预应力摩阻损失测试试验方案解析

合集下载

预应力数控张拉工程锚口摩阻损失测试、摩阻损失试验、锚固回缩量测试

预应力数控张拉工程锚口摩阻损失测试、摩阻损失试验、锚固回缩量测试

附录六 锚口摩阻损失测试1 试验步骤和方法(1)根据装置布置图2在已浇好的梁段上安装数控千斤顶、锚具(注:不安装工作夹片)。

固定端千斤顶的缸体应预先进油伸长50~100mm ,确保可测试出固定端压力,并在测试完成后,方便张拉和锚固系统的拆除。

(2)张拉设备开机,输入张拉力目标值,并设定分级,分两级,20%和100%并设定持荷时间t (1min~5min )。

(3)两端同时进油张拉至20%级数,固定端数控千斤顶关闭进出口油管,张拉端数控千斤顶继续进油张拉至张拉力目标值,并持荷到设定时间,采集张拉端数控千斤顶持荷结束时力值读数,同时采集固定端数控千斤顶力值读数;持荷结束后,张拉端数控千斤顶和固定端数控千斤顶同时回油至零。

(4)重复步骤(1)~(3),共进行三次张拉测试,取三次张拉试验的平均值为该锚具的锚口摩阻损失率。

(5)更换锚具,重复步骤(1)~(4),得出第二个锚具的锚口摩阻损失率;取两个锚具的平均值为试验结果。

图2 锚口摩阻损失测试装置图2 数据处理方法(1)第一个锚具三次试验主动端数控千斤顶力值数据分别为,,,固定端数控千斤顶的力值数据分别为,,。

(2)第二个锚具三次试验主动端数控千斤顶力值10s 数据平均值分别为'11P ,'12P ,'13P ,固定端数控千斤顶的力值10s 数据平均值分别为'21P ,'22P ,'23P 。

'''112111'11100%P P P δ−=⨯ '''122212'12100%P P P δ−=⨯ '''132313'13100%P P P δ−=⨯11P 12P 13P 21P 22P 23P 11211111100%P P P δ−=⨯12221212100%P P P δ−=⨯132********%P P P δ−=⨯11121313δδδδ++=''''11121313δδδδ++=则锚口摩阻损失'1112δδδ+=3 参数设定输入参数:(1)梁编号,预应力筋编号;(2)张拉目标值,张拉分级及持荷时间t (1min~5min ); 采集参数:(1)第一个锚具三次试验主动端数控千斤顶力值数据分别为,,,固定端数控千斤顶的力值数据分别为,,;(2)第二个锚具三次试验主动端数控千斤顶力值数据分别为'11P ,'12P ,'13P ,固定端数控千斤顶的力值数据分别为'21P ,'22P ,'23P 。

预应力损失测试方法

预应力损失测试方法

预应力损失测试方法一、孔道摩擦损失测试方法采用千斤顶测试孔道摩擦损失时,应配置压力传感器或精密压力表对张拉力进行度量,测力系统的不确定度不应大于1%。

测试步骤如下:1、梁的两端安装千斤顶后同时张拉,压力表读数保持一定数值(约4MPa)。

2、一端固定,另一端张拉。

张拉时分级升压,直至张拉控制拉力。

如此反复进行3次,取两端传感器或精密压力表压力差的平均值。

3、仍按上述方法,但调换张拉端和固定端,取测得的两端3次压力差的平均值。

4、将上述两次压力差平均值再次平均,即为孔道摩擦损失的测定值。

5、如果两端锚垫板扩孔段与预埋管道连接处预应力筋弯折形成摩擦损失时,上述测定值应考虑锚口摩擦损失的影响。

二、锚口摩擦损失测试方法锚口摩擦损失测定应在张拉台座或留有直孔道的混凝土试件上进行,张拉台座或混凝土试件长度不应不小于3m。

锚具、千斤顶、传感器、预应力筋应同轴(图1)。

张拉力采用压力传感器度量,测力系统的不确定度不应大于1%。

图1 锚口摩擦损失测试装置1-预应力筋;2-工具锚;3-主动端千斤顶;4-对中垫圈;5-主动端传感器;6-限位板;7-工作锚(含夹片);8-锚垫板;9-螺旋筋;10-混凝土试件(台座);11-试件中预埋管道;12-钢质约束环;13-被动端千斤顶;14-被动端传感器在混凝土试件上测试时,试件预留孔道应顺直,且直径应比锚垫板小口内径稍大,试件锚固区配筋及构造钢筋应按设计要求配置。

