沪科版数学七年级下册

合集下载

沪科版数学七年级下册《实数的概念与分类》教学设计

沪科版数学七年级下册《实数的概念与分类》教学设计

沪科版数学七年级下册《实数的概念与分类》教学设计一. 教材分析《实数的概念与分类》是沪科版数学七年级下册的一个重要内容,主要介绍了实数的概念、分类和性质。

本节课的内容包括实数的定义、实数的分类(有理数和无理数)、实数的性质(数轴、绝对值、相反数、平方根等)以及实数的运算。

这些内容是学生进一步学习数学的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。

二. 学情分析学生在七年级上册已经学习了有理数的概念和运算,对于数的概念有一定的了解。

但是,学生对于无理数的概念和性质可能比较陌生,需要通过实例和讲解来加深理解。

此外,学生可能对于实数的分类和运算规则有一定的困惑,需要通过大量的练习来巩固。

三. 教学目标1.了解实数的概念和分类,能够正确区分有理数和无理数。

2.掌握实数的性质,包括数轴、绝对值、相反数、平方根等。

3.学会实数的运算规则,能够进行实数的加减乘除运算。

4.培养学生的数学思维和解决问题的能力。

四. 教学重难点1.实数的分类:有理数和无理数的区别和特点。

2.实数的性质:数轴、绝对值、相反数、平方根的理解和应用。

3.实数的运算:加减乘除运算的规则和计算方法。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题和解决问题的方式引导学生思考和探索。

2.使用多媒体教学辅助工具,如PPT、视频等,以直观的方式展示实数的概念和性质。

3.采用小组合作学习的方式,让学生通过讨论和交流来加深对实数概念的理解。

4.提供大量的练习题和实例,让学生通过实践来巩固实数的运算规则。

六. 教学准备1.教学PPT:制作PPT,包括实数的概念、分类、性质和运算的讲解和示例。

2.练习题:准备一些练习题,包括有理数和无理数的区分、实数的性质和运算等。

3.教学工具:准备黑板、粉笔、多媒体设备等。

七. 教学过程1.导入(5分钟)通过提出问题:“什么是实数?”引起学生的思考,引导学生回顾数的概念。

2.呈现(15分钟)使用PPT呈现实数的概念和分类,讲解实数的性质和运算规则。

沪科版七年级数学下教学计划(14篇)

沪科版七年级数学下教学计划(14篇)

沪科版七年级数学下教学计划(14篇)沪科版七年级数学下教学计划 11.学生知识现状的分析班级学生两极分化严重,个别学生连最基本的总是都无法掌握,部分学生勉强掌握基本知识与基本技能,因此本学期的重点是培养学生的学习能力培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。

会用归纳演绎、类比进行简单的推理。

使学生懂得数学来源于实践又反过来作用于实践。

提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。

顽强的学习毅力和独立思考、探索的新思想。

培养学生应用数学知识解决问题的能力。

2.本学期教学的主要任务和要求本期教材任务为完成沪科版七年级下数学“实数”、“一元一次不等式与不等式组”、“整式乘除与因式分解”、“分式”、“相交线、平行线与平移”、“频数分布”的章节内容教学。

3.教材的重点和难点(章节)第六章实数这部分的.内容是七—九年级“数与代数”部分的重要内容,是在有理数之后,对数系的又一次扩展,是今后学习函数、方程、不等式等知识的基础。

