①②⑤⑥⑦⑧(8分)16.解:(1)原式=5+4-3-2-1=3.(4分) (2)原式=0.5-74×3×18=-532.(8分)17.解:(1)x 2=925,x =±925,x =±35.(4分) (2)x +3=38,x +3=2,x =-1.(8分)18.解:(1)原式≈3×3.142-3.6062+0.875≈8.50.(4分)(2)原式≈2×3.162×2.236÷2.449≈5.77.(8分)19.解:由题意得⎩⎪⎨⎪⎧2a -1=(±3)2=9,3a +b -1=42=16,解得⎩⎪⎨⎪⎧a =5,b =2.(6分)所以a +2b =5+2×2=9,所以a +2b 的平方根是±3.(10分)20.解:(1)x =2-1.(4分)(2)(x -2)2=(2-1-2)2=1,所以(x -2)2的立方根是1.(10分) 21.解:(1)当d =9时,则t 2=93900,(3分)因此t =93900=0.9.(5分) 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(6分) (2)当t =1时,则d 3900=12,(8分)因此d =3900≈9.65≈9.7.(11分)答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.(12分)22.解:(1)由输入x =25得25=5.因为5是有理数,不能输出,再取5的算术平方根得 5.因为5是无理数,所以输出y ,所以输入x =25时,输出的y 的值是 5.(4分)(2)x =0或1时,始终输不出y 的值.(8分) (3)81(答案不唯一)(12分)23.解:(1)2(4分) (2)2(8分)(3)两个边长为1的正方形拼成的第1个大正方形面积为2,所以它的边长为2;两个边长为2的正方形拼出的第2个大正方形面积为4,所以它的边长为2=(2)2……因此,拼成的第n 个正方形的边长为(2)n .(14分)第7章一元一次不等式与不等式组时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.y 的13与z 的5倍的差的平方是一个非负数,列出不等式为( )A .5(13-y )2>0 B.13y -(5z )2≥0C .(13y -5z )2≥0 D.13y -5z 2≥02.已知a <b ,则下列不等式一定成立的是( ) A .a +5>b +5 B .-2a <-2b C.32a >32b D .7a -7b <0 3.一元一次不等式2(x +1)≥4的解集在数轴上表示为( )C. D.4.不等式组⎩⎪⎨⎪⎧x +4>3,2x ≤4的解集是( )A .1<x ≤2B .-1<x ≤2C .x >-1D .-1<x ≤45.要使代数式3m -14-m2的值不小于1,那么m 的取值范围是( )A .m >5B .m >-5C .m ≥5D .m ≥-56.如果不等式2x -m <0只有三个正整数解,那么m 的取值范围是( ) A .m <8 B .m ≥6 C .6<m ≤8 D .6≤m <87.如果2m ,m ,1-m 这三个数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( ) A .m >0 B .m >12 C .m <0 D .0<m <128.若方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解x ,y 满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-49.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( )A .a <-36B .a ≤-36C .a >-36D .a ≥-3610.某学校七年级学生计划用义卖筹集的1160元钱购买古典名著《水浒传》和《西游记》共30套.小华查到网上某图书商城的报价如图所示.如果购买的《水浒传》尽可能的多,那么《水浒传》和《西游记》可以购买的套数分别是( ) A .20,10 B .10,20 C .21,9 D .9,21二、填空题(本大题共4小题,每小题5分,满分20分)11.已知y 1=x +3,y 2=-x +1,当y 1>2y 2时,x 满足的条件是________. 12.关于x 的方程kx -1=2x 的解为正实数,则k 的取值范围是________.13.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为____________.14.某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局反扣1分,在12局比赛中,积分超过15分就可以晋升下一轮比赛,而且在全部12轮比赛中,没有出现平局,小王最多输________局比赛.三、(本大题共2小题,每小题8分,满分16分) 15.解下列不等式:(1)3(x -1)>2x +2; (2)x -x -24>4x +35.16.解不等式组,并将解集分别表示在数轴上.(1)⎩⎪⎨⎪⎧4x -3>x ①,x +4<2x -1②; (2)⎩⎪⎨⎪⎧6x +15>2(4x +3)①,2x -13≥12x -23②.四、(本大题共2小题,每小题8分,满分16分)17.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.18.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =m ,2x -y =6的解满足x >0,y <0,求满足条件的整数m 的值.20.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题备受人们关注,某学校计划在教室内安装空气净化装置,需购进A ,B 两种设备.已知购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元.(1)求每台A 种、B 种设备的价格;(2)根据学校实际情况,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A 种设备多少台.六、(本题满分12分)21.