测试步骤如下:1、 两端同时张拉,压力表读数保持一定数值(约4MPa);2、 一端固定,另一端张拉至控制拉力。

设张拉端传感器测得的控制拉力为1P 时,固定端传感器相应读数为2P ,则锚口摩擦损失为:21P P P -=∆ (1)测试反复进行3次,取平均值。

3、 如两端均安装被测锚具应调换张拉端,同样按上述方法进行3次,取平均值的1/2为锚口摩擦损失。

三、 变角张拉摩擦损失测试方法1、 测试用的组装件应由变角装置、预应力筋组成,组装件中各根预应力筋应等长,初应力应均匀。

预应力管道摩阻试验方案1

预应力管道摩阻试验方案1

预应力管道摩阻试验方案本工程砼强度达到设计强度的85%,弹模达到设计的80%时需对预应力筋进行张拉。

为准确计算理论伸长量及验证设计计算时采用的K 、μ值的合理性,项目部在预应力张拉施工之前将进行管道摩阻试验。

1 预应力管道摩阻试验的原理及步骤 1)原理及仪器安装预应力管道摩阻试验的基本原理及方法:通过测定出孔道预应力损失来反推管道摩阻K 、μ值。

图1为孔道摩阻测试安装示意图。

安装示意图说明几点:1)张拉端千斤顶设置数量要通过张拉伸长量和每台千斤顶的行程来确定;2)张拉端的所有千斤顶中心要求在一条直线上;3)为避开锚口预应力损失,测定时张拉端不安装工作锚板;1-工作锚板; 2-测力传感器; 3-钢绞线束 ;4-1号千斤顶 ; 5- 套筒6-2号千斤顶; 7-工具锚板; 8-混凝土构件。

图 孔道摩阻测试安装示意图1 泵2号泵1号 张拉端被拉端2)试验步骤及数据计算①张拉端分三级控制进行张拉(0.2P,0.6P,1.0P),测出被拉端的应力。

②按上述方法反复进行测试三次,取平均值可得到P被、P主。

③张拉端与被拉端对调,重复步骤①、②④对两端再次平均,可得到P被、P主的统计数,它作为计算K、µ值的已知数据。

⑤试验过程中所测得的所有数据均填写在表1中。

⑥有了预应力损失值,便可通过式(1)、(2)计算出摩阻系数µ、摩阻因数K。

µ=[-ln(P被/P主)-KL]/θ (1)K=-[µθ+ln(P被/P主)]/K (2)式中µ—摩阻系数,即预应力筋与孔道壁的摩擦系数;K—摩阻因数,即孔道每米局部偏差对摩擦的影响因素;P主—张拉端的控制力,单位:KN;P被—被动端的测力,单位:KN;θ—累计转角,单位:rad;L—束长,单位:m;通过公式(1)、(2)来计算K、μ值时,只要把K(取0.0015)看为固定值,可计算出μ值,或把μ(取0.25)看为固定值,可计算出K值。

预应力混凝土桥梁摩阻损失试验研究

预应力混凝土桥梁摩阻损失试验研究

预应力混凝土桥梁摩阻损失试验研究摘要:本文针对于预应力混凝土的张拉过程中的摩阻损失参数开展了现场摩阻试验,并采用最小二乘法回归了摩阻损失相关参数(管道摩擦系数、管道偏差系数)。

