§4.2 原子中电子轨道运动的磁矩和史特恩-盖拉赫实验(PPT-YBY)
合集下载
原子物理课件 第6节 空间量子化与史特恩—盖拉赫实验

§2.6、史特恩-盖拉赫实验 2.6、史特恩- 原子空间取向的量子化
一、电子轨道运动的磁矩 电子的轨道运动相当于一个闭合电流
µ = iA
dϕ
i 电子的电流为: 电子的电流为: =
e
τ
r
i
电路所包围的面积: 电路所包围的面积: 2π τ τ pφ 1 1 2 1 2 A = ∫ r ⋅ rdφ = ∫ r ω dt = ∫ mr ωdt = 2m τ 2 20 2m 0 0
实 验 装 置
实验装置示意图
实验现象:银原子束经过不均匀的磁场,在底片形成两条黑斑。 实验现象:银原子束经过不均匀的磁场,在底片形成两条黑斑。
实验原理: 实验原理: 磁矩在不均匀磁场中受力: 磁矩在不均匀磁场中受力:
dB dB f = µz =µ cos β dz dz
原子在垂直方向偏离: 原子在垂直方向偏离:
nψ = +1
0 -1
nφ = 1
nφ = 2
nψ = +2
+1 0 -1 -2
h 当nϕ = 2时,pϕ = 2 ,nψ = +2, +1, 0, −1, −2 2π
1 1 cos α = +1, + , 0, − , −1, α = 0 , 60 ,90 ,120 ,180 , 2 2
h pψ = (2,1, 0, −1, −2) 2π
+2 +1 0
nφ = 3
h pψ = (3, 2,1,0, −1, −2, −3) 2π
-1 -2 -3
磁量子数是原子角动量空间量子化的标志。 磁量子数是原子角动量空间量子化的标志。
无外磁场时,能级与磁量子数无关, 无外磁场时,能级与磁量子数无关,原子光谱中不显示空间量 子化效应。原子处在外磁场中时,能级与磁量子数相关, 子化效应。原子处在外磁场中时,能级与磁量子数相关,角动 量的空间量子化显示出来。施特恩-格拉赫实验, 量的空间量子化显示出来。施特恩-格拉赫实验,证实了在外磁 场中原子轨道空间取向量子化的现象。 场中原子轨道空间取向量子化的现象。 在实验上,观察到的银原子轨道是两个,因此, 在实验上,观察到的银原子轨道是两个,因此,轨道取向的 理论还需要进一步的修正。 理论还需要进一步的修正。
一、电子轨道运动的磁矩 电子的轨道运动相当于一个闭合电流
µ = iA
dϕ
i 电子的电流为: 电子的电流为: =
e
τ
r
i
电路所包围的面积: 电路所包围的面积: 2π τ τ pφ 1 1 2 1 2 A = ∫ r ⋅ rdφ = ∫ r ω dt = ∫ mr ωdt = 2m τ 2 20 2m 0 0
实 验 装 置
实验装置示意图
实验现象:银原子束经过不均匀的磁场,在底片形成两条黑斑。 实验现象:银原子束经过不均匀的磁场,在底片形成两条黑斑。
实验原理: 实验原理: 磁矩在不均匀磁场中受力: 磁矩在不均匀磁场中受力:
dB dB f = µz =µ cos β dz dz
原子在垂直方向偏离: 原子在垂直方向偏离:
nψ = +1
0 -1
nφ = 1
nφ = 2
nψ = +2
+1 0 -1 -2
h 当nϕ = 2时,pϕ = 2 ,nψ = +2, +1, 0, −1, −2 2π
1 1 cos α = +1, + , 0, − , −1, α = 0 , 60 ,90 ,120 ,180 , 2 2
h pψ = (2,1, 0, −1, −2) 2π
+2 +1 0
nφ = 3
h pψ = (3, 2,1,0, −1, −2, −3) 2π
-1 -2 -3
磁量子数是原子角动量空间量子化的标志。 磁量子数是原子角动量空间量子化的标志。