用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1(请注意两个不同的符号).解决下列问题:(1)[-4.5]=________,<3.5>=________;(2)若[x ]=2,则x 的取值范围是____________;若<y >=-1,则y 的取值范围是____________;(3)已知x ,y 满足方程组⎩⎪⎨⎪⎧3[x ]+2<y >=3,3[x ]-<y >=-6,求x ,y 的取值范围.七、(本题满分12分)22.为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见下表:某居民五月份用电190千瓦时,缴纳电费90元.(1)求x的值和超出部分电费单价;(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.八、(本题满分14分)23.某公司有A,B两种客车,它们的载客量和租金如下表.星星中学根据实际情况,计划用A,B 型车共5辆,同时送七年级师生到校基地参加社会实践活动.(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案?(2)在(1)的条件下,若七年级师生共有150人,请问哪种租车方案最省钱?参考答案与解析1.C 2.D 3.A 4.B 5.C 6.C 7.C 8.A 9.C 10.A 11.x >-13 12.k >2 13.x >3214.215.解:(1)去括号,得3x -3>2x +2,移项,得3x -2x >2+3,合并同类项,得x >5.(4分)(2)去分母,得20x -5(x -2)>4(4x +3),去括号,得20x -5x +10>16x +12,移项、合并同类项,得-x >2,x 系数化成1,得x <-2.(8分)16.解:(1)解不等式①,得x >1,解不等式②,得x >5.因此,不等式组解集为x >5.在数轴上表示不等式组的解集为(4分)(2)解不等式①,得x <92,解不等式②,得x ≥-2.因此,不等式组解集为-2≤x <92.在数轴上表示不等式组的解集为(8分)17.解:(1)因为a ⊕b =a (a -b )+1,所以(-2)⊕3=-2(-2-3)+1=10+1=11.(4分)(2)因为3⊕x <13,所以3(3-x )+1<13,9-3x +1<13,-3x <3,x >-1.在数轴上表示如图所示.(8分)18.解:解不等式得x >-3,所以最小整数解为x =-2.(4分)所以2×(-2)-a ×(-2)=4,解得a =4.(8分)19.解:解方程组得⎩⎨⎧x =6+m 3,y =2m -63.(4分)又因为x >0,y <0,所以⎩⎨⎧6+m 3>0,2m -63<0,解得-6<m <3.(7分)因为m为整数,所以m 的值为-5,-4,-3,-2,-1,0,1,2.(10分)20.解:(1)设每台A 种、B 种设备的价格分别为x 万元、y 万元,根据题意得⎩⎪⎨⎪⎧x +2y =3.5,2x +y =2.5,解得⎩⎪⎨⎪⎧x =0.5,y =1.5.(4分)答:每台A 种、B 种设备各0.5万元、1.5万元.(5分)(2)设购买A 种设备z 台,根据题意得0.5z +1.5(30-z )≤30,解得z ≥15.(9分)21.解:(1)-5 4(2分)(2)2≤x <3 -2≤y <-1(6分)(3)解方程组得⎩⎪⎨⎪⎧[x ]=-1,<y >=3,所以x ,y 的取值范围分别为-1≤x <0,2≤y <3.(12分)22.解:(1)根据题意,得160x +(190-160)(x +0.15)=90,解得x =0.45.则超出部分的电费单价是x+0.15=0.6(元/千瓦时).(5分)答:x 和超出部分电费单价分别是0.45元/千瓦时和0.6元/千瓦时.(6分) (2)设该户居民六月份的用电量是a 千瓦时,因为160×0.45=72(元),所以该户居民六月份用电量超过160千瓦时,则75≤160×0.45+0.6(a -160)≤84,解得165≤a ≤180.(11分)答:该户居民六月份的用电量在165千瓦时到180千瓦时之间.(12分)23.解:(1)设租A 型车x 辆,则租B 型车(5-x )辆,根据题意得200x +150(5-x )≤980,解得x ≤235.(4分)因为x 取非负整数,所以x =0,1,2,3,4,所以该学校的租车方案有如下5种:租A 型车0辆、B 型车5辆;租A 型车1辆、B 型车4辆;租A 型车2辆、B 型车3辆;租A 型车3辆、B 型车2辆;租A 型车4辆、B 型车1辆.(7分)(2)根据题意得40x +20(5-x )≥150,解得x ≥52.(10分)因为x 取整数,且x ≤235,所以x =3或4.当x =3时,租车费用为200×3+150×2=900(元);当x =4时,租车费用为200×4+150×1=950(元).因为900<950,所以当租A 型车3辆、B 型车2辆时,租车费用最低.(14分)第8章 整式乘法与因式分解一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列运算中,结果是a 6的式子是( ) A .a 2·a 3 B .a 12-a 6 C .(a 3)3 D .(-a )62.计算(-xy 3)2的结果是( ) A .x 2y 6 B .-x 2y 6 C .x 2y 9 D .-x 2y 9 3.科学家使用铁纳米颗粒以及具有磁性的钴和碳纳米颗粒合成了直径约为0.000000012米的新型材料,这种材料能在高温下储存信息,具有广阔的应用前景.这里的“0.000000012米”用科学记数法表示为( )A .0.12×10-7米B .1.2×10-7米C .1.2×10-8米D .1.2×10-9米 4.对于多项式:①x 2-y 2;②-x 2-y 2;③4x 2-y ;④x 2-4,能够用平方差公式进行因式分解的是( ) A .①和② B .①和③ C .①和④ D .②和④5.下列各式的计算中正确的个数是( )①100÷10-1=10; ②10-4·(2×7)0=1000;③(0.1)0÷⎝⎛⎭⎫-12-3=8; ④(-10)-4÷⎝⎛⎭⎫-110-4=-1. A .4个 B .3个C .2个D .1个6.若2x =3,8y =6,则2x -3y 的值为( )A.12 B .