马尔文激光粒度仪简介
马尔文激光粒度仪简介

马尔文激光粒度仪简介laParticle size analysis-Laser diffraction methods(ISO-13320-1)IntroductionLaser diffraction methods are nowadays widely used for particle sizing in many different applications. The success of the technique is based on the tact that it can be applied to various kinds of particulate systems, is fast and can be automated and that a variety of commercial instruments is available. Nevertheless, the proper use of the instrument and the interpretation of the results require the necessary caution.Therefore, there is a need for establishing an international standard for particle size analysis by laser diffraction methods. Its purpose is to provide a methodology for adequate quality control in particle size analysis.Historically, the laser diffraction technique started by taking only scattering at small angles into consideration and, thus, has been known by the following names:-fraunhofer diffraction;-(near-) forward light scattering;-low-angle laser light scattering (LALLS).However, the technique has been broadened to include light scattering in a wider angular range and application of the Mie theory in addition to approximating theories such as Fraunhofer and anomalous diffraction.The laser diffraction technique is based on the phenomenon that particles scatter light in all directions with an intensity pattern that is dependent on particle size. All present instruments assume a spherical shape for the particle. Figure 1 illustrates thecharacteristics of single particle scattering patterns: alternation of high and low intensities, with patterns that extend for smaller particles to wider angles than for larger particles[2-7,10,15 in the bibliography].Within certain limits the scattering pattern of an ensemble of particles is identical to the sum of the individual scattering patterns of all particles present. By using an optical model to compute scattering for unit volumes of particles in selected size classes and a mathematical deconvolution procedure, a volumetric particle size distribution is calculated, the scattering pattern of which fits best with the measured pattern (see also annex A).A typical diffraction instrument consists of a light beam (usually a laser), a particulate dispersing device, a detector for measuring the scattering pattern and a computer for both control of the instrumentand calculation of the particle size distribution. Note that the laser diffraction technique cannot distinguish between scattering by single particles and scattering by clusters of primary particles forming an agglomerate or an aggregate. Usually, the resulting particle size for agglomerates is related to the cluster size, but sometimes the size of the primary particles is reflected in the particle size distribution as well. As most particulate samples contain agglomerates or aggregates and one is generally interested in the size distribution of the primary particles, the clusters are usually dispersed into primary particles before measurement.Historically, instruments only used scattering angles smaller than 14°,which