无外磁场时,能级与磁量子数无关, 无外磁场时,能级与磁量子数无关,原子光谱中不显示空间量 子化效应。原子处在外磁场中时,能级与磁量子数相关, 子化效应。原子处在外磁场中时,能级与磁量子数相关,角动 量的空间量子化显示出来。施特恩-格拉赫实验, 量的空间量子化显示出来。施特恩-格拉赫实验,证实了在外磁 场中原子轨道空间取向量子化的现象。 场中原子轨道空间取向量子化的现象。 在实验上,观察到的银原子轨道是两个,因此, 在实验上,观察到的银原子轨道是两个,因此,轨道取向的 理论还需要进一步的修正。 理论还需要进一步的修正。
原子物理第四章

N
S
无磁场
有磁场
原子在纵向是作匀速直线运动,其速度 根据热平衡关系得到
mv 2 3kT
D 则原子在磁场中运行的时间为 t v
而原子在横向受到磁场力的作用,将作加速运动,距离为
1 Fz 2 z1 t 2m
则在屏上偏离的距离为
Bz dD z2 z z 3kT
其中,D为P离磁场区中心的距离。
根据j的取值,相邻的j均相差1,由于s=1/2, 所以对某一确定的 l ,j l 1 2, l 1 2 。 即当 l 0时,j只有两个取值 j l 1 2 ;当 l 0 时,j只有一个值1/2。 例1、求p电子的L,S和J的大小,并画出矢量图。 解:p电子对应的量子数为 l 1, s 1 2 所以
—— 朗德g因子
于是
g 1
j j 1 l l 1 s s 1 2 j j 1
朗德g因子随不同的耦合类型有两种计算法
(1)对LS耦合
g 1 J J 1 L L 1 S S 1 2 J J 1
这里的J,L,S是各电子耦合后的数值。 (2)对jj耦合
l , z ml B
其中
e B 2me
—— 玻尔磁子
1 e2 2 1 B e ea1 2 2 c me e 2
磁相互作用比电相互作用小两个数量级!
三、角动量取向量子化
磁矩及其z分量的量子化 来源于角动量空间取向的量
子化
L和Lz的量子化 磁矩及其z分量的是量子化的
第四章 原子的精细结构: 电子的自旋
主要内容:
1、电子轨道运动的磁矩
2、史特恩-盖拉赫实验 3、电子自旋的假设 4、碱金属双线
第四章 原子的精细结构:电子的自旋

矩以及在z方向的分量分别表示为:
l l ( l 1) gl B , s s( s 1) g s B , j j( j 1) g j B l , z ml gl B , s . z m s g s B , j , z m j g j B
j j( j 1) g j B j ,z m j g j B
g—朗德因子
其中,j=l±s,mj=j,j-1,…,-j,共 2j+1个 数值。
g因子是反映物质内部运动的一个重要物理量, 但至今仍是一个假设。
引入 g因子后,电子的轨道磁矩、自旋磁矩和总磁
r 2 iS r n n 2 r 2
e e me rn L 2me 2me
def
e 定义旋磁比: 2me
则电子绕核运动的磁矩为 L
结论:电子绕核运动的磁矩与电子的轨道角 动量反方向,大小通过旋磁比联系。
当原子束落至屏上P点时,偏离x轴的距离为
原子经磁场区(长度为d)后,与x轴线的偏角为:
Bz dD z2 z z 3kT
z cos
Bz dD z2 z z 3kT
z cos
由以上讨论知,不仅μ呈量子化, μ在z方向的 投影也呈量子化,因为只有这样,z2的数值才 可能是分立的。故从实验测得z2是分立的,反 过来证明μ呈量子化。 此实验是空间量子化最直接的证明,它是第一 次量度原子基态性质的实验。
当只考虑轨道角动量时,
l l ( l 1) B j l , gl 1, 则 l , z m m B
s 3 B j s,gs 2, 则 s,z B
l l ( l 1) gl B , s s( s 1) g s B , j j( j 1) g j B l , z ml gl B , s . z m s g s B , j , z m j g j B
