线性代数知识点总结材料72879

合集下载

线性代数知识点总结完整

线性代数知识点总结完整

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式()()111211222211221122010n t n n nn nn nna a a a a D a a a a a a a ==-=1212n nλλλλλλ=;()()1122121n n n nλλλλλλ-=-3.行列式的性质定义 记111212122212n n n n nna a a a a a D a a a =;112111222212n n T nnnna a a a a a D a a a =;行列式TD 称为行列式D 的转置行列式.. 性质1行列式与它的转置行列式相等..性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ;行列式变号.. 推论 如果行列式有两行列完全相同成比例;则此行列式为零..性质3 行列式某一行列中所有的元素都乘以同一数()⨯j k r k ;等于用数k 乘此行列式;推论1D 的某一行列中所有元素的公因子可以提到D 的外面;推论2 D 中某一行列所有元素为零;则=0D ..性质4若行列式的某一列行的元素都是两数之和;则1112111212222212()()()i i ni i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+1112111112112122222122221212i n i ni n i n n n ninnn nninna a a a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的某一列行的各元素乘以同一数然后加到另一列行对应的元素上去;行列式的值不变..算得行列式的值..4. 行列式按行列展开余子式 在n 阶行列式中;把元素ij a 所在的第i 行和第j 列划去后;留下来的1n -阶行列式叫做元素ij a 的余子式;记作ij M ..代数余子式 ()1i jij ij A M +=-记;叫做元素ij a 的代数余子式..引理一个n 阶行列式;如果其中第i 行所有元素除i;j (,)i j 元外ij a 都为零;那么这行列式等于ij a 与它的代数余子式的乘积;即ij ij D a A =..高阶行列式计算首先把行列上的元素尽可能多的化成0;保留一个非零元素;降阶定理n 阶行列式 111212122212=n n n n nna a a a a a D a a a 等于它的任意一行列的各元素与其对应的代数余子式的乘积之和;即1122i i i i in in D a A a A a A =+++;(1,2,,)i n =1122j j j j nj nj D a A a A a A =+++或;(1,2,,)j n =..第二章 矩阵1.矩阵111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭行列式是数值;矩阵是数表; 各个元素组成方阵 :行数与列数都等于n 的矩阵A .. 记作:A n.. 行列矩阵:只有一行列的矩阵..也称行列向量.. 同型矩阵:两矩阵的行数相等;列数也相等.. 相等矩阵:AB 同型;且对应元素相等..记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零..单位阵:主对角线上元素都是1;其它元素都是0;记作:E注意 矩阵与行列式有本质的区别;行列式是一个算式;一个数字行列式经过计算可求得其值;而矩阵仅仅是一个数表;它的行数和列数可以不同..2. 矩阵的运算矩阵的加法 111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时;才能进行加法运算.. 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记;A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-..数与矩阵相乘111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫ ⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵;,λμ为数()()()1A A λμλμ=;()()2A A A λμλμ+=+;()()3A B A B λλλ+=+..矩阵相加与数乘矩阵统称为矩阵的线性运算..矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵;(b )ij B =是一个s n ⨯矩阵;那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =;其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑;()1,2,;1,2,,i m j n ==;并把此乘积记作C AB = 注意1..A 与B2..矩阵的乘法不满足交换律;即在一般情况下;AB BA ≠;而且两个非零矩阵的乘积可能是零矩阵..3..对于n 阶方阵A 和B;若AB=BA;则称A 与B 是可交换的..矩阵乘法的运算规律()()()1AB C A BC =; ()()()()2AB A B A B λλλ==()()3A B C AB AC +=+;()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯==()5若A 是n 阶方阵;则称 A k 为A 的k 次幂;即kk A A AA =个;并且mk m kA A A+=;()km mk AA =(),m k 为正整数..规定:A 0=E 只有方阵才有幂运算注意 矩阵不满足交换律;即AB BA ≠;()kk k AB A B ≠但也有例外转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵;叫做A 的转置矩阵;记作A T ;()()1TT A A =;()()2T T T A B A B +=+;()()3T T A A λλ=;()()4TT T AB B A =..方阵的行列式由n 阶方阵A 的元素所构成的行列式;叫做方阵A 的行列式;记作A注意 矩阵与行列式是两个不同的概念;n 阶矩阵是n 2个数按一定方式排成的数表;而n 阶行列式则是这些数按一定的运算法则所确定的一个数..()1T A A =;()2n A A λλ=;(3)AB A B B A BA ===对称阵 设A 为n 阶方阵;如果满足A =A T ;那么A 称为对称阵.. 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵.. 性质 AA A A A E **==易忘知识点总结1只有当两个矩阵是同型矩阵时;才能进行加法运算..2只有当第一个矩阵的列数等于第二个矩阵的行数时;两个矩阵才能相乘;且矩阵相乘不满足交换律.. 3矩阵的数乘运算与行列式的数乘运算不同..逆矩阵:AB =BA =E;则说矩阵A 是可逆的;并把矩阵B 称为A 的逆矩阵..1A B -=即..说明1 A ;B 互为逆阵; A = B -12 只对方阵定义逆阵..只有方阵才有逆矩阵 3.若A 是可逆矩阵;则A 的逆矩阵是唯一的..定理1矩阵A 可逆的充分必要条件是0A ≠;并且当A 可逆时;有1*1AA A-=重要奇异矩阵与非奇异矩阵 当0A =时;A 称为奇异矩阵;当0A ≠时;A 称为非奇异矩阵..即0A A A ⇔⇔≠可逆为非奇异矩阵..求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。