第七章一元一次不等式与不等式组是在学生掌握了有理数的大小比较、等式及其性质、一元一次方程和不等式组等知识的基础上进行的。

不等式的概念和性质、一元一次不等式及不等式组是最基本的内容,对它的学习可为后续不等式知识的学习打下基础。

第八章重点是整式的乘除法和因式分解,特别是作为乘、除运算基础的是幂的运算。

第九章分式中分式的基本性质是方式乘除法运算中约分的依据,也是进行异分母分式加减法运算中通分的依据,因此分式的基本性质是本章学习的关键。

第十章学习重点是垂直概念及其性质1,平行线的判定和性质1,平移及其性质,难点是对垂直、平行概念及性质的理解和应用。

第十一章频数分布重点是领会频数和频率的概念,理解频数分布直方图或折线图在数据处理中的意义。

4.本学期提高教学质量的主要措施1、教师要认真学习新的《数学课程标准》,把新课程的基本理念渗透到教与学的全过程。

沪科版七年级下册数学教学课件 第6章 实数 6-1 平方根、立方根 立方根

沪科版七年级下册数学教学课件 第6章 实数 6-1 平方根、立方根 立方根

课堂小结
立方根的概念及性质
立方根
开立方及相关运算
七年级数学下(HK) 教学课件
第6章 实 数导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.了解立方根的概念,会用根号表示一个数的立方根. (重点) 2.能用开立方运算求某些数的立方根,了解开立方和
立方互为逆运算.(重点,难点)
导入新课
情境引入
某化工厂使用半径为1米的一种球形储气罐储藏 气体,现在要造一个新的球形储气罐,如果要求它 的体积必须是原来体积的8倍,那么它的半径应是原 来储气罐半径的多少倍?
因为(
1 2
)3
=0.125,所以0.125的立方是(
1 2
);
因为( 0)3 =0,所以0的立方根是(0 );
因为 (-2 )3 =-8,所以-8的立方根是(-2 );
因为(
2 3
)3
= 8
27
,所以 8
27
的立方(
2 3
).
知识要点
立方根的性质
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.
体会:对于任何数a , 3 a3 _a__
探究2 求下列各式的值:
3 8 3 _8__
3
3 27 2__7_
( 3 8)3 _-_8_
3 27 3 -_2_7_
3 0 3 _0__
3
体会:对于任何数a , 3 a _a__
探究3 求下列各式的值: (1) 3 0.008 ; -0.2
讲授新课
一 立方根的概念及性质 问题:要做一个体积为27cm3的正方体模型(如图), 它的棱长要取多少?你是怎么知道的?

沪科版数学七年级下册10.1《相交线》教学设计

沪科版数学七年级下册10.1《相交线》教学设计

沪科版数学七年级下册10.1《相交线》教学设计一. 教材分析《相交线》是沪科版数学七年级下册第10.1节的内容,主要介绍了相交线的定义、性质及运用。

本节内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

教材通过生动的图片和实际的例子,引导学生探究相交线的性质,激发学生的学习兴趣。

二. 学情分析七年级的学生已经掌握了基本的直线、射线、线段的知识,对于图形的认知和观察能力也有一定的基础。

但学生在空间想象和逻辑推理方面还存在一定的困难,因此,在教学过程中,需要注重培养学生的空间想象能力和逻辑思维能力。

三. 教学目标1.理解相交线的定义和性质。

2.能够运用相交线的性质解决实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.相交线的定义和性质。

2.相交线在实际问题中的应用。

五. 教学方法1.情境教学法:通过生动的图片和实际的例子,引导学生探究相交线的性质。

2.问题驱动法:通过提出问题,引导学生思考和探索,激发学生的学习兴趣。

3.合作学习法:学生进行小组讨论和实践,培养学生的团队协作能力。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.教学素材:准备相关的图片和实际问题,用于引导学生探究。

3.练习题:准备相应的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的相交线现象,如交通路口、交叉的电线等,引导学生关注相交线,激发学生的学习兴趣。

2.呈现(10分钟)引导学生观察相交线的图形,提问:什么是相交线?相交线有哪些性质?让学生积极思考,回答问题。

3.操练(10分钟)让学生在纸上画出相交线的图形,并观察和分析相交线的性质。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)出示一些实际问题,让学生运用所学的相交线知识解决问题。

如:在一条直线上,有多少个点可以找到与之相交的线段?5.拓展(10分钟)引导学生思考:相交线在实际生活中有哪些应用?让学生举例说明,培养学生的实际应用能力。

沪科版七年级下册数学知识点总结.doc

沪科版七年级下册数学知识点总结.doc

七年级数学下册知识点第六章 实 数(一)平方根与立方根 1、平方根(1)定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。

如果2x a =,那么x 叫做a 的平方根.记作“a ±”,且a ≥0即X=a ±(2)表示:非负数a 的平方根记作±a ,读作“正负根号a ”,(a 叫做被开方数)(3)性质:正数的平方根有两个,且互为相反数;0的平方根为0;负数没有平方根。

(4)开平方:求平方根的运算叫做开平方。

Ⅰ、平方根是开平方的结果;Ⅱ、 开平方与平方互为逆运算。

2、算术平方根(1)定义:正数a 的正的平方根a 叫做a 的算术平方根,0的算术平方根是0。

例如:a 的算术平方根.记作“a ”,且a ≥0 即X=a (2)性质:(1)一个数a 的算术平方根具有非负性; 即:a ≥0恒成立。

(2)正数的算术平方根只有1个,且为正数;0的算术平方根是0;负数没有算术平方根3.开平方公式有哪些? ①2(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩②2()(0)a a a = 且 a ≥04.求1120的平方值: 112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,202=4001、 1.414212≈ 1.7323≈ 2.2365≈5、立方根:(1)定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。