limited the application to a lower size of about 1μm. The reason for this limitation is that smaller particles showmost of their distinctive scattering at larger angles (see also annex Z).Many recent instruments allow measurement at larger scattering angles, some up to about 150°,for example through application of a converging beam, more or larger lenses, a second laser beam or more detectors. Thus smaller particles dow n to about μm can be sized. Some instruments incorporate additional information from scattering intensities and intensity differences at various wavelengths and polarization planes in order to improve the characterization of particle sizes in the submicrometre range.Particle size analysis – Laser diffraction methods-Part 1:General principles1 scopeThis part of ISO 13320 provides guidance on the measurement of size distributions of particles in any two-phase system, for example powders, sprays, aerosols, suspensions, emulsions and gas bubbles in liquids, through analysis of their angular light scattering patterns. It does not address the specific requirements of particle size measurement of specific products. This part of ISO13320 is applicable to particle sizes ranging from approximately μm to 3μm.For non-spherical particles, an equivalent-sphere size distribution is obtained because the technique uses the assumption of spherical particles in its optical model. The resulting particle size distribution may be different from those obtained by methods based on other physical principles . Sedimentation, sieving).3,terms, definitions and symbolsFor the purposes of this part of ISO 13320, the followingterms, definitions and symbols apply.terms, definitionsabsorptionintroduction of intensity of a light beam traversing a medium through energy conversion in the mediumcoefficient of variation (变异系数)Noative measure(%) for precision: standard deviation divided by mean value of population and multiplied by 100 or normal distributions of data the median is equal to the mean refractive index(Np)Refractive index of a particle, consisting of a real and an imaginary (absorption) part.Np=n p-ik prelative refractive index (m)complex refractive index of a particle, relative to that the medium。
马尔文MS2000激光粒度颗分仪水中泥沙颗粒分析测试

马尔文MS2000激光粒度颗分仪水中泥沙颗粒分析测试摘要:泥沙颗粒分析是对施测河流中的泥沙粒径的变化范围和各种粒径的组成所占沙重百分数的分析与测定工作,研究不同粒径泥沙在水中运动规律,为水文计算、河流综合治理等科学依据。
马尔文MS2000激光粒度颗粒分析仪的操作简单、工作效率高、测验结果稳定可靠;具有传统测验方法所不具备的高精度、高效率。
通过对泥沙颗粒移液管、筛吸结合测试法和马尔文MS2000激光粒度颗粒分析仪对相同样品进行测试对比分析结果,确定适合陕北地区河流泥沙颗粒分析应用马尔文MS2000激光粒度颗粒分析仪的相关参数。
关键词:马尔文MS2000激光粒度颗分仪;遮光度;仪器参数。
1.引言随着科学技术的不断发展,水文测验方式也在不断提档升级。
泥沙颗粒分析作为水文工作的重要组成部分应该顺势而为追赶超越。
延安水文水资源勘测局所属9处水文站承担泥沙颗粒分析任务,其中神木站、赵石窑站、安塞站、杏河站为常年站,绥德站、吴旗站、志丹站、刘家河站、交口河站为间测站。
引进马尔文MS2000激光粒度颗粒分析仪前泥沙颗粒分析工作采用移液管、筛吸结合的分析方法,该方法的操作繁琐、工作效率低、分析人员劳动强度大,人工操作的偶然误差增多,分析完成后数据处理繁琐,时效性差,影响整体分析质量。
难以满足当前河流综合管理、开发和利用对泥沙颗粒级配资料实效性和施测精度的要求,与新形势下水文工作的发展需求相背离。
2.新技术的应用和优势2.1新技术的应用黄河流域黄河水利委员会所属三门峡、吕梁、榆次水文局,陕西省水文水资源勘测局所属宝鸡局先后开始在黄河流域范围内使用马尔文MS2000激光粒度颗粒分析仪开展泥沙颗粒分析工作。
通过这些年来的应用不断总结经验,改进提升,马尔文MS2000激光粒度颗粒分析仪能够满足水文测验要求。