线性代数知识点总结

线性代数知识点总结

向量的模长
• 定义:向量的大小
• 计算公式:|v| = √(x² + y² + ... + n²)
向量的加法运算
向量加法的定义
• 两个向量的和是一个新的向量,其坐标等于两个向量坐标的和
• 向量加法满足交换律和结合律
向量加法的计算
• 直接将两个向量的对应坐标相加
• 可以用坐标法表示向量加法
向量加法的性质
正定二次型
• 二次型的标准化是将二次型表示为标准二次型的形式
• 正定二次型是指二次型对应的矩阵是正定矩阵
• 标准二次型的形式为f(x) = x′Ax + λx′x
• 正定二次型的二次函数在向量空间的原点处取得最小值
08
线性规划
线性规划问题的定义与模型
线性规划问题的定义
• 线性规划问题是一种优化问题,要求求解一组变量的最优值
06
特征值与特征向量
特征值与特征向量的定义与性质
01
特征值的定义
• 特征值是线性变换特征方程的根
• 特征值表示线性变换对向量的放大倍数
02
特征向量的定义
• 特征向量是线性变换特征方程的解向量
• 特征向量表示线性变换对向量的方向
03
特征值与特征向量的性质
• 特征值具有唯一性和稳定性
• 特征向量具有线性无关性
二次型的定义与表示
二次型的定义
二次型的表示
• 二次型是一种二次函数,表示为f(x) = Ax² + Bx + C
• 二次型可以用矩阵表示,为f(x) = x′Ax + x′Bx + x′Cx
• 其中,A、B、C是常数矩阵
• 其中,A、B、C是二次型的系数矩阵

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是研究向量空间、线性变换、矩阵、线性方程组及其解的一门数学学科。