如果3x a =,那么x 叫做a 3a .即X=3a(2)表示:a 的立方根记作3a ,读作“三次根号a ”(a 叫做被开方数,3叫根指数)(3)性质:正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0。

6.33a a = ②33()a a = 33a a -=(二)实数1、无理数:无限不循环的小数。

沪科版七年级数学下册第一章实数PPT课件全套

沪科版七年级数学下册第一章实数PPT课件全套

探究点三
估算
例3 小丽想用一块面积为400 cm2的正方形 纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3:2. 她不知能否裁得出来,正在发愁.小明见了 说:“别发愁,一定能用一块面积大的纸片 裁出一块面积小的纸片.”你同意小明的说法 吗?小丽能用这块纸片裁出符合要求的纸片 吗?
≥ 0 a 对于 a : 算术平方根的非负双重性. } a≥ 0
2.你知道下列式子表示什么意思吗? 你能求出它们 的值吗? 25 =5 0.81 =0.9
1 4
1 =2
0
=0
3、下列各式是否有意义,为什么?
1 4 ;(3) 3 ;(4) 2 . (1)4 ;(2) 10
2
解: (1)无意义; (2)有意义; (3)有意义; (4)有意义.
一个正数a的平方根有两个, 它们互为相反数.我们用 a表示 其中正的平方根,读作“根号a”, 另一个负的平方根记为- a .其中 a叫做被开方数. 0的平方根是0;负数没有平方根.
练习:快速填空
4的算术平方根是
2
2 的算术平方根是 3
;4的平方根是 2 ; 2 ; 的平方根是 3 .
0.25的算术平方根是 0.5 ;0.25的平方根是 0.5 ; 0的算术平方根是
平方根的概念,给出平方根的概念吗?
平方根的概念
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说, 2 如果 x a ,那么x 叫做a的平方根.
例如:3和-3是 9的平方根, 简记 3是9的平方根.
认识开平方运算 填空: 求平方
1 1 2 2 3 3
0
;0的平方根是
0

沪科版数学七年级下册《对顶角及其性质》教学设计1

沪科版数学七年级下册《对顶角及其性质》教学设计1

沪科版数学七年级下册《对顶角及其性质》教学设计1一. 教材分析《对顶角及其性质》是沪科版数学七年级下册的一个重要内容,主要介绍了对顶角的定义及其性质。

本节课的内容为后续学习三角形全等、相似三角形等知识打下基础,同时对培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了角的有关知识,如角的分类、度量等。

但学生对对顶角的定义及性质的了解还比较模糊,需要通过实例来进一步理解和掌握。

此外,学生可能对空间几何图形的认知还存在一定的困难,需要通过大量的直观教具和实际操作来提高。

三. 教学目标1.知识与技能:使学生了解对顶角的定义,掌握对顶角的性质,并能应用于实际问题中。

2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作意识和勇于探索的精神。

四. 教学重难点1.对顶角的定义及其性质。

2.对顶角在实际问题中的应用。

五. 教学方法1.情境教学法:通过设置各种实际问题,激发学生的学习兴趣,提高学生的应用能力。

2.直观教学法:利用实物、模型等直观教具,帮助学生建立空间几何概念。

3.合作学习法:引导学生分组讨论,培养学生的团队协作能力和沟通能力。

4.归纳总结法:引导学生通过对实例的分析,归纳出对顶角的性质,提高学生的逻辑思维能力。

六. 教学准备1.教具:准备一些实物模型、图片等直观教具,如三角形、四边形等。

2.课件:制作课件,展示各种实例,便于学生观察和分析。

3.学具:为学生准备一些练习题,以便于课堂练习和巩固。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如交通标志牌、建筑物的设计图等,引导学生观察并思考其中的数学知识。