j j( j 1) g j B j ,z m j g j B
g—朗德因子
其中,j=l±s,mj=j,j-1,…,-j,共 2j+1个 数值。
g因子是反映物质内部运动的一个重要物理量, 但至今仍是一个假设。
引入 g因子后,电子的轨道磁矩、自旋磁矩和总磁
r 2 iS r n n 2 r 2
e e me rn L 2me 2me
def
e 定义旋磁比: 2me
则电子绕核运动的磁矩为 L
结论:电子绕核运动的磁矩与电子的轨道角 动量反方向,大小通过旋磁比联系。
当原子束落至屏上P点时,偏离x轴的距离为
原子经磁场区(长度为d)后,与x轴线的偏角为:
Bz dD z2 z z 3kT
z cos
Bz dD z2 z z 3kT
z cos
由以上讨论知,不仅μ呈量子化, μ在z方向的 投影也呈量子化,因为只有这样,z2的数值才 可能是分立的。故从实验测得z2是分立的,反 过来证明μ呈量子化。 此实验是空间量子化最直接的证明,它是第一 次量度原子基态性质的实验。
当只考虑轨道角动量时,
l l ( l 1) B j l , gl 1, 则 l , z m m B
s 3 B j s,gs 2, 则 s,z B
斯特恩-盖拉赫实验

e 2me
叫波尔磁子。
L 1
轨道磁矩μl 在 z 轴方向的分量也是量子化的 2 、塞曼效应
z ml B
塞曼效应是把原子置于外磁场中测量其发射光谱,发现原 来无外磁场时的谱线分裂为几条分立的谱线。
原子从能级 Ei 跃迁到 Ef 发出的谱线频率为
0
Ei
Ef h
当原子在强磁场中进行能级迁时,原子磁矩受到磁力矩
一、塞曼效应
1 、轨道磁矩的量子化
根据电磁理论,绕核作轨道运动的电子,相当于一个圆电流,
其轨道磁矩μl 与轨道角动量 L 之间存在如下关系:
IS
e r2
l
2r / v
e 2me
L
e 2me
mevr
式中“-”表示μ与 L 反向
B
L Ly
e电子
l
e 2me
式中 B
l(l 1) l(l 1)B
s
l=0
但在很多情况下,观察到的结果要比这复杂些,即每条谱线 不是分裂成三条,而是更多,这种现象称之为反常塞曼效应。
要解释反常塞曼效应,还须考虑电子的自旋角动量和自旋磁矩。
3
二、斯特恩-盖拉赫实验
测定原子磁矩的第一个实验是由德国科学家斯特恩与盖拉赫 于 1921 年完成的,他们所用装置如图所示
基态银
S
原子束
银
N
非均匀磁场
原 子
沉
积
斯特恩与盖拉赫用几种原子重复进行实验,都发现原子束经
非均匀场后发生偏转分裂的现象,这是因为原子的磁矩不同,
因而受到的磁力不同,所以偏转不同,这可以说明原子磁矩
(角动量) 在空间的取向是量子化的。
可以证明,这个力的大小与磁矩和磁感应强度的梯度乘积成 正比,即
第四章 原子的精细结构电子的自旋PPT课件

x
12
二、实验结果
对于氢、锂、钠、钾、铜、银、金等原子经过不均匀的磁场 作用后分成两束,屏幕上看见两条黑斑;但对于锌、汞、镉、锡 等原子经过不均匀的磁场作用只观察到一束;对于基态的氧原子 经过不均匀的磁场作用却观察到五束。
三、实验结果解释
匀强原磁子场具,有则磁原矩子,只在能磁受力场偶中矩的作行用为象M 一个磁B 偶使极磁子偶。极如子果转磁向场沿为
d S1r dr1r2d1r2dt
2
22
则 :S 0 d 0 S 1 2 r 2d 2 m 1 te0 ( m e r 2) d 2 m L te0 d 2 m te L
由此可得到磁矩的大小为:
iSe2m eL2m eeLL
考虑到 与 L 反向,写成矢量式则为:
L
e 称为旋磁比
点击此处输入 相关文本内容
2