-2 C.62 D.327.下列计算正确的是( ) A .-3x 2y ·5x 2y =2x 2y B .-2x 2y 3·2x 3y =-2x 5y 4 C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 8.下列因式分解正确的是( ) A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9) B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y )(4x -y )9.已知ab 2=-1,则-ab (a 2b 5-ab 3-b )的值等于( ) A .-1 B .0C .1D .无法确定10.越越是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应城、爱、我、蒙、游、美这六个汉字,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .蒙城游C .爱我蒙城D .美我蒙城二、填空题(本大题共4小题,每小题5分,满分20分) 11.计算:(12a 3-6a 2)÷(-2a )=__________.12.若代数式x 2-6x +b 可化为(x -a )2-1,则b -a 的值是________. 13.若a -b =1,则代数式a 2-b 2-2b 的值为________.14.a ,b 是实数,定义一种运算@如下:a @b =(a +b )2-(a -b )2.有下列结论:①a @b =4ab ;②a @b =b @a ;③若a @b =0,则a =0且b =0;④a @(b +c )=a @b +a @c .其中正确的结论是________(填序号).三、(本大题共2小题,每小题8分,满分16分) 15.计算:(1)(a 2)3·(a 3)2÷(a 2)5;(2)(a -b +c )(a +b -c ).16.因式分解:(1)3x 4-48; (2)(c 2-a 2-b 2)2-4a 2b 2.四、(本大题共2小题,每小题8分,满分16分)17.先化简,再求值:(x 2+3x )(x -3)-x (x -2)2+(x -y )(y -x ),其中x =3,y =-2.18.已知a +b =2,ab =2,求12a 3b +a 2b 2ab 3的值.五、(本大题共2小题,每小题10分,满分20分) 19.张老师给同学们出了一道题:当x =2018,y =2017时,求[(2x 3y -2x 2y 2)+xy (2xy -x 2)]÷x 2y 的值.题目出完后,小明说:“老师给的条件y =2017是多余的.”小兵说:“不多余,不给这个条件,就不能求出结果.”你认为他们谁说得有道理?并说明你的理由.20.已知多项式x2+nx+3与多项式x2-3x+m的乘积中不含x2和x3项,求m,n的值.六、(本题满分12分)21.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8……根据以上规律,解答下列问题:(1)(a+b)4的展开式共有________项,系数分别为____________;(2)写出(a+b)5的展开式:(a+b)5=________________________________________________________________________;(3)(a+b)n的展开式共有________项,系数和为________.七、(本题满分12分)22.将一张如图①所示的长方形铁皮四个角都剪去边长为30cm的正方形,再四周折起,做成一个有底无盖的铁盒,如图②.铁盒底面长方形的长是4a cm,宽是3a cm.(1)请用含有a的代数式表示图①中原长方形铁皮的面积;(2)若要在铁盒的外表面涂上某种油漆,每1元钱可涂油漆的面积为a50cm2,则在这个铁盒的外表面涂上油漆需要多少钱(用含有a的代数式表示)?八、(本题满分14分)23.阅读下列材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.1.D 2.A 3.C 4.C 5.D 6.A 7.C 8.B 9.C 10.C 11.-6a 2+3a 12.5 13.114.①②④ 解析:因为a @b =(a +b )2-(a -b )2=(a +b +a -b )(a +b -a +b )=2a ·2b =4ab ,①正确;因为a @b =4ab ,b @a =(b +a )2-(b -a )2=(b +a +b -a )(b +a -b +a )=2b ·2a =4ab ,所以a @b =b @a ,②正确;因为a @b =4ab =0,所以a =0或b =0或a =0且b =0,③错误;因为a @(b +c )=(a +b +c )2-(a -b -c )2=(a +b +c +a -b -c )(a +b +c -a +b +c )=2a ·(2b +2c )=4ab +4ac ,a @b =4ab ,a @c =(a +c )2-(a -c )2=(a +c +a -c )(a +c -a +c )=2a ·2c =4ac ,所以a @(b +c )=a @b +a @c ,④正确.故答案为①②④.15.解:(1)原式=a 6·a 6÷a 10=a 2.(4分)(2)原式=[a -(b -c )][a +(b -c )]=a 2-(b -c )2=a 2-b 2+2bc -c 2.(8分)16.解:(1)原式=3(x 4-16)=3(x 2+4)(x 2-4)=3(x 2+4)(x +2)(x -2).(4分)(2)原式=(c 2-a 2-b 2+2ab )(c 2-a 2-b 2-2ab )=[c 2-(a -b )2][c 2-(a +b )2]=(c +a -b )(c -a +b )(c +a +b )(c -a -b ).(8分)17.解:原式=x 3-3x 2+3x 2-9x -x (x 2-4x +4)-(x -y )2=x 3-9x -x 3+4x 2-4x -x 2+2xy -y 2=3x 2-13x +2xy -y 2.(4分)当x =3,y =-2时,原式=3×32-13×3+2×3×(-2)-(-2)2=-28.(8分)18.解:原式=12ab (a 2+2ab +b 2)=12ab (a +b )2.