它是高等数学的基础课程之一,广泛应用于物理学、工程学、计算机科学等领域。

下面将全面总结线性代数的知识点。

1.向量向量是线性代数的基本概念之一,它表示有方向和大小的物理量。

向量可以表示为一个有序的元素集合,也可以表示为一个列向量或行向量。

向量的加法、减法、数乘等运算满足一定的性质。

2.向量空间向量空间是一组向量的集合,其中的向量满足一定的性质。

向量空间中的向量可以进行线性组合、线性相关、线性无关等运算。

向量空间的维数是指向量空间中线性无关向量的个数,也称为向量空间的基的个数。

3.矩阵矩阵是线性代数中的另一个重要概念,它是由若干个数排成的矩形阵列。

矩阵可以表示线性方程组、线性变换等。

矩阵的加法、数乘运算满足一定的性质,矩阵的乘法满足结合律但不满足交换律。

4.线性方程组线性方程组是由线性方程组成的方程组。

线性方程组可以表示为矩阵乘法的形式,其中未知数对应为向量。

线性方程组的解可以通过高斯消元法、矩阵的逆等方法求解。

5.行列式行列式是一个包含数字的方阵。

行列式的值可以通过一系列的数学运算求得,它可以表示方阵的一些性质,例如可逆性、行列式的大小等。

6.矩阵的特征值与特征向量矩阵的特征值和特征向量是矩阵的重要性质。

特征值表示线性变换后的方向,特征向量表示与特征值对应的方向。

通过求解特征值和特征向量可以分析矩阵的性质,例如对角化、矩阵的相似等。

7.线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以通过矩阵的乘法表示,矩阵中的元素代表了向量的变换规则。

8.最小二乘法最小二乘法是一种通过最小化误差的平方和来求解线性方程组的方法。

最小二乘法可以用于求解多项式拟合、数据拟合等问题,它可以通过求矩阵的伪逆来得到解。

9.正交性与正交变换正交性是指向量或函数满足内积为零的性质。

正交变换是一种保持向量长度和夹角不变的线性变换。

2024年线性代数知识点总结汇总.docx

2024年线性代数知识点总结汇总.docx

线性代数知识点总结1行列式<-)行列式概念和性质1、逆序数:所有的逆序的总数2,行列式定义:不一样行不一样列元素乘积代数和3、行列式性质:(用于化简行列式〉(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k.等丁•用数k 乘此行列式(4)拆列分派:行列式中假如某一行(列)的元素都是两组数之和,那么这个行列式就等下两个行列式之和.(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0,(二)重要行列式4、上(T)Jfi(/对角线)行列式的值等r主对角线元素的乘积*K"-1)5、副时角线行列式的俏等于副对角线元素的乘枳乘(T):6.1.a P1.a8屣开式:(A是m阶矩阵,B是n阶矩阵),则=W-M=(Tr B i4同7、n 阶(n32)范镌蒙镌行列式X”D"=bbb∙∙∙ba∙∙∙b(三)按行(列)展开9,按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式(1)∣kA ∣=k n ∣A ∣(2)∣AB ∣=∣A ∣∙∣B ∣(3)∣A τ∣=∣A ∣Ii★8、 对角线的元素为a. 数学归纳法证明H 他元素为b 的行列式的值:=[Λ+(M -1)6](Λ-6)W ^1(4) ∣A1∣=∣A∣∙1(5) ∣A∙∣=∣A∣n1.Mh11Λ(6)若A的特性值A1、A2、……An.W1. *-1(7)若A与B相似,则IA1.=IB1.(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯•解D),,XJ=-^∙,J=I,2,…,〃(2)假如非齐次线性方程组无解或有两个不一样解,则它的系数行列苴必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有。

线性代数知识点归纳,超详细

线性代数知识点归纳,超详细

线性代数复习要点第一部分行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算行列式的定义1.行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.④若都是方阵(不必同阶),则⑤关于副对角线:⑥范德蒙德行列式:证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。

⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶行列式,恒有:,其中为阶主子式;3. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4. 代数余子式和余子式的关系:第二部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵方程的求解1.矩阵的定义由个数排成的行列的表称为矩阵.记作:或①同型矩阵:两个矩阵的行数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满足:交换律、消去律, 即公式不成立.a. 分块对角阵相乘:,b. 用对角矩阵○左乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的○行向量;c. 用对角矩阵○右乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.④方阵的幂的性质:,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,, .分块对角阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立)r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <;⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n nnm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nm n mmm m r nr r n nn nnnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r rr r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。

它广泛应用于各个领域,如物理、计算机科学、工程学等。

线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。

下面将详细介绍线性代数的相关知识点。

一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。

行列式记作|A|,其中A是一个n×n的方阵。

1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。

1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。

1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。

1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。

(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。

(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。

(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。

1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。

二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。

矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。

2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。

2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。

矩阵的乘法满足交换律、结合律和分配律。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数是数学中的一个分支,主要研究向量和线性方程组的性质,涉及到向量空间、矩阵、线性变换等多个重要概念和性质。