前面我们详细讨论了氢原子和碱金属原子的能级与光谱,理论与实验符合 的很好,可是后来用高分辨率光谱仪观测时发现,上述光谱还有精细结构,这 说明我们的原子模型还很粗糙。本章我们将引进电子自旋假设,对磁矩的合成 以及磁场对磁矩的作用进行讨论,去考察原子的精细结构,并且我们要介绍史 特恩-盖拉赫,塞曼效应,碱金属双线三个重要实验,它们证明了电子自旋假设 的正确性。电子自旋假设的引入,正确解释了氦原子的光谱和塞曼效应.可是 “自旋是一种结构呢?还是存在着几类电子呢?”并且到现在为止,我们的研 究还只限于原子的外层价电子,其内层电子的总角动量被设为零,下一章我们 将要着手讨论原子的壳层结构。
Bz z沿磁场方向的磁感应强度变化的梯度
磁矩与磁场方向的夹角
讨论:(1)如果 B z >0,当 900 时,则 f 0
z
力的方向沿磁场方向。
12
二、实验结果
对于氢、锂、钠、钾、铜、银、金等原子经过不均匀的磁场 作用后分成两束,屏幕上看见两条黑斑;但对于锌、汞、镉、锡 等原子经过不均匀的磁场作用只观察到一束;对于基态的氧原子 经过不均匀的磁场作用却观察到五束。
三、实验结果解释
匀强原磁子场具,有则磁原矩子,只在能磁受力场偶中矩的作行用为象M 一个磁B 偶使极磁子偶。极如子果转磁向场沿为
d S1r dr1r2d1r2dt
2
22
则 :S 0 d 0 S 1 2 r 2d 2 m 1 te0 ( m e r 2) d 2 m L te0 d 2 m te L
由此可得到磁矩的大小为:
iSe2m eL2m eeLL
考虑到 与 L 反向,写成矢量式则为:
L
e 称为旋磁比
点击此处输入 相关文本内容
2
前面我们详细讨论了氢原子和碱金属原子的能级与光谱,理论与实验符合 的很好,可是后来用高分辨率光谱仪观测时发现,上述光谱还有精细结构,这 说明我们的原子模型还很粗糙。本章我们将引进电子自旋假设,对磁矩的合成 以及磁场对磁矩的作用进行讨论,去考察原子的精细结构,并且我们要介绍史 特恩-盖拉赫,塞曼效应,碱金属双线三个重要实验,它们证明了电子自旋假设 的正确性。电子自旋假设的引入,正确解释了氦原子的光谱和塞曼效应.可是 “自旋是一种结构呢?还是存在着几类电子呢?”并且到现在为止,我们的研 究还只限于原子的外层价电子,其内层电子的总角动量被设为零,下一章我们 将要着手讨论原子的壳层结构。
Bz z沿磁场方向的磁感应强度变化的梯度
磁矩与磁场方向的夹角
讨论:(1)如果 B z >0,当 900 时,则 f 0
z
力的方向沿磁场方向。
电子自旋角动量和自旋磁矩PPT课件

E4 p E4d E4 f
当 l 一定时,n 大,E 小,即
E2 p E3 p 第20页E/共4 4p2页
3.双层能级中, j 值较大的能级较高。
4.碱金属原子态符号: n2s1Lj
如
n3 l 0 j 1
2
l 1 j 3
2
j1 2
l2 j 5
2
j3 2
5.单电子辐射跃迁的选择定则
32 S1/ 2
第29页/共42页
二、原子在外磁场中的附加能量
一个具有磁矩的原子处在外磁场中时,将具有附
加的能量:
E
J
B
J
B c os(J
B)
J
g
B
e
cos(J B)
BJ cos(J
B)
2m
g
e 2m
BJz
其中:
Jz
J cos(J , B)
MJ
h
2
为角动量在外场方向的分
量,是量子化的。
第30页/共42页
F qE
2.磁矩
iA 方向与 i方向满足右手螺旋关系。
均匀磁场中: F 0 M B
非均匀磁场中:
磁场方向沿 z 轴,随z 的变化为dB
dz
合力
Fz
dB dz
cos
z
dB dz
z cos : 在外场方向的投影
z
i
第3页/共42页
3.力和力矩
力是引起动量变化的原因:
F
d
dt
M J j, j 1, j ,共 2 j 1个。
E
g
e 2m
BMJ
h
2
M
J
gB
史特恩-盖拉赫试验的解释

UB μ B UE DE