学生分享自己的观察和思考,教师总结引入对顶角的概念。

2.呈现(10分钟)教师利用课件展示各种实例,如三角形、四边形等,引导学生观察对顶角的特点。

学生通过观察、操作,发现对顶角的性质。

最新沪科版七年级下册数学PPT

最新沪科版七年级下册数学PPT
aa>0; [注意] |a|=0a=0; -aa<0. (4)非负实数: 正实数 和 0 叫做非负实数.
数学·新课标(HK9)
第6章复习
6.实数大小的比较 (1)法则 正数 大于 零,负数 小于 零,正数 大于 一切负数;两个 负数,绝对值大的反而 小 . (2)数轴比较法 在数轴上表示的两个实数, 右 边的数总是大于 左 边 的数. (3)差值比较法 设 a、b 是任意两实数,则 a-b>0⇔a>b; a-b<0⇔a<b;a-b=0⇔a=b. (4)商值比较法
方法点拨 (1)一个正数的平方根有两个,它们互为相反数;(2)互为 相反数的两个数的和为零;(3)方程思想是重要的数学思想.
数学·新课标(H1K4)
第6章复习
►考点二 实数的有关概念及分类
例 2 实数-2,3.14,17, 2,-π,0.2010010001…,3 3
中无理数的个数是
( C)
A.2 B.3 C.4 D.5
-19;2a-2=21a2;②遇到绝对值一般要先去掉绝对值符号,再进行计算;③ 无论何种运算,都要注意先定符号再运算.
数学·新课标(H1K2)
第6章复习
考点攻略
►考点一 平方根、算术平方根与立方根 已知一个正数的平方根是 2x+3 和 5-4x,则这个
数是_1_2_1_.
数学·新课标(H1K3)
第6章复习
数学·新课标(H1K7)
第6章复习
方法技巧 当 a-b>0 时,a>b;当 a-b=0 时,a=b;当 a-b< 0 时,a<b.差值法是比较实数大小时最为常用的方法之一.
数学·新课标(H1K8)
第6章复习
►考点四 实数与数轴
已知实数在数轴上的位置如图 6-1 所示,则化简
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪科版数学七年级下册 It was last revised on January 2, 2021沪科版数学七年级下册第六章实数一、知识总结(一)平方根与立方根1、平方根(1)定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做二次方根。

(2)表示:非负数a的平方根记作±a,读作“正负根号a”,(a叫做被开方数)(3)性质:正数的平方根有两个,且互为相反数;0的平方根为0;负数的没有平方根。

(4)开平方:求平方根的运算叫做开平方。

Ⅰ、平方根是开平方的结果;Ⅱ、开平方与平方互为逆运算。

2、算术平方根(1)定义:正数a的正的平方根a叫做a的算术平方根,0的算术平方根是0。

(2)性质:(1)一个数a的算术平方根具有非负性;即:a≥0恒成立。

(2)正数的算术平方根只有1个,且为正数;0的算术平方根是0;负数的没有算术平方根。

3、立方根:(1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做三次方根。

(2)表示:a的立方根记作3a,读作“三次根号a”(a叫做被开方数,3叫根指数)(3)性质:正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0。

(二)实数1、无理数:无限不循环的小数。

(一个无理数与若干有理数之间的运算结果还是无理数)2、实数:有理数和无理数统称为实数。

3、实数分类:(1)按定义分(略)(2)按正负性分(略)4、实数与数轴上的点一一对应。

5、实数的相反数、绝对值、倒数:(与有理数的相反数、绝对值、倒数意义类似)6、实数的运算:实数与有理数一样,可以进行加、减、乘、除、乘方运算,正数及零可以进行开平方运算,任意一个实数可以进行开立方运算,而且有理数的运算法则和运算律对于实数仍然适用。

7、实数大小:(1)正数> 0 > 负数; (2)两个负数相比,绝对值大的反而小;绝对值小的反而大。

(3)数轴上不同的点表示的数,右边点表示的数总比左边的点表示的数大。

实数比较大小的方法:作差法、平方法、作商法、倒数法、估值法······二、解题实用1、 1.414212≈ 1.7323≈ 2.2365≈2、a a =2 ()a =2a ()a a ==3333a 3、ab b =⋅a b a ba b ==÷a ()0b ≠ 三、典题练习1、16的平方根是 ;()23-的算术平方根是 ;23-的立方根是 。