延安水文水资源勘测局管辖流域同属黄河流域中游区域,为顺应水文测验技术的发展需要,提升工作效率,提高测验质量,延安水文水资源勘测局开展马尔文MS2000激光粒度颗粒分析仪进行泥沙颗粒分析与传统测验方式的比对,验证相关参数在实际工作中的可靠性和合理性,为今后开展新技术的应用打下坚实的基础。
马尔文粒度仪的工作原理及应用

马尔文粒度仪的工作原理及应用马尔文粒度仪的工作原理及应用引言:马尔文粒度仪是一种常用的实验仪器,用于测量和分析物料的颗粒大小分布。
通过了解马尔文粒度仪的工作原理和应用,我们可以深入理解颗粒物料的特性以及在各种领域中的应用。
一、马尔文粒度仪的工作原理马尔文粒度仪的工作原理基于光学原理和图像分析技术。
其主要步骤包括样品准备、图像获取、图像处理和颗粒大小分析。
1. 样品准备:首先,需要将待测试的物料样品取得一定量,并进行预处理。
通常情况下,物料需要经过筛分以去除较大和较小的颗粒,从而保证样品的粒度范围在仪器的测量范围内。
2. 图像获取:将样品放入马尔文粒度仪的样品槽中,并通过内置的光源照明。
仪器会使用高分辨率的相机拍摄样品图像,并将其传输到计算机进行后续处理。
3. 图像处理:通过图像处理软件,仪器会对样品图像进行预处理和增强,以便更好地区分颗粒。
这一步骤可能包括去除图像噪声、调整对比度等。
4. 颗粒大小分析:通过图像分析算法,马尔文粒度仪能够自动识别和测量样品中的颗粒大小。
算法通常基于图像中的像素数目与实际颗粒直径之间的关系,从而计算出颗粒的尺寸。
二、马尔文粒度仪的应用领域马尔文粒度仪在众多领域中具有广泛的应用,包括但不限于以下几个方面:1. 化工工业:在化工工业中,马尔文粒度仪可用于测量颗粒物料的大小分布,从而确定最佳的加工参数,提高产品质量。
例如,在颗粒填料的生产过程中,马尔文粒度仪能够帮助优化填料的颗粒大小分布,以提高填充效率和产量。
2. 制药工业:在制药工业中,马尔文粒度仪可用于颗粒药物的质量控制和稳定性评估。
通过测量药物颗粒的大小分布,可以了解药物在体内的溶解速率、吸收率等关键特性,从而优化制剂设计和药物传递系统。
3. 食品工业:在食品工业中,马尔文粒度仪可用于检测和控制粉末食品的颗粒大小分布,以确保产品的均匀性和口感。
不同的食品产品可能需要具有不同的颗粒大小分布,因此马尔文粒度仪可以帮助制定合适的加工工艺和配方。
英国马尔文Mastersize2000激光粒径分析仪

编号设备名称
1-1英国马尔文Mastersize2000激光粒径分析仪
1-2丹东百特Bettersize2000激光粒径分析仪
1-3日本理学Ultima Ⅳ X射线衍射仪
1-4德国布鲁克S8 TIGER波长色散型X射线荧光光谱仪
1-5 综合检验室
2-1 国产DXR显气孔率、体积密度测定仪
2-2 美国康塔NOV A3000e比表面积及孔隙度测定仪
2-3 丹东百特BT-1600图像颗粒分析系统
2-4 丹东百特BT-1000粉体综合测试仪
2-5 白度测定仪
2-6 粉体综合特性分析设备
3-1 珀金埃尔默Optima 7300DV电感耦合等离子体发射光谱仪
3-2 德国耶拿ZEEnit 700P火焰石墨炉原子吸收光谱仪
3-3 北京吉天AFS-930D原子荧光光度计
3-4 美国热电IS10傅立叶变换红外光谱仪
3-5 法国塞塔拉姆S60同步热分析仪
3-6 美国奥林巴斯BX51偏光显微镜
4-1 德国布鲁克G4 Icarus HF红外碳硫分析仪
4-2 美特斯SHT4106微机控制电液伺服万能试验机
4-3 国产CHY材料荷重软化温度测定仪
4-4 国产DRH-300导热系数测试仪(双护热平板法)
4-5 国产DRS-Ⅲ导热系数测试仪(水流量平板法)
中心内景
中心外景。
应用马尔文MS2000 激光粒度分析仪分析河流泥沙颗粒

Science and Technology & Innovation ┃科技与创新·67·文章编号:2095-6835(2015)24-0067-01应用马尔文MS2000激光粒度分析仪分析河流泥沙颗粒唐鸿琴,曹均伟,付 帅(长江上游水文水资源勘测局攀枝花分局,四川 攀枝花 617000)摘 要:水文工作的开展离不开对水位、泥沙和流量的测量和分析。
通过使用测量仪器,可对河流中的泥沙和颗粒物进行基础检验,但采用传统方法难以进行更加深入的探究。
因此,引进了MS2000激光粒度分析仪,对该设备的具体情况进行了简单介绍,并在实际案例的引导下进行了应用研究。
关键词:马尔文测量软件;MS2000激光粒度分析仪;激光器;光电转换器中图分类号:TV149.3 文献标识码:A DOI :10.15913/ki.kjycx.2015.24.067随着我国社会经济的发展,环境问题已成为人们关注的焦点之一。
无论是长江、黄河,还是珠三角地区的河流,泥沙堆积、水量下降等问题均已成为水文工作者的研究课题。
面对生态环境的不断恶化,河流治理越发紧急,我们必须采用先进的科学技术,帮助研究人员获得准确的数据,从而为解决环境问题提供可行的方案。
1 MS2000激光粒度分析仪简介 1.1 仪器系统的组成仪器系统分为主机、附件、计算机和马尔文测量软件。
主机的主要功能是测量样品粒径,主要包括激光器和光电转换器等元器件;附件主要是指进样器,它最大的优势是可对样品进行分散处理,并将其运送至主机测量,包括搅拌器、超声器和抽取泵等;计算机和马尔文测量软件也是系统的重要组成部分,可监控整个测量过程,并显示和分析数据。
1.2 仪器系统的结构和运行过程在光学原理中,激光通常为单色光。
当光路变化时会形成平行光,并射向透光的试样槽。
由于颗粒间的介质有所差异,因此,它在遇到光时会产生不同角度的折射现象。
当我们在不同的方向和位置安放光电转换器时,可接收到衍射过来的信息,即完成信息传输的过程。
马尔文粒度MS3000资料 v5

激光衍射–检测散射光数据
›
散射光信号检测示意图
遮光度检测器
激光光源
入射光光强检测
样品颗粒
傅立叶透镜
散射光检测阵列: 上面分布了若干光电检测器,每个检测 器按散射角度由小到大的顺序排列。 (检测器编号越大,散射角越大)
Mastersizer 3000 激光粒度仪-光电检测原理
›
使用光电二极管检测散射光光强信号
样品池 背向检测器
470nm 蓝光光源
侧向检测器
Mastersizer 3000散射光数据
› ›
Mastersizer 软件会即使显示测量时的散射光数据 检测器编号越大对应的散射角越大…
小角度
大角度
Mastersizer 3000散射光数据-大粒径样品
粒径越大,散射角越小,对应编号越小的检测器
Mastersizer 3000散射光数据-小粒径样品
粒径
ቤተ መጻሕፍቲ ባይዱ
粒径 弗朗霍夫近似仅适用于 通过样品边缘的经典衍射
另一个问题
›
依据米氏理论,可以根据已知粒径,计算出对应的散 射光光强分布,但我们需要根据散射光分布来得到粒 径分布。
已知颗粒 粒径
通过米氏理论计算
对应的散 射光分布
样品的粒 径分布
?
仪器硬件光学 结构测量得到 散射光分布
›
通过反演运算,根据光强分布预测粒径分布。
散射光
入射光 吸收
散射光
散射理论 › 过去由于受计算能力的限制,也曾使用过弗朗霍夫近 似。两者相比,米氏理论包含了对光散射行为最严密 和全面的预测,被证明对于更大范围的样品,特别是 小于50um的样品有更高的准确性。(ISO13320-1)
马尔文激光粒度费氏粒度

马尔文激光粒度费氏粒度
《马尔文激光粒度费氏粒度》