本文将对线性代数的基本知识点进行总结,并探讨其在实际应用中的重要性。

1. 向量空间:向量空间是线性代数的基础概念之一,它指的是一组向量的集合,其中任意向量的线性组合仍然属于该集合。

向量空间的定义包括了满足加法和标量乘法的一些基本性质,如封闭性、结合律、分配律等。

向量空间的研究使得我们能够通过研究向量的线性组合来描述和分析更加复杂的问题。

2. 矩阵:矩阵是线性代数中的另一个重要概念,它由行和列组成的矩形阵列。

矩阵可以用来表示线性变换、解决线性方程组等问题。

矩阵的加法和乘法运算具有一些特殊的性质,如结合律、交换律等。

线性代数的很多概念和方法都是基于矩阵的表示和操作。

3. 线性方程组:线性方程组是线性代数中最基本的问题之一,它是由一组线性方程组成的方程组。

线性方程组的求解可以通过矩阵的表示和变换来进行,其中高斯消元法和矩阵的逆矩阵是常用的求解方法。

线性方程组的解可以有唯一解、无解或无穷解三种情况,这取决于矩阵的秩和自由变量个数。

4. 线性变换:线性变换是线性代数中的一个重要概念,它是指将一个向量空间映射到另一个向量空间的变换。

线性变换具有保持加法和标量乘法的性质,它可以通过矩阵的乘法来表示。

线性变换在计算机图形学、数据处理、信号处理等领域都有广泛的应用。

5. 特征值和特征向量:特征值和特征向量是线性代数中研究矩阵性质的重要工具。

特征值表示一个矩阵在某个特定方向上的伸缩比例,特征向量表示在该方向上的不变性。

通过计算矩阵的特征值和特征向量,我们可以了解矩阵的对称性、相似性等性质,进而应用于诸如主成分分析、图像处理等领域。

6. 线性相关和线性无关:线性相关和线性无关是描述向量集合中向量之间关系的概念。

如果一个向量可以通过其他向量的线性组合来表示,则称这些向量是线性相关的;如果一个向量不能由其他向量的线性组合来表示,则称这些向量是线性无关的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TTTB A B A +=+)(T T kA kA =)( TT T A B AB =)((反序定理)方幂:2121k k k kA AA +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数(若……) 单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)初等变换1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列)初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的(对换阵 倍乘阵 倍加阵) 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵。

5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A (代数余子式) 特殊矩阵的逆矩阵:(对1和2,前提是每个矩阵都可逆)1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A A D2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A (A 可逆) 5、1*-=n AA 6、()()A AA A1*11*==--(A 可逆) 7、()()**T T A A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn 只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是m*n 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A (行变左乘,列变右乘)第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵r(AB)=r(B)=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 r(AB)≠r(B),无解齐次线性方程组:仅有零解充要r(A)=n 有非零解充要r(A)<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组。

希腊字母表示(加法数乘) 特殊的向量:行(列)向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关(无):定义179P 向量组的秩:极大无关组(定义P188)定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出。

秩:极大无关组中所含的向量个数。

定理:设A 为m*n 矩阵,则r A r =)(的充要条件是:A 的列(行)秩为r 。

现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关(无)注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21(适合维数低的)2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法(n 个m 维向量组)180P :线性相关(充要)n r T n T T<⇒)....(21ααα线性无关(充要)n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关。

定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关。

极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的。

齐次线性方程组(I )解的结构:解为...,21αα (I )的两个解的和21αα+仍是它的解; (I )解的任意倍数αk 还是它的解;(I )解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数。

非齐次线性方程组(II )解的结构:解为...,21μμ (II )的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是(II )的一个解。

定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解。

若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是(II )的全部解。

第四章 向量空间向量的内积 实向量定义:(α,β)=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性(α,k β)=k(α,β); (k α,k β)=2k (α,β);(α+β,δγ+)=(α,γ)+(α,δ)+(β,γ)+(β,δ); ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是(α,α)=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是(α,β)=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=(ij a )是正交矩阵的充要条件是A的列(行)向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX ,即(λI-A )=0有非零解,则称λ为A 的一个特征值,此时,非零解称为A 的属于特征值λ的特征向量。

相关文档
最新文档