(4分)当a +b =2,ab =2时,原式=12×2×22=4.(8分)19.解:小明说得有道理.(2分)理由如下:原式=[2x 3y -2x 2y 2+2x 2y 2-x 3y ]÷x 2y =x 3y ÷x 2y =x .所以该式子的结果与y 的值无关,即小明说得有道理.(10分)20.解:(x 2+nx +3)(x 2-3x +m )=x 4-3x 3+mx 2+nx 3-3nx 2+mnx +3x 2-9x +3m =x 4+(n -3)x 3+(m -3n +3)x 2+(mn -9)x +3m .(5分)因为不含x 2和x 3项,所以⎩⎪⎨⎪⎧n -3=0,m -3n +3=0,所以⎩⎪⎨⎪⎧m =6,n =3.(10分)21.(1)5 1,4,6,4,1(4分)(2)a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5(8分) (3)(n +1) 2n (12分)22.解:(1)原长方形铁皮的面积是(4a +60)(3a +60)=(12a 2+420a +3600)(cm 2).(5分)(2)这个铁盒的表面积是12a 2+420a +3600-4×30×30=(12a 2+420a )(cm 2),(9分)则在这个铁盒的外表面涂上油漆需要的钱数是(12a 2+420a )÷a50=(600a +21000)(元).(12分)23.解:(1)(x -y +1)2(3分)(2)令B =a +b ,则原式=B (B -4)+4=B 2-4B +4=(B -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(8分) (3)(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.(11分)因为n 为正整数,所以n 2+3n +1也为正整数,所以式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(14分)第9章 分式一、选择题(本大题共10小题,每小题4分,满分40分)1.要使分式3x -2有意义,则x 的取值范围是( )A .x >2B .x <2C .x ≠-2D .x ≠2 2.若分式x -2x +1的值为0,则x 的值为( )A .2或-1B .0C .2D .-13.分式1,1,1的最简公分母是( )A .(a 2-1)2B .(a 2-1)(a 2+1)C .a 2+1D .(a -1)44.不改变分式2x -52y23x +y 的值,把分子、分母中各项系数化为整数,结果是( )A.2x -15y 4x +yB.4x -5y 2x +3yC.6x -15y 4x +2yD.12x -15y 4x +6y5.已知分式⎝⎛⎭⎫-x4y 22与另一个分式的商是2x 6y ,那么另一个分式是( ) A .-x 22y 5 B.x 142y 3 C.x 22y 5 D .-x2y 36.若1+2a +a 2a 2-1=1+a x ,则x 等于( )A .a +2B .a -2C .a +1D .a -1 7.已知1a -1b =4,则a -2ab -b 2a -2b +7ab 的值等于( )A .6B .-6 C.215 D .-278.下列说法:①解分式方程一定会产生增根;②方程x -2x 2-4x +4=0的根为2;③方程12x =12x -4的最简公分母为2x (2x -4);④x +1x -1=1+1x +1是分式方程.其中正确的个数为( )A .1个B .2个C .3个D .4个 9.关于x 的分式方程5x =ax -5有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a ≠010.九年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是( )A.10x =102x -13B.10x =102x -20 C.10x =102x +13 D.10x =102x+20 二、填空题(本大题共4小题,每小题5分,满分20分) 11.化简⎝⎛⎭⎫1m +1n ÷m +n n 的结果是________.12.已知x 2-4x +4与|y -1|互为相反数,则式子⎝⎛⎭⎫x y -y x ÷(x +y )的值等于________. 13.如果方程a x -2+3=1-x 2-x有增根,那么a =________.14.有一个分式,三位同学分别说出了它的一些特点:甲说:分式的值不可能为0;乙说分式有意义时,x 的取值范围是x ≠±1;丙说:当x =-2时,分式的值为1.请你写出满足上述三个特点的一个分式:________.15.计算: (1)4a 2b 3cd 2·5c 2d 4ab 2÷2abc 3d ;(2)2m -n n -m +m m -n +n n -m .16.化简:(1)2x x +1-2x +6x 2-1÷x +3x 2-2x +1;(2)⎝⎛⎭⎫a a 2-b 2-1a +b ÷b b -a .四、(本大题共2小题,每小题8分,满分16分) 17.解方程:(1)1+3x x -2=6x -2;(2)1-x -32x +2=3x x +1.18.先化简,再求值:1-x -y x +2y ÷x 2-y 2x 2+4xy +4y 2,其中x ,y 满足|x -2|+(2x -y -3)2=0.五、(本大题共2小题,每小题10分,满分20分) 19.观察下列等式: ①1-56=12×16;②2-107=22×17;③3-158=32×18;……(1)请写出第4个等式:________________;(2)观察上述等式的规律,猜想第n 个等式(用含n 的式子表示),并验证其正确性.20.已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.六、(本题满分12分)21.甲、乙两座城市的中心火车站A ,B 两站相距360km.一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h ,当动车到达B 站时,特快列车恰好到达距离A 站135km 处的C 站.求动车和特快列车的平均速度各是多少.七、(本题满分12分)22.抗洪抢险,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则延期3小时才能完成.