三个重要不等式
三个重要不等式及应用

n(n + 1) = (n + 1)a n +1 + d 2
(2)
n n(n + 1) an +1 − a1 ⋅ s = (n + 1)an +1 + 2 n n +1 = (3an +1 − a1 ) 2 由柯西不等式 S = n + 1 (3an +1 − a1 ) 2 n +1 2 ≤ [ 3 2 + ( − 1) 2 ]( a n +1 + a 12 ) 2 n +1 ≤ 10 M 2 a n +1 a1 2 2 = 当且仅当 a1 + a n+1 = M , 都满足时 ,上式等号成立 3 −1
= ( S1 + a )( S2 + b )
2 k 2 k
= S1S2 + S1bk2 + S2 ak2 + ak2bk2
≥ S32 + 2 ak2bk2 S1S2 + (ak bk )2
≥ S32 + 2ak bk S3 + (ak bk )2 = (S3 + ak bk )2
= ( ∑ a b + a b )2 i i k k
证明:先证左端 设乱序和为 S,要S最大
a L 我们证明必须 an 配bn ,n −1 配bn−1, ,a 1 配 b1
设an 配 bi ( in < n ) ,配某个 ak ( k < n ), bn
n
则有 anbi + bn ak ≤ ak bi + anbn
n n
这是因为 anbn + ak bi − ak bn − anbi = ( an − ak ) ( bn − bi ) ≥ 0
重要不等式使用条件

重要不等式使用条件一、引言在数学中,不等式是一种比较两个数或者变量关系的数学表达式。
不等式的研究对于解决各种实际问题具有重要意义。
在数学中,有许多重要的不等式被广泛应用于各个领域,如数论、代数、几何和概率论等。
本文将介绍一些常见的重要不等式及其使用条件。
二、柯西-施瓦茨不等式柯西-施瓦茨不等式是解析几何中的一个基本定理,它描述了内积的性质。
该不等式可以用来证明其他重要定理,如三角形不等式和均值不等式。
不等式表述对于实数集合上的内积空间V中的向量a和b,柯西-施瓦茨不等式可以表示为:|⟨a,b⟩|≤∥a∥∥b∥其中⟨a,b⟩表示向量a和b的内积,∥a∥表示向量a的模。
使用条件柯西-施瓦茨不等式成立的条件是向量空间V上定义了内积,并且满足以下性质:1.正定性:对于任意非零向量a,有⟨a,a⟩>0。
2.齐次性:对于任意标量k和向量a,有⟨k⋅a,b⟩=k⋅⟨a,b⟩。
3.加法性:对于任意向量a、b和c,有⟨a+b,c⟩=⟨a,c⟩+⟨b,c⟩。
满足以上条件的内积空间可以是实数集合上的内积空间或复数集合上的内积空间。
三、三角形不等式三角形不等式是几何学中一个基本的定理,它描述了三角形中边长之间的关系。
该不等式在计算几何学、概率论和信息论等领域得到广泛应用。
不等式表述对于任意三角形的边长a、b和c,三角形不等式可以表示为:|a−b|<c<a+b使用条件三角形不等式成立的条件是边长a、b和c满足以下条件:1.非负性:边长必须大于等于零,即a,b,c≥0。
2.两边之和大于第三边:任意两边之和必须大于第三条边,即a+b>c,a+c>b,b+c>a。
满足以上条件的三个边长可以构成一个有效的三角形。
四、均值不等式均值不等式是数论中的一个重要定理,它描述了一组数的平均值与其他函数之间的关系。
该不等式在概率论、统计学和经济学中得到广泛应用。
不等式表述对于一组实数x1,x2,…,x n,其中n≥2,均值不等式可以表示为:x1+x2+⋯+x nn ≥√x1⋅x2⋅…⋅x n n使用条件均值不等式成立的条件是实数x1,x2,…,x n满足以下条件:1.非负性:所有实数必须大于等于零,即x i≥0。
53几个重要的不等式