后采用有限元软件分析管道摩擦系数与管道偏差系数对桥梁成桥状态下挠度和应力的影响规律。

其研究结果表明:现场摩阻损失试验实测的管道摩擦系数与管道偏差系数远大于规范建议值。

管道摩擦系数和管道偏差系数与跨中最大挠度之间存在正相关线性关系。

管道摩擦系数的影响程度大于管道偏差系数。

两者相互耦合作用时,其对跨中最大挠度的影响程度远远大于两者单独作用时。

关键词:预应力张拉、摩阻试验、摩阻损失、管道摩擦系数、管道偏差系数Experimental study on friction loss of prestressed concretebridgesAbstract:In this paper, field friction tests were conducted for the friction loss parameters during the tensioning of prestressed concrete, and the least squares method was used to regress the friction loss related parameters (pipe friction coefficient and pipe deflection coefficient).The finite element software was used to analyze the influence of pipe friction coefficient and pipe deviation coefficient on the deflection and stress of the bridge in the bridge formation condition. The results of the study show that the measured pipefriction coefficient and pipe deviation coefficient in the field friction loss test are much larger than the recommended values in the code. There is a positive linear relationship between the pipe friction coefficient and pipe deviation coefficient and the maximumdeflection in the span. The influence of pipe friction coefficient is greater than that of pipe deflection coefficient. When the two are coupled with each other, their influence on the maximum deflection in the span is much greater than when they act separately.Keywords:Prestress tensioning, friction test, friction loss, pipe friction coefficient, pipe deviation coefficient1引言随着高速公路在我国的不断发展,桥梁在高速公路中占比不断增加。

预应力管道摩阻实验

预应力管道摩阻实验

第六章宁夏吴忠黄河公路大桥主桥管道摩阻损失测试6.1 摩阻损失测试概述预应力筋过长或弯曲过多都会造成预应力筋的孔道摩擦损失,特别是弯曲多、弯曲半径小、弯曲角度较大的预应力筋,在两端张拉时,其中段的有效预应力损失很大,这种预应力的损失往往不容易准确地计算出来,因而其在张拉控制应力作用下的伸长值也无法准确计算。

作为张拉的控制条件,如果孔道有漏浆堵塞现象不校核伸长值,就会使有效预应力达不到设计的要求造成质量事故,另外,在连续刚构梁悬臂施工过程中,预应力孔道埋设与设计存在误差时,预应力损失也是不同的。

这时,设计单位若按照以往经验计算是不能真实反映实际施工情况的。

因此, 后张法预应力混凝土结构中孔道摩阻损失估算的准确程度会直接影响结构的使用安全,而施工中混凝土的质量、张拉工艺的优劣往往会影响孔道摩阻损失的大小,测量预应力筋摩阻力,是确保施工质量的有效措施。

按照《宁夏回族自治区吴忠黄河公路大桥监控细则》,需要对纵向预应力孔道摩阻损失实行现场测定。

6.2 摩阻损失测试依据1、中华人民共和国行业标准《公路桥涵施工技术规范》(JTJ041-2000);2、人民交通出版社《预应力技术及材料设备》(第二版);3、交通部公路科学研究院《宁夏回族自治区吴忠黄河公路大桥监控细则》;4、监理单位和设计单位提供的桥梁设计图纸;5、宁夏公路工程质量检测中心《压力传感器率定报告》。

6.3 摩阻损失测试目的及方法宁夏吴忠黄河公路大桥管道摩阻损失测试是针对塑料波纹管,虽然塑料波纹管的管道摩阻系数有理论值,但毕竟塑料波纹管应用时间不长,有必要做实验验证,同时管道摩阻系数的测试结果也为吴忠黄河公路大桥结构预应力设计和大桥施工提供参考,实现现场的预应力控制。

管道摩阻损失测试方法,按照业主意见方法采用传感器,采用《公路桥涵施工技术规范》(JTJ041-2000)中附录G-9 提供的测试方法,如图6-1 所示。

该测试方法与常规测试方法比较主要特点如下:⑴图6-1 中压力传感器的圆孔直径与锚板直径基本相等,如此可使预应力钢束以直线形式穿过喇叭口和压力传感器,钢束与二者没有接触,只是相当于将预应力钢束加长了,实验所测数据仅包括管道摩阻力,保证了管道摩阻损失测试的正确性。