马尔文激光粒度费氏粒度是一种用于测量粉体颗粒大小的技术。
它是通过使用激光光源,对粉体样品进行光散射来测量粒度分布的一种方法。
这种技术可以非常准确地测量颗粒的大小范围,并且可以在不破坏样品的情况下进行测量。
马尔文激光粒度费氏粒度的原理是利用散射的光强度与颗粒的大小成正比的关系来测量颗粒的大小。
当激光光源照射到粉体样品上时,颗粒会散射出光线,这些散射光线会被探测器捕获并分析,从而得到粉体颗粒的尺寸分布。
这种技术可以在很短的时间内测量大量的样品,并且对于不同种类的颗粒也有很高的适用性。
因此,马尔文激光粒度费氏粒度成为了许多相关研究和工业领域常用的颗粒大小分析方法之一。
总的来说,马尔文激光粒度费氏粒度技术以其高精度、高效率和广泛适用性,成为了颗粒大小分析领域中一种不可或缺的技术手段,对于科研和工业生产都有着重要的意义。
英国马尔文仪器有限公司 Mastersizer 3000激光粒度仪

英国马尔文仪器有限公司 Mastersizer 3000激光粒度仪佚名
【期刊名称】《流程工业》
【年(卷),期】2012(000)003
【摘要】英国马尔文仪器有限公司于1970年推出世界第一台商用激光粒度仪。
随后第一套Mastersizer系统在1988年诞生.自此.马尔文仪器一直引领着激光衍射粒度分析领域的发展。
【总页数】1页(P65-65)
【正文语种】中文
【中图分类】TH744.5
【相关文献】
1.地质学家选择马尔文公司-Mastersizer2000激光粒度仪 [J],
2.马尔文激光粒度分析仪Mastersizer 2000及其应用 [J], 万真;张天一;张志会;段瑞林
3.用马尔文MS2000激光粒度分析仪测定颜填料粉体粒度 [J], 赵蓉旭;滕令坡;敖国龙
4.马尔文Mastersizer3000激光粒度仪荣耀发布 [J], 无
5.马尔文激光粒度仪在测定催化裂化催化剂粒度分布中的应用 [J], 刘慧;李玉萍;姚红林;李峰
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
laParticle size analysis-Laser diffraction methods(ISO-13320-1)IntroductionLaser diffraction methods are nowadays widely used for particle sizing in many different applications. The success of the technique is based on the tact that it can be applied to various kinds of particulate systems, is fast and can be automated and that a variety of commercial instruments is available. Nevertheless, the proper use of the instrument and the interpretation of the results require the necessary caution.Therefore, there is a need for establishing an international standard for particle size analysis by laser diffraction methods. Its purpose is to provide a methodology for adequate quality control in particle size analysis.Historically, the laser diffraction technique started by taking only scattering at small angles into consideration and, thus, has been known by the following names:-fraunhofer diffraction;-(near-) forward light scattering;-low-angle laser light scattering (LALLS).However, the technique has been broadened to include light scattering in a wider angular range and application of the Mie theory in addition to approximating theories such as Fraunhofer and anomalous diffraction.The laser diffraction technique is based on the phenomenon that particles scatter light in all directions with an intensity pattern that is dependent on particle size. All present instruments assume a spherical shape for the particle. Figure 1 illustrates the characteristics of single particle scattering patterns: alternation of high and low intensities, with patterns that extend for smaller particles to wider angles than for larger particles[2-7,10,15 in the bibliography].Within certain limits the scattering pattern of an ensemble of particles is identical to the sum of the individual scattering patterns of all particles present. By using an optical model to compute scattering for unit volumes of particles in selected size classes and a mathematical deconvolution procedure, a volumetric particle size distribution is calculated, the scattering pattern of which fits best with the measured pattern (see also annex A).A typical diffraction instrument consists of a light beam (usually a