现甲、乙两队合作2小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需要多少小时.八、(本题满分14分) 23.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x -1x +1,x 2x -1这样的分式就是假分式;再如3x +1,2x x 2+1这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:x -1x +1=(x +1)-2x +1=1-2x +1;解决下列问题:(1)分式2x 是________(填“真分式”或“假分式”);(2)将假分式x 2-1x +2化为带分式;(3)如果x 为整数,分式2x -1x +1的值为整数,求所有符合条件的x 的值.参考答案与解析1.D 2.C 3.A 4.D 5.C 6.D 7.A 8.A 9.D 10.C11.1m 12.12 13.1 14.3x 2-1(答案不唯一) 15.解:(1)原式=4a 2b 3cd 2·5c 2d 4ab 2·3d 2abc =52b2.(4分)(2)原式=2m -n n -m -m n -m +n n -m =2m -n -m +n n -m =mn -m.(8分)16.解:(1)原式=2x x +1-2(x +3)(x +1)(x -1)·(x -1)2x +3=2x x +1-2(x -1)x +1=2x +1.(4分)(2)原式=a -(a -b )(a +b )(a -b )·b -a b =-b (a +b )(a -b )·a -b b =-1a +b.(8分)17.解:(1)去分母,得x -2+3x =6,移项、合并同类项,得4x =8,x 系数化成1,得x =2.检验:当x =2时,x -2=0.所以x =2不是原方程的根,原方程无解.(4分)(2)去分母,得2x +2-(x -3)=6x ,去括号,得2x +2-x +3=6x ,移项、合并同类项,得5x =5,x 系数化成1,得x =1.检验:当x =1时,2x +2≠0,所以原方程的根是x =1.(8分)18.解:原式=1-x -y x +2y ·(x +2y )2(x +y )(x -y )=1-x +2y x +y =x +y -x -2y x +y =-yx +y .(4分)因为|x -2|+(2x-y -3)2=0,所以⎩⎪⎨⎪⎧x -2=0,2x -y =3,解得⎩⎪⎨⎪⎧x =2,y =1.当x =2,y =1时,原式=-12+1=-13.(8分)19.解:(1)4-209=42×19(3分)(2)猜想:n -5n 5+n =n 2×15+n (其中n 为正整数).(7分)验证:n -5n 5+n =n (5+n )-5n 5+n =n 25+n ,所以左式=右式,所以猜想成立.(10分)20.解:(1)A =x 2+2x +1x 2-1-x x -1=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1.(5分)(2)解不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,得1≤x <3.因为x 为整数,所以x =1或x =2.当x =1时,A =1x -1无意义;当x =2时,A =1x -1=12-1=1.(10分)21.解:设特快列车的平均速度为x km/h ,则动车的平均速度为(x +54)km/h ,由题意得360x +54=360-135x ,解得x =90.(8分)经检验,x =90是这个分式方程的解.x +54=144.(11分)答:特快列车的平均速度为90km/h ,动车的平均速度为144km/h.(12分)22.解:设甲队单独完成需要x 小时,则乙队需要(x +3)小时.由题意得2x +xx +3=1,解得x =6.(8分)经检验,x =6是方程的解.所以x +3=9.(11分)答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.(12分) 23.解:(1)真分式(2分)(2)x 2-1x +2=x 2+2x -2x -1x +2=x -2x +1x +2=x -2(x +2)-3x +2=x -2+3x +2.(8分) (3)2x -1x +1=2(x +1)-3x +1=2-3x +1,由x 为整数,分式的值为整数,得到x +1=-1,-3,1,3,解得x =-2,-4,0,2,则所有符合条件的x 值为0,-2,2,-4.(14分)第10章相交线与平行线、平移时间:120分钟满分:150分1.下列图形中∠1与∠2互为对顶角的是()2.下列图形中,∠1和∠2不是同位角的是()3.下列图形中,不能通过平移其中一个四边形得到的是()4.如图,下列能判定AB∥CD的条件有()①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1个B.2个C.3个D.4个第4题图第5题图5.如图,观察图形,下列说法正确的个数是()①线段AB的长必大于点A到直线BD的距离;②线段BC的长小于线段AB的长,根据是两点之间线段最短;③图中对顶角共有9对;④线段CD的长是点C到直线AD的距离.A.1个B.2个C.3个D.4个6.如图,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为() A.20° B.40° C.50° D.60°第6题图第7题图7.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°8.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()A.互余B.相等C.互补D.不等第8题图第9题图9.如图,若AB∥CD,CD∥EF,则∠BCE等于()A.∠2-∠1 B.∠1+∠2C.180°+∠1-∠2 D.180°-∠1+∠210.如图,将面积为5的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10C.15 D.20第10题图第11题图二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,请填写一个你认为恰当的条件______________,使AB∥CD.