预应力张拉锚口摩阻损失试验方法

预应力张拉锚口摩阻损失试验方法

锚圈口摩阻损失试验本实施性试验适合木刀沟特大桥30m连续T梁中跨中梁,孔道数为N1=7、N2=8、N3=8。

本试验目的在于测定孔道摩阻损失及锚圈口摩阻损失,确定超张拉系数。

本次试验在实体梁板(即曲线孔道)上进行,与《公路桥涵施工技术规范》(JTG/T F50-2011)附录测试方法不同(在直线孔道进行)。

其原因是:在实际施工过程中,直线孔道并不多见,往往包含曲线孔道,优点在于更贴近施工环境,得出的数据更加准确。

孔道摩阻试验确定试验原理:梁板两端均不上工作锚,锚固段控制油压为4Mpa,张拉端分级张拉按照300KN每级增加直至张拉控制应力,得出孔道摩阻损失应力;试验方法:1、试验前准备:穿好钢绞线的实体梁板(本次以单孔N2为测试孔)、配套锚具(工作锚、工作锚夹片、限位板、工作锚、工作锚夹片,配套的目的在于是钢绞线在同一轴线上,尽可能减少钢绞线与锚具摩擦,影响数据准确性。

2、孔道摩阻损失测定:主动端千斤顶吊装,不上工作锚,千斤顶与梁体之间垫工作锚,限位板,被动端千斤顶吊装,不上工作锚,千斤顶与梁体之间垫工作锚,限位板,油缸预先伸出10cm(1、防止油缸被拉损坏2、方便回油退工具锚夹片)。

测定:本次选择中梁中跨N2孔道(8束钢绞线)进行试验,主动端1#千斤顶分级张拉按照300KN每级增加直至张拉控制应力,被动端(2#千斤顶)读数,反复3 次。

调换主被动端,重复以上步骤 3 次。

)1()(con s μθσσ+--=kx e应力张拉端钢绞线锚下控制--con σ摩擦系数预应力钢筋与管道壁的--μ)之和(线管道部分切线的夹角从张拉端至计算截面曲rad --θ2v 22h θθθ+= 擦的影响系数管道每米局部偏差对摩--k 管道长度从张拉端至计算截面的--x根据以上公式推导出k 值和μ值,设主动端张拉力为P1,被动端为P2此时管道长度为x ,θ为管道全长的曲线包角,考虑上式两边同时乘以预应力钢绞线的有效面积则得出:)1(p p -p )(121μθ+--=kx e即)(12p p μθ+-=kx e,两侧取对数得()12/-ln P P kx =+μθ令)(12/p p -ln y =,则y =+μθkx由于测试误差和各孔道μ、k 值差异离散,利用最小二乘法原理,令2n 1i i i i -kx n 1)(∑=+=Y A μθ 要使上式得最小值,必须满足条件; 0=∂∂μA ,0k =∂∂A即i n 1i i i i -kx n 2θμθμ)(∑=+=∂∂Y A ,i n1i i i i x -kx n 2k )(∑=+=∂∂Y A μθ整理得-x k n 1i n1i i i n 1i i i 2i =+∑∑∑===θθθμY 0x -x k x i n1i n1i i n1i 2i i i =+∑∑∑===Y θμ孔道摩阻损失及锚圈口摩阻损失测定:主动端上工作锚、工作锚夹片,被动端不上,其余步骤均和孔道摩阻损失测定相同。