laser), a particulate dispersing device, a detector for measuring the scattering pattern and a computer for both control of the instrumentand calculation of the particle size distribution. Note that the laser diffraction technique cannot distinguish between scattering by single particles and scattering by clusters of primary particles forming an agglomerate or an aggregate. Usually, the resulting particle size for agglomerates is related to the cluster size, but sometimes the size of the primary particles is reflected in the particle size distribution as well. As most particulate samples contain agglomerates or aggregates and one is generally interested in the size distribution of the primary particles, the clusters are usually dispersed into primary particles before measurement.Historically, instruments only used scattering angles smaller than 14°,which limited the application to a lower size of about 1μm. The reason for this limitation is that smaller particles show most of their distinctive scattering at larger angles (see also annex Z).Many recent instruments allow measurement at larger scattering angles, some up to about 150°,for example through application of a converging beam, more or larger lenses, a second laser beam or more detectors. Thus smaller particles down to about μm can be sized. Some instruments incorporate additional information from scattering intensities and intensity differences at various wavelengths and polarization planes in order to improve the characterization of particle sizes in the submicrometre range.Particle size analysis – Laser diffraction methods-Part 1:General principles1 scopeThis part of ISO 13320 provides guidance on the measurement of size distributions of particles in any two-phase system, for example powders, sprays, aerosols, suspensions, emulsions and gas bubbles in liquids, through analysis of their angular light scattering patterns. It does not address the specific requirements of particle size measurement of specific products. This part of ISO13320 is applicable to particle sizes ranging from approximately μm to 3μm.For non-spherical particles, an equivalent-sphere size distribution is obtained because the technique uses the assumption of spherical particles in its optical model. The resulting particle size distribution may be different from those obtained by methods based on other physical principles . Sedimentation, sieving).3,terms, definitions and symbolsFor the purposes of this part of ISO 13320, the following terms, definitions and symbols apply.terms, definitionsabsorptionintroduction of intensity of a light beam traversing a medium through energy conversion in the mediumcoefficient of variation (变异系数)Noative measure(%) for precision: standard deviation divided by mean value of population and multiplied by 100 or normal distributions of data the median is equal to the meanrefractive index(Np)Refractive index of a particle, consisting of a real and an imaginary (absorption) part.Np=n p-ik prelative refractive index (m)complex refractive index of a particle, relative to that the medium。