第12题图第13题图12.如图,已知∠1=82°,∠2=98°,∠3=80°,则∠4的度数为________.13.如图,折叠一张长方形纸片,已知∠1=70°,则∠2的度数是________°.14.如图,C为∠AOB的边OA上一点,过C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB 交BO的延长线于点H.若∠EFD=α,现有以下结论:①CH>CO;②∠COF=α;③CH⊥CD;④∠OCH =2α-90°.其中正确的结论是________(填序号).第14题图三、(本大题共2小题,每小题8分,满分16分)15.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O,求∠2,∠3的度数.16.如图,∠1=∠2,∠D=50°,求∠B的度数.四、(本大题共2小题,每小题8分,满分16分)17.如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,求∠PQC的度数.18.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.解:因为EF∥AD(已知),所以∠2=______(________________________).又因为∠1=∠2(已知).所以∠1=∠3(等式性质或等量代换),所以AB∥______(____________________________),所以∠BAC+________=180°(__________________________).又因为∠BAC=70°(已知),所以∠AGD=________(____________).五、(本大题共2小题,每小题10分,满分20分)19.画图并填空:(1)画出三角形ABC先向右平移6格,再向下平移2格得到的三角形A1B1C1;(2)线段AA1与BB1的关系是______________;(3)三角形ABC的面积是________平方单位.20.如图,∠BAP+∠APD=180°,∠1=∠2.试说明:∠E=∠F.六、(本题满分12分)21.如图,一个楼梯的总长度为5米,总高度为4米,楼梯宽为2米.若在楼梯上铺地毯,且每平方米地毯售价30元,则至少需要多少钱?七、(本题满分12分)22.如图,∠CDH+∠EBG=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?八、(本题满分14分)23.问题情境:如图①,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:如图②,过点P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题迁移:(1)如图③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=α,∠BCP =β,∠CPD,α,β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P分别在射线AM和射线OB上运动时(点P与点A,B,O三点不重合),请你分别直接写出∠CPD,α,β间的数量关系.参考答案与解析1.C 2.C 3.D 4.C 5.A 6.C7.C8.A9.C10.C11.∠F AB=∠FCD(答案不唯一)12.80°13.5514.②③④15.解:因为∠1=∠2,∠1=30°,所以∠2=30°.(3分)因为AB⊥CD,所以∠AOD=90°,所以∠2+∠3=90°,所以∠3=90°-∠2=90°-30°=60°.(8分)16.解:因为∠1=∠2,∠2=∠EHD,所以∠1=∠EHD,所以AB∥CD.(4分)所以∠B+∠D=180°,所以∠B=180°-∠D=180°-50°=130°.(8分)17.解:(1)如图所示.(2分)(2)如图所示.(4分)(3)因为CD∥PQ,所以根据两直线平行,同旁内角互补得∠PQC+∠DCQ=180°.又因为∠DCQ=120°,所以∠PQC=60°.(8分)18.∠3两直线平行,同位角相等DG内错角相等,两直线平行∠AGD两直线平行,同旁内角互补110°等式性质(8分)19.解:(1)三角形A1B1C1如图所示.(4分)(2)平行且相等(7分)(3)3.5(10分)20.解:因为∠BAP+∠APD=180°,所以AB∥CD,所以∠BAP=∠APC.(5分)又因为∠1=∠2,所以∠FP A=∠EAP,所以AE∥PF,所以∠E=∠F.(10分)21.解:由平移知识可知,地毯的总长度为5+4=9(米),(5分)所以其面积为9×2=18(平方米),所需费用为18×30=540(元).(11分)答:至少需要540元.(12分)22.解:(1)AE与FC平行.(1分)理由如下:因为∠CDH+∠EBG=180°,∠CDH+∠CDB=180°,所以∠CDB=∠EBG,所以AE∥FC.(4分)(2)AD与BC平行.(5分)理由如下:由(1)知AE∥FC,所以∠CDA+∠A=180°.因为∠A=∠C,所以∠CDA+∠C=180°,所以AD∥BC.(8分)(3)BC平分∠DBE.(9分)理由如下:由(1)知AE∥FC,所以∠EBC=∠C.由(2)知AD∥BC,所以∠C=∠FDA,∠DBC=∠BDA.又因为DA平分∠BDF,所以∠FDA=∠BDA,所以∠EBC=∠DBC,所以BC 平分∠DBE.(12分)23.解:(1)∠CPD=α+β.(2分)理由如下:如图③,过点P作PE∥AD交CD于点E.(3分)因为AD∥BC,所以AD∥PE∥BC,所以∠DPE=α,∠CPE=β,所以∠CPD=∠DPE+∠CPE=α+β.(6分)(2)如图④,当点P在射线AM上时,∠CPD=β-α.(10分)如图⑤,当点P在线段OB上时,∠CPD =α-β.(14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新沪科版七年级数学下册单元测试题及答案全册最新沪科版七年级数学下册单元测试题及答案全册第6章实数时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各数中最大的数是()A。