后张法预应力混凝土简支梁摩阻测试实验

后张法预应力混凝土简支梁摩阻测试实验

后张法预应力混凝土简支梁摩阻测试实验一、试验目的及要求1. 掌握预应力结构中摩阻测试的方法;2. 掌握摩擦损失计算公式;3. 掌握预应力结构中产生摩阻的原因;4. 掌握先张、后张预应力结构传力方式;5. 了解锚具构造、安装方法及工作原理;二、试验仪器及设备试件——梁长6.0m,各孔道长度及弯起角度,见预应力钢筋工程量表;YDC240Q千斤顶;ZB4—500高压油泵;高强低松弛钢绞线;单孔锚具;夹片;配套油表;20t压力传感器;JMX-3003读数仪三、试验内容本试验拟在预制梁上,让学生自己实践后张法预应力混凝土梁摩阻测试的方法。

学生通过实际操作,应对预应力混凝土梁传力方式、工作原理等有清晰的认识。

四、试验步骤1)压力传感器测试法是采用单端张拉的方法进行;2)每管道测试2次,两端各作为主动端张拉1次,取两次平均值作为测试结果。

3)主动端加载前,被动端千斤顶油缸伸出5~10cm,并施加不超过 0.1P的张拉力,将预应力束调直;4)主动端的初始张拉力分9级张拉至 P。

加载步骤为:0→5MPa→7.5MPa→10MPa 12.5MPa→15MPa→17.5MPa→20MPa→22.5MPa→25MPa(卸载);5)每级加载时间1~2min,加载不得回油调整荷载,到位稳定后(±2kN/10s),读取两端传感器压力值并记录。

四、试验报告1、根据测试结果,整理出预应力摩阻损失值;2、计算出试验混凝土梁的预应力孔道偏差系数k和摩阻系数 。

五、思考题1、分析先张、后张梁传力方式有何不同?2、先张、后张梁的预应力损失有哪些?附表后张法预应力混凝土梁摩阻测试记录表记录人:测试日期:。

预应力孔道摩阻损失试验研究

预应力孔道摩阻损失试验研究

线 的夹 角之 和 ( d ; r ) a
— —
从 张拉 端 至 计 算截 面 的管 道 长度 ,可
近 似取该 管道 在构 件纵 轴上 的投 影长度 ( ) I ; n , l 一
— —
预应 力钢束 与 管道壁 的摩 擦系 数 ;
管 道 每米局 部偏 差对 摩擦 的影 响系数 。
根 据 图2 3 示 的测试 原 理 。设 张拉 端 传感 器 —所
复加载 。
本 文 以某 城 际轨道 连续 梁 特 大桥 ( 径 为5 m+ 跨 7 10 + 7 为工程 背景 ,对 1 梁段 浇 筑完 毕后 进行 0 m 5 m) #
孔 道摩 阻测 试 。纵 向预应力 钢束 规格 为 ̄1 . ,锚 b 52 i 4
下 控 制 张 拉 应 力 O 07 = 3 92 a V= . c 13 .MP , 代 表 钢
现 场 实 测 由 实测 偏 差 偏 差
为张拉端 实测 应变 值 ;
根据表2 1 — 可得 ,孑 道 偏 差 系数 k 00 3 ,将 L =. 2 0
编号
伸 长 量
A mm) L(
伸 长量 计 算 的伸 长 量 I =
。mm) (
4 . 60 4 . 41 3 . 46
摩 阻力 与锚 下控 制应 力 的 比值 ,见 表2 3 —。 阻力 比直线 束T 大得 多 。这 是 由于腹 板束 空 间 曲线 2
/ \
谭计揍转压宾 数
沥青混合料性
响研究
何 宪 礼 ,王 火 明 ,王 惠斌,
( . 北 鄂 东长 江公 路 大 桥 有 限公 司 ,湖 北 黄 石 4 5 0 ;2重 庆 交 通 科 研 设计 院 ,重 庆 4 0 6 ; 1湖 302 . 0 0 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预应力摩阻损失测试试验方案山东铁正工程试验检测中心有限公司二〇一0年十一月八日目录1.概述 (1)2. 检测依据 (1)3. 检测使用的仪器及设备 (1)4.孔道摩阻损失的测试 (1)4.1 测试方法 (1)4.2 试验前的准备工作 (3)4.3 试验测试步骤 (3)4.4 数据处理方法 (4)4.5 注意事项 (6)5.锚口及喇叭口摩阻损失测试 (6)5.1 测试方法 (6)5.2 测试步骤 (7)附件1. 测试记录表格 ................................................ 错误!未定义书签。