比较运动电子在磁场中的能量和电子对在电 场中的能量
B
e 2me
1 e2
2 40
c
4 0
mee2
2
e
c
1 2
a1
e
c
D ea1, E cB
UB BB
U E ea1E 2
第四章:原子的精细结构:电子的自旋 第一节 原子中电子轨道运动磁矩 第二节 施特恩—盖拉赫实验 第三节 电子自旋的假设 第四节 碱金属双线 第五节 塞曼效应 第六节 氢原子能谱研究进展
第四章:原子的精细结构:电子的自旋
第一节 原子中电子轨道运动磁矩 第二节 史特恩—盖拉赫实验 第三节 电子自旋的假设 第四节 碱金属双线 第五节 塞曼效应 第六节 氢原子能谱研究进展
第一节:原子中电子轨道运动的磁矩
库仑相
相 互作用 互 作 磁偶极矩和 用 外磁场的相 方 互作用 式
原子中磁偶 极矩之间相 互作用
观察到两个取向;
难道是轨道角动量矢量合成?
第四章:原子的精细结构:电子的自旋
第一节 原子中电子轨道运动磁矩 第二节 史特恩—盖拉赫实验 第三节 电子自旋的假设 第四节 碱金属双线 第五节 塞曼效应 第六节 氢原子能谱研究进展
埃伦费斯特和他的学生,1924年,莱顿. 左起: 第开, 古兹密特, 汀柏根, 埃 伦费斯特, 克罗尼格, 和费米。
dD 3KT
讨论:
1、如果 l(l 1)B 量子化,
cos 可以是任意的,
z cos 不是量子化的,
z2不是量子化的。
Z
第4章 原子的精细结构:电子自旋 ppt课件

0
即角动量矢量在
空间有三个取向
v 轨道角动量的大小 L及其z分量Lz的取值是量子化的, 而 Lz取值的量子化意味着角动量在空间取向是量子化 的,因为对于每一个l值有2l+1个ml值,即 L在z 轴上应 有2l+1个分量,因而 L有2l+1个取向。
12
PPT课件
与l =1情况相同,我们有l =2时有5个取向, l =3时有 7个取向
Z
L 6 2
L 2(2 1) 6,(l 2) ml 00,1,2,(l 2) Lz 0,,2
2
l2
即,角动量量子数为l 时,其在空间有2l+1个取向,
它对应有2l+1个投影值ml
13
PPT课件
§4.2 史特恩-盖拉赫实验
通过第一节的学习,我们知道不仅原子中电子 轨道的大小、形状和电子运动的角动量、原子内 部的能量都是量子化的,而且在外部磁场中角动 量的空间取向也是量子化的。
所以在l z方向的投影 为l ,z:
l,z
Lz
mlLeabharlann e 2me ml B
ml 0,1,2, ,l
(18 - 5)
可以看出μB 是轨道磁矩的最小单元
10
PPT课件
另外,因为
原子的磁偶 极矩的量度
第一玻尔
半径
B
e 2me
1 2
e2 c
2 me e 2
e
1 2
0.5788104 ev T1
为玻尔磁子,是轨 道磁矩的最小单元。 是原子物理学中的 一个重要常数。
9
PPT课件
又因为量子力学中角动量 L 在z方向的投影大小为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(16)
(17)
三、史特恩---盖拉赫实验
1、实验装置
史特恩 (0.stern)和 盖拉赫(W。 Gerlach)在 1921 年
图2.6 史特恩---盖拉赫实验
2、实验结论: 若用银原子,则显像后的相片上看见两条黑斑,表明银原子 在经过不均匀磁场区域时已分成两束。 3、实验分析 (1)热平衡时原子的速度:
(9)
故夹角 只能取不连续的值,即 L 在空间 取向量子化 即在角动量 大小L l (l 1) 确定的情况下, 在外场方向的投影只有( 2l 1 )个不连续值。
( a )
( b )
图2.4 轨道角动量及其分量示意图 综上所述:原子中电子绕核运动状态要用三个量子数 ( n, l , ml )
来确定.