5 B。

3 C。

π D。

-82.4的算术平方根是()A。

2 B。

±2 C。

2 D。

±23.下列各数:√2,32,(-5)²,-4,-| -16|,π,其中有平方根的个数是()A。

3个 B。

4个 C。

5个 D。

6个4.如图,数轴上的A,B,C,D四点中,与数-3表示的点最接近的是()A。

点A B。

点B C。

点C D。

点D5.下列式子中,正确的是()A。

-7 = -7 B。

36 = ±6 C。

-3.6 = -0.6 D。

(-8)² = 646.在-3.5,√2,π,-2,-0.001,0.xxxxxxxx6…(相邻两个6之间依次多一个1)中,无理数有()A。

1个 B。

2个 C。

3个 D。

4个7.下列说法中,正确的是()A。

不带根号的数不是无理数 B。

6根是±4 C。

绝对值等于3的实数是3 D。

每个实数都对应数轴上一个点8.-27的立方根与81的平方根之和是()A。

√3 B。

-6 C。

√3或-6 D。

69.比较7-1与2的大小,结果是()A。

后者大 B。

前者大 C。

一样大 D。

无法确定10.如果0<x<1,那么在x,√x,x²中,最大的是()A。

x B。

√x C。

x² D。

无法确定二、填空题(本大题共4小题,每小题5分,满分20分)11.-5的绝对值是______,16的算术平方根是______。

12.已知x-1是64的算术平方根,则x的算术平方根是______。

13.若x,y为实数,且| x+2 |+y-1=√5,则(x+y)²=______。

14.对于“5”,有下列说法:①它是一个无理数;②它是数轴上离原点5个单位长度的点所表示的数;③若a<5<a+1,则整数a为4;④它表示面积为5的正方形的边长。

其中正确的说法是______(填序号)。

三、(本大题共2小题,每小题8分,满分16分)15.将下列各数的序号填在相应的集合里:①-3/8 ②27 ③3.1415 ④π/5 ⑤-0.3507… ⑥-2.xxxxxxxx13… ⑦-613/3 ⑧-8 ⑨16 ⑩0.916.计算:1.1) $-5+(-2)^2+\frac{3}{-2}-27-(-2)^2-1$2) $\frac{3}{8}-\frac{3}{11\times16}\times3\times\frac{1}{8^2}$2.1) $x=\pm\frac{3}{5}$2) $(x+3)^3=8$,解得$x=-2+\sqrt[3]{2}$,$(x-2)^2=(\sqrt[3]{2}-4)^2$5.1) $a=5,b=3$,$a+2b=\sqrt{19}$2) $x=\frac{5}{3}$,$(x-2)^2=1$6.1) $t^2=\frac{9^3}{900}=81$,$t=9$2) $t=1$,$d=\sqrt[3]{\frac{900}{\frac{1}{1^2}}}\approx30.6\text{km}$7.1) $y=\sqrt{\frac{25}{2}}$2) 存在,$x=0$3) $x=22$8.1) $\sqrt{2}+1$2) $2\sqrt{2}+2$3) $n(\sqrt{2}+1)$1.y的绝对值减去z的三倍的绝对值的平方大于等于0,列出不等式为 |y| - 3|z| ≥ 0,选项C正确。

2.a。

-2b,选项B正确。

二、填空题(本大题共6小题,每小题6分,满分36分)3.解:将分母有理化,得到原式为 0.5 - 3/4832,化简后得到 -0.,填入空格中。

4.解:将分母有理化,得到 x^2 = 255 / 93,化简后得到 x = ±√(255/93),填入空格中。

5.解:将方程 x + 3 = 8 化简,得到 x = 5,填入空格中。

6.解:将原式化简,得到3×π - 2/8 + 7/8,化简后得到3.142,填入空格中。

7.解:将原式化简,得到2×√(3.162×2.236) / √2.449,化简后得到 5.77,填入空格中。

8.解:解方程 2a - 1 = ±3,得到 a = 2 或 a = 5/2,选项中没有符合条件的,不填。

9.解:解方程 3a + b - 1 = 4,得到 b = 2,代入第一条方程得到 2a - 1 = ±3,得到 a = 2 或 a = 5,选项中只有 a = 5 符合条件,填入空格中。

10.解:将 x = 2 - √1化简,得到 x = 2 - 1,填入空格中。

11.解:将 (x - 2)^2 = 1 化简,得到 x - 2 = ±1,解得 x = 3或 x = 1,选项中只有 x = 3 符合条件,填入空格中。

12.解:将 d = 9 代入公式t = √(900/d^2),化简后得到 t = 0.9,填入空格中。

13.解:将 t = 1 代入公式d = √(900t^3),化简后得到 d = 9.7,填入空格中。

14.解:将 x = 25 代入公式y = √x,化简后得到 y = 5,填入空格中。

15.解:当 x = 0 或 x = 1 时,分母为0,无法输出 y 的值,不填。

16.解:将 81 分解质因数,得到 3^4,选项中只有 3^4 符合条件,填入空格中。

17.解:第一个正方形的边长为 1,第二个正方形由两个边长为 1 的正方形拼成,边长为√2,第三个正方形由两个边长为√2 的正方形拼成,边长为 2,以此类推,第n个正方形的边长为 (2)^(n-1),填入空格中。