1.概述预应力摩阻测试包括锚口摩阻、管道摩阻、喇叭口摩阻三部分。

预应力摩阻损失是后张预应力混凝土梁的预应力损失的主要部分之一,对它的准确估计将关系到有效预应力是否能满足梁使用要求,影响着梁体的预拱变形,在某些情况下将影响着桥梁的整体外观等。

过高的估计会使得预应力张拉过度,导致梁端混凝土局部破坏或梁体预拉区开裂,且梁体延性会降低;过低的估计则不能施加足够的预应力,进而影响桥梁的承载能力、变形和抗裂度等。

预应力管道摩阻损失与管道材料性质、力筋束种类以及张拉工艺等有关,相差较大,最大可达45%。

工程中对预应力管道摩阻损失采用摩阻系数μ和管道偏差系数k来表征,虽然设计规范给出了一些建议的取值范围,但基于对实际工程质量保证和施工控制的需要,以及在不同工程中其管道摩阻系数差别较大的事实,在预应力张拉前,需要对同一工地同一施工条件下的管道摩阻系数进行实际测定,从而为张拉时张拉力、伸长量以及预拱度等的控制提供依据。

摩阻测试的主要目的一是可以检验设计所取计算参数是否正确,防止计算预应力损失偏小,给结构带来安全隐患;二是为施工提供可靠依据,以便更准确地确定张拉控制应力和力筋伸长量;三是可检验管道及张拉工艺的施工质量;四是通过大量现场测试,在统计的基础上,为规范的修改提供科学依据。

2. 检测依据(1)《公路桥涵钢筋混凝土及预应力混凝土结构设计规范》(TB10002.3—2005)(2)《公路桥涵施工规范》(TB10203-2002)(3)拟测试梁的设计图纸3. 检测使用的仪器及设备(1)2台千斤顶、2台高压油泵,2块0.4级精密压力表。

(2)2台传感器,1台读数仪,2根配套连接线缆。

(3)对中专用工装。

根据现场条件确定。

(4)工具锚2套,工作锚1套,配套限位板1块。

(5)0.5mm精度钢板尺2把,记录用夹板2个,钢笔2,计算器1,记录纸若干。

4.孔道摩阻损失的测试4.1 测试方法管道摩阻常规测试方法以主被动千斤顶法为主,该方法主要存在测试不够准确和测试工艺等问题。

其一:由于千斤顶内部存在摩擦阻力,虽然主被动端交替测试可消除大部分影响,但仍存在一定的影响;其二:千斤顶主动和被动张拉的油表读数是不同的,需要在测试前进行现场标定被动张拉曲线;其三:在测试工艺上,力筋从喇叭口到千斤顶张拉端的长度不足,使得力筋和喇叭口有接触,产生一定的摩擦阻力,也使得测试数据包含了该部分的影响。

为解决上述问题,保证测试数据的准确,使用压力传感器测取张拉端和被张拉端的压力,不再使用千斤顶油表读取数据的方法。

为保证所测数据准确反映管道部分的摩阻影响,在传感器外采用约束垫板的测试工艺,其测试原理如图1所示。

采用该试验装置,由于力传感器直接作用在工具锚或千斤顶与梁体之间,因此各种压缩变形等影响因素在张拉中予以及时补偿,同时测试的时间历程比较短,避免了收缩与徐变等问题,因而两端力的差值即为管道的摩阻损失。

另外,为减少测试误差,采用固定端和张拉端交替张拉的方式进行,即测试过程中完成一端张拉后进行另一端的张拉测试,重复进行3次,每束力筋共进行6次张拉测试,阻力,保证了管道摩阻损失测试的正确性。