二、磁场对磁矩的作用
1、均匀磁场对磁矩的力矩。 磁矩在均匀外磁场中的力矩: M B 力矩的存在将引起角动量的变化: (10)
M
dL B dt
(11)
由式(4)和(11)可得:
d B B dt dL or : B L B B L L dt
§4.2 原子中电子轨道运动的磁矩和史特恩-盖拉赫实验
一、原子中电子轨道运动的磁3)
i e e /
2
S
0
1 t 2 1 2 L r rd r dt mr dt 2 2 0 2m 0 2m
把(2)式和(3)式代入(1)式,即得:
(23)
证明了:原子在 磁场中的取向是 量子化的。如图 2.7
图2.7史特恩—盖拉赫实验对氢原子的结果
设磁场区长度为d,磁场区中点离屏幕P的距离为D。 (a)在磁场区:
v // v v at Fz d 2 x vt1 z1 2mv 2 1 Fz 2 z1 t1 Fz d v 2m mv
(21)
势能
U B x Bx y By z Bz
(15)
任何一个力都可以写成势能的负梯度即:
U U U F U i j k y z x
写成分力的形式
By Bz U B Bx Fx x y z x x x x x By B U B Bx Fy x y z z y y y y y By Bz U B Bx Fz x y z z z z z z
e l L L 2m
e (称为旋磁比) 2m
(4)
注e在此处取正值,表示电量
2、角动量及磁矩的量子表示式: (1)角动量的量子表达式
L l (l 1) Lz ml l 0,1, 2, n 1 ml 0, 1,, , l
L / 2
的意义
d sin d sin dt d sin dt
(14)
将(14)与(12)比较可见:
e B B 确实代表磁矩绕磁场进动的角速度。 2m
(a)
图2.5磁矩绕磁场进动示意图
2、非均匀磁场对磁矩的力。
(b)在磁场区外
Fz d D - d / 2 z2 v t2 at1t2 m v v F D - d / 2 d mv 2
(22)
Fz d 2 F D - d / 2 d Fz Dd Z z1 z2 2 2 2mv mv mv 2 B Dd B dD z cos z 3KT z 3KT
(磁量子数)
(5)
(2)磁矩的量子表示式:
l L l (l 1) l (l 1)
l (l 1) B l 0,1, 2
e 2me
(6)
e Lz LZ ml ml B 2m ml 0, 1 l
(7)
mv 3KT
2
(18)
(2)原子在磁场中的受力。
B B 0 x y B 0 z
Fx Fy 0;
(19)
Fz 0
于是,受力方向是在Z方向。
B B B F Fz cos z z z z
(20)
(3)原子在屏上的位置
e 1 B 9.274 1024 J T ( Am2 ) 5.788 105 ev T 1 2m (8)
玻尔磁子 (3)角动量及磁矩空间取向的量子化.
LZ L cos l (l 1) cos ml l 0,1, ml cos l (l 1) ml 0, 1 l
(12)
e B B (拉莫尔进动的角速度) 2m
(13)
(12)它表明:在均匀外磁场中,一个高速旋转的磁矩并不 向 B 方向靠拢,而是以一定的角速度 绕 B作进动, 的方 向与 一致。
如图2.5给出的就是原子的磁矩受磁场作用发生进动的示意图。 由图可见, 绕 B 的方向作进动,进动频率(又称拉莫尔频率)