2、如果一个有理数的算术平方根与立方根相同,那么这个数是 ;如果一个 有理数的平方根与立方根相同,那么这个数是 。

3、一个自然数的算术平方根是x ,则与他相邻的下一个自然数的算术平方根是 。

4、下列各数中一定为正数的是 (填序号)① x ② 1x + ③2x ④ 1x 3+ ⑤ 1x +5、当x<-1时,2x ,-x,3x -和x1的大小关系 。

6、比较下列各组数的大小7、2-7的绝对值为 ,相反数为 ,倒数为 。

8、已知3x =,y 为4的平方根,0xy <,求x+y 的值。

9、已知02-3x =++y ,求x 2+y 的平方根。

10、如果一个非负数的平方根为2a-1和a-5,则这个数是 。

11、a 为5的整数部分,b 为5的小数部分,则a+2b 的值为 。

12、若a a =+2012-a -2011,试求22011-a 的值。

(提示:找出题中的隐含条件) 第七章 一元一次不等式与不等式组一、知识总结(一)不等式及其性质1、不等式:(1)定义用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(2)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

(3)不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值。

二者的关系是:解集包括解,所有的解组成了解集。

(4)解不等式:求不等式解的过程叫做解不等式。

2、不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

即:如果b >a ,那么c b c ±>±a .性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。

即:如果b >a ,并且0c >,那么bc >ac ;cb c >a . 性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。

即:如果b >a ,并且0c <,那么bc <ac ;cb c <a . 性质4:如果b >a ,那么a <b .(对称性)性质5:如果b >a ,c >b ,那么c >a .(传递性)(二)一元一次不等式1、定义:含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式,叫做一元一次不等式。

2.一元一次不等式的解法:根据是不等式的基本性质;一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。

3.不等式的解集在数轴上表示:(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左(三)一元一次不等式组1、定义:有几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组2、(一元一次)不等式组的解集:这几个不等式解集的公共部分,叫做这个(一元一次)不等式组的解集。

3、解不等式组:求不等式组解集的过程,叫做解不等式组。

4、一元一次不等式组的解法1)分别求出不等式组中各个不等式的解集2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

由两个一元一次不等式组成的不等式组的解集可归纳为下面四种情况:(四)一元一次不等式(组)解决实际问题解题的步骤:⑴审题,找出不等关系→⑵设未知数→⑶列出不等式(组)→⑷求出不等式的解集→⑸找出符合题意的值→⑹作答。

二、解题技巧一、有解无解问题:(1){a b x><x{bb<≥⇒aa有解:无解:(2){ax≥<xb{bba<≥⇒a有解:无解:2、特征解问题:解题步骤:把原式中的要求的量(以下简记为m) 当作已知数,去解原式——→得到原式的解(含m)——→根据解的特征列出式子(关于m的式子)——→解出m的值。

例:已知12a+≥+xx的解集为1x≤,求a的值。

解:解不等式12a+≥+xx······把a当作已知数,去解原式得1x-≤a······得到原式的解(含a)则11-a=······根据解的特征列出式子解得2a=······解出a的值三、典题练习1、若关于x 的不等式{1x 12+≤-≥m m x 有解,则m 的取值范围是若无解呢 2、3、已知关于x ,y 的方程组{m y y x -=+=+1x 222的解满足0x >+y ,求m 的取值范围。

3、适当选择a 的取值范围,使<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有。

4、解不等式(组)(1)⎪⎩⎪⎨⎧⋅>-<-322,352x x x x (2) ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x (3)⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x (3)-5<6-2x <3 (5).17)10(2383+-≤--y y y 5、若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .6、已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围。

7、已知关于x 的不等式组{0x 542≤-≥-b x 的整数解共有3个,求b 的取值范围。

8、已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小。

9、已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值。

10、某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?11、某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件 5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元。

在这20名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件。

(1)若此车间每天所获利润为y(元),用x 的代数式表示y 。

(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?12、某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元。

(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案。

第八章 整式乘除与因式分解一、知识总结(一)幂的运算:1、同底数幂乘法:同底数幂相乘,底数不变,指数相加。

n m n m a a a +=2、同底数幂除法:同底数幂相除,底数不变,指数相减。

n m n m a a a -=÷3、幂的乘方:幂的乘方,底数不变,指数相乘。

()mn n ma a = 4、积的乘方:积的乘方等于各因式乘方的积。

()m m mb a ab =注:(1)任何一个不等于零的数的零指数幂都等于1;10=a 0≠a(2)任何一个不等于零的数的-p (p 为正整数)指数幂,等于这个数的p 指数幂的倒数。

pp a a 1=- 0≠a (3)科学记数法:n a 10c ⨯±=或n a -10c ⨯±= ()10a 1<≤绝对值小于1的数可记成n -10a ⨯±的形式,其中10a 1<≤,n 是正整数,n 等于原 数中第一个有效数字前面的零的个数(包括小数点前面的一个零)。

相关文档
最新文档