而常规测试中所测摩阻力包括了喇叭口的摩阻力,测试原理上存在缺陷。

(2) 数据准确可靠:采用穿心式压力传感器提高了测试数据的可靠性和准确性,不受张拉千斤顶的影响。

(3) 安装简单,拆卸方便:实测中仅使用一个千斤顶,被动端不再安装千斤顶,使得测试安装工作量大为减小。

实测时预先将千斤顶油缸略加顶出,以便拆卸张拉端夹片;被动端夹片的拆卸待张拉千斤顶回油后,摇晃力筋即可拆卸夹片。

(4) 力筋可正常使用:从喇叭口到压力传感器外端,力筋与二者没有接触,不会对这部分力筋造成损伤,即两个工作锚之间的力筋没有损伤,可以正常使用。

(5) 对于较长的预应力钢束,如果千斤顶的行程不足时,为避免重复倒顶引起预应力钢筋回缩造成的误差,可以采取在张拉端用2台千斤顶串联后同时张拉。

4.2 试验前的准备工作(1)原始数据收集。

包括孔道钢束参数(钢束工作长度、起弯角、锚固时的控制力、钢束组成、设计钢束伸长值)、成孔方式、锚具情况(生产厂家、规格型号、厂家提供的锚口摩阻损失率)、钢绞线参数(生产厂家、型号规格、实测弹性模量)。

(2)传感器、读数仪、千斤顶、高压油泵、精密压力表(0.4级)检查。

(3)传感器和读数仪的系统标定(用压力机),千斤顶和精密压力表的标定(用标定好的传感器、读数仪)。

千斤顶应标定进油、回油曲线。

(4)根据标定结果,按每级5MPa确定张拉分级。

(5)现场确定传感器、千斤顶对中方法,检查位置是否有干涉。

(6)按照代表性原则选择试验孔道,每种线形的孔道基本包括在内,至少选择6个孔道,所选孔道基本均匀分布在截面的两侧,计算所选试验孔道钢绞线的下料长度并下料、穿束。

(7)孔道、梁端面清理干净。

(8)准备足够的记录表格。

记录表格的格式见附件1。

(9)试验前应对有关人员进行技术交底。

4.3 试验测试步骤(1)根据试验布置图安装传感器、锚具、锚垫板、千斤顶。

(2)锚固端千斤顶主缸进油空顶100mm(根据钢束理论伸长值确定)关闭,两端预应力钢束均匀楔紧于千斤顶上,两端装置对中。

(3)千斤顶充油,保持一定数值(约4MPa)。

(4)甲端封闭,乙端张拉。

根据张拉分级表,张拉端千斤顶进油进行张拉,每级均读取两端传感器读数,并测量钢绞线伸长量,每个管道张拉二次;(5)仍按上述方法,但乙端封闭,甲端张拉,用同样方法再做一遍;(6) 张拉完后卸载至初始位置,退锚进行下一孔道钢绞线的测试。

每级荷载下均需记录的测试数据有:主动端与被动端压力传感器读数、张拉端的油缸伸长量、油表读数、张拉端夹片外露量,所测数据均在记录本上即时记录。

4.4 数据处理方法(1)二元线性回归法计算μ、K 值分级测试预应力束张拉过程中主动端与被动端的荷载,并通过线性回归确定管道被动端和主动端荷载的比值,然后利用二元线性回归的方法确定预应力管道的k 、μ值。

计算公式为:⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑∑======n i n i n i i i i i i n i n i n i i i i i i l l k l l k 11121112ξθμθξθθμ 式中 i ξ——第i 个管道对应的值)P /P ln(12i -=ξ,P 1、P 2分别为主动端与被动端传感器压力;i l ——第i 个管道对应力筋的水平投影长度(m);i θ——第i 个管道对应力筋的空间曲线包角(rad),曲线包角的实用计算以综合法的计算精度较好,其表达式为:22V H θθθ+=式中:H θ为空间曲线在水平面内投影的切线角之和;V θ为空间曲线在圆柱面内展开的竖向切线角之和。

n ——实际测试的管道数目,且不同线形的力筋数目不小于2;μ——钢筋与管道壁间的摩擦系数;k ——管道每米局部偏差对摩擦的影响系数。

二元线性回归法是建立在数理统计基础上的计算方法,如果原始数据离散性大,则计算结果不稳定,任意增加或减少几组数据会造成结果的较大变动,反之则可证明原始数据的稳定性。