三、计算题(本大题共4小题,每小题10分,满分40分)18.解:将原式化简,得到 8.5,写入答案区。

19.解:将 a = 5 和 b = 2 代入 a + 2b,得到 9,写入答案区。

20.解:将 x = 2 - 1 代入,得到 x = 1,写入答案区。

21.解:根据题意列方程 t^2 / 81 = d / 9,分别代入 d = 9 和t = 1,解得 t = 0.9 和 d = 9.7,写入答案区。

四、应用题(本大题共2小题,每小题20分,满分40分)22.解:根据题意列出分段函数y = √x 或 y = x + 1,当 x = 25 时,输出 y 的值为 5,填入答案区。

当 x = 0 或 x = 1 时,无法输出 y 的值,不填。

当 x = 81 时,有多个解,如 y = 9 或y = -9,只要写出其中一个解即可,写入答案区。

23.解:根据题意,每个正方形都是由两个边长为1的正方形拼成的,因此可以递推出每个正方形的边长。

将前几个正方形的边长列出来,可以发现它们都是2的幂次方,因此第n个正方形的边长为 (2)^(n-1),写入答案区。

3.一元一次不等式2(x+1)≥4的解集在数轴上表示为[1.+∞)。

4.不等式组{2x≤4.x>1}的解集是(1.+∞)。

5.要使代数式3m-1/m的值不小于1,那么m的取值范围是m≥-5.6.如果不等式2x-m<4只有三个正整数解,那么m的取值范围是6≤m<8.7.如果2m,m,1-m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围是0<m<1/2.8.若方程组{3x+y=k+1.x+3y=3}的解x,y满足0<x+y<1,则k的取值范围是-1<k<0.9.若不等式组{1+x<a。

2/(3x+1)≥1-a}有解,则实数a的取值范围是a≤-36.10.购买的《水浒传》尽可能的多,那么《水浒传》和《西游记》可以购买的套数分别是21,9.11.已知y1=x+3,y2=-x+1,当y1>2y2时,x满足的条件是x>1.12.关于x的方程kx-1=2x的解为正实数,则k的取值范围是k>2.13.若不等式组{2x-b≥3.x+a≤4}的解集为3≤x≤4,则不等式ax+b2.14.XXX最多输4局比赛。

15.解:(1) 3(x-1)>2x+2化XXX:x>52) x-24x+3/45化XXX:x15/4综合得:x5/416.解:①化简得:x>3/2②化简得:x<3/4综合得:3/4<x<3/2表示在数轴上为(3/4.3/2)。

四、17.新运算的定义为a⊕b=a(a-b)+1,求解:1)将a=-2,b=3代入得:-2⊕3=-2(-2-3)+1=9;2)3⊕x1,将x>1在数轴上表示出来。

18.已知不等式5(x-2)+8<6(x-1)+7的最小整数解为方程2x-ax=4的解,求a的值。

化简不等式得x2,即a的取值范围为(-∞,2/3)U(2,+∞)。

五、19.已知关于x,y的方程组解满足x>0,y0,所以y<0,所以y+2<2,即y<-2,所以-2<y<0,代入x+y=m得-2<m<0,所以m的取值范围为(-2,0)的整数。

20.设A种设备价格为a万元,B种设备价格为b万元,列方程得:2a+b=3.5a+2b=2.5解得a=1,b=0.75,总费用不超过30万元且设备总数为30,列不等式得:a+b<=1.52a+b<=3解得a>=6,即至少购买6台A种设备。

六、21.解决下列问题:1)[-4.5]=-5,=4;2)由[x]=2得2=-1得-1<y<0;3)将3[x]+2=3化简得y>-3[x]/2+3/2,将3[x]-=-6化简得3[x]+6,因为x为整数,所以取整得到y>-2x+1且y<3x+6,将其在坐标系上表示出来,得到一条斜率为-2的直线和一条斜率为3的直线所夹的区域。

七、22.设x为超出部分电量,单价为p,则有190p+90=5p+95,解得p=1,x=100,超出部分电费单价为1元/千瓦时。

设六月份用电量为y,单价为1元/千瓦时,则有y<=190+100,且75<=190+100p+(y-190)p<=84,解得y的取值范围为[85,94]。

八、略。

某公司提供A、B两种客车,它们的载客量和租金如下表:客车 | 载客量 | 租金(元/天) |A | 16 | 120 |B | 34 | 180 |XXX需要用5辆A、B型客车,将七年级师生送到校外基地参加社会实践活动。

现在有两个问题:1.如果租金费用不能超过980元,请问有哪些租车方案可行?2.在租金费用不超过980元的情况下,如果有150名七年级师生,哪种租车方案最省钱?答案与解析:1.根据表格,A型车每天租金为120元,B型车为180元。

相关文档
最新文档