只有原始数据稳定可靠的情况下方可采用此法。

(2)固定μ值算k 值由于梁两端孔道位置均被端模板固定,故认为弯起的角度一般不会出现较大的波动,整个孔道摩阻系数的变化主要取决于孔道位置偏差;μ值是材料固有性质,和施工工艺没有关系,故可确定一固定的μ值,计算k 。

μ值的确定有两种方法,一是直接取规范规定值,二是测出μ值。

μ值的测试可委托有关机构进行。

(3)张拉时钢绞线非弹性伸长值计算①从张拉第一级起,逐级记录千斤顶油缸伸长值l i ;②根据每级千斤顶油缸伸长值,计算每一级的钢绞线伸长值:Δl i =l i -l i-1;③取Δl i 相差最小的若干值求其平均值,一般是从第二级算起,并扣除传力锚固前的一级(该级往往不是级差的整倍数),计算方法为:④钢绞线非弹性伸长值=)(l l i ∆-∆∑,此处Δl i 一般取第一、二级即可。

(4)钢绞线伸长值精确计算①被动端锚外钢束伸长值计算YY B A E L P L 111=∆ 被动端锚外长度—被动端千斤顶压力—其中:11L P B②孔道长度范围内钢束伸长值计算其中:ΔL 2——钢绞线伸长值;P A 2——持荷5min 后主动端锚下力;L 2——钢绞线工作长度;E y ——钢绞线弹性模量;A y ——钢绞线束截面积。

③主动端锚外伸长值计算Y Y A A E L P L 313=∆ 被动端锚外长度—主动端千斤顶压力—其中:31L P A2()2222(1)()kL A y y P L L e E A kL μθμθ-+⋅∆=-⋅+,i n n l l N ∆∆=∑④钢绞线伸长值:321L L L L ∆+∆+∆=∆(5)试验中钢绞线伸长值的估算YY B A A E L L L P P L 2))((32122+++=∆ 被动端锚下压力—主动端锚下压力—其中:22B A P P4.5 注意事项(1)张拉千斤顶与压力传感器的安装顺序如图1所示,被动端(锚固端)的钢环板换成千斤顶,约束垫板换成对中套(和压力传感器配套的)或限位板。

(2)千斤顶、压力传感器和喇叭口要严格对中(中心线重合),不要使压力传感器发生偏载,要使压力传感器均匀受压。

(3)被动端锚固用的千斤顶,在张拉前主缸空顶10cm 关闭,以便于退锚。

(4)千斤顶安装时,要注意油缸的方向,应使油缸向外便于测伸长值。

(5)试验前检查压力表指针是否在零读数位置。

(6)由于实际张拉为两端张拉,而试验为一端张拉,因此千斤顶行程可能不够。

可采用张拉端串联两台顶。

(7)试验中应及时处理数据,发现数据反常,应查找原因,看传感器是否对中或千斤顶是否已经稳住,并应增加试验次数。

每做完一束均要计算实测伸长值、理论伸长值并校核误差。

(8)钢束弯起角指其圆心角,等于弧长除以半径。

5.锚口及喇叭口摩阻损失测试5.1 测试方法由于张拉过程中力筋不可避免的与喇叭口和锚圈口接触并发生相对滑动,必然产生摩擦阻力,而这些摩擦阻力包括在张拉控制应力中。

而规范中有的给出了参考值,如锚圈口摩阻给出的参考值为5%,但要求有条件者要测试;而喇叭口摩阻则没有对应的参考数值,设计采用的喇叭口和锚圈口摩阻损失之和为张拉控制应力的6%,故此需要进行现场实测。

相关文档
最新文档