5.3几个重要的不等式具备了不等式的基本知识和技能之后,就可以进一步欣赏一些优美而又魅力无限的重要结果。
正如音乐家能够将很少几组音符变化发展为动听美妙的旋律一样,数学家则往往能够通过不多几步逻辑推理揭示出简明优美的结果。
这里要介绍的一些有关不等式的结果就是数学家依靠并不复杂的逻辑推理得到的,然而在其来龙去脉被领悟以前,却常常象变戏法似的神秘莫测。
除了前面已经介绍的贝努利不等式之外,本节将讨论的一些重要不等式包括:柯西不等式,排序不等式,平均不等式等。
这些重要的不等式不仅形式优美、应用广泛,而且也是今后进一步学习高等数学的重要工具。
1. 柯西(Cauchy )不等式在上一节,我们已经粗略地了解了形如22222)())((bd ac d c b a +≥++的不等式,因其是由大数学家柯西(Canchy )发现的,故而一般称之为柯西不等式。
柯西不等式有着丰富的几何背景。
可以通过几何解释加深对其本质特征的认识与理解。
请同学们回忆一下我们曾经学过的余弦定理的内容?我们将利用它来解释柯西不等式。
如图,在三角形OPQ 中,θ=∠QOP d c Q b a P ),,(),,(,则 ,,2222d c OQ b a OP +=+=.)()(22d b c a PQ -+-=将以上三式代入余弦定理2222⋅-+=OP OQ OP PQ2222cos dc b a bdac +⋅++=θ或.))(()(cos 222222d c b a bd ac +++=θ 因为1cos 02≤≤θ,所以,1))(()(22222≤+++d c b a bd ac ,于是22222)())((bd ac d c b a +≥++.讨论:借助图形分析,柯西不等式中等号成立的条件是什么?柯西不等式应用相当广泛,我们先通过一些简单的例子加以体会。
例1.已知.1,12222=+=+y x b a 求证:.1≤+by ax (1) 证明:由柯西不等式,.1))(()(22222=++≤+y x b a by ax 所以(1)成立。
第二讲___三个重要的不等式

《第二讲 三个不重要的不等式》
主编:贾广素
2 2 2 2 2 1 x 1 x 1 x 1 x 1 x x 1 x 1 x 1 2 1 1 3 3 3 3 3 3 3 3 5 5 3x 3 x 3 3 3 3 3 3 2 2 2 2
log b a log c b log a c 9 + + )≥ . abc ab bc ca
例 4.设 x1 , x2 , , xn 为正数,求证: 证明: 同理,
x x x x x x2 x3 x n 1 ( 1 ) n ( 2 ) n ( n 1 ) n ( n ) n . x1 x2 xn 1 xn x2 x3 xn x1
i 1 i 1 n i 1 n i 1 j 1 n i 1 j 1
n
n
n
n
n
n
n
1 2 2 ( ai2 b 2 j a j bi 2 ai bi b j a j ) 2 i 1 j 1 i 1 j 1 i 1 j 1
n n n
1 n n 2 2 (ai b j 2ai b j a j bi a 2j bi2 ) 2 i 1 j 1 1 n n (ai b j a j bi )2 0. 2 i 1 j 1
(8)对实数 a, x ,有 x 2 2ax a 2 ;
1 b2 (9)对实数 a, b 及 0 ,有 ab ( 2 a 2 2 ). 2
其中第(3)已在上一讲例 3 中用过. 例 1.(2007 年广西预赛)若点 P(x,y)在直线 x+3y=3 上移动,则函数 f(x,y)= 3 9
i 1
n
几个重要的不等式

几个重要的不等式不等式是数学中非常重要的概念,它们在数学、物理、经济学等领域都有广泛的应用。
本文将介绍几个重要的不等式,包括柯西-施瓦茨不等式、均值不等式、柯西反向不等式和霍尔德不等式。
一、柯西-施瓦茨不等式柯西-施瓦茨不等式是数学中最基本的不等式之一。
它可以用于证明其他许多重要的定理和不等式。
该不等式表述为:对于任意两个实数序列a1, a2, …, an和b1, b2, …, bn,有(a1b1 + a2b2 + … + anbn)² ≤ (a1² + a2² + … + an²)(b1² + b2² + … + bn²)其中“=”号成立当且仅当ai/bi为常数或bi=0。
该不等式可以推广到内积空间中,即对于任意两个向量x和y,有|x·y| ≤ ||x|| ||y||其中“=”号成立当且仅当x与y线性相关。
二、均值不等式均值不等式是一类基本的算术平均值与几何平均值之间的关系。
它包括算术平均不等式、几何平均不等式和调和平均不等式。
1. 算术平均不等式对于任意n个非负实数a1, a2, …, an,有(a1 + a2 + … + an)/n ≥√(a1a2…an)其中“=”号成立当且仅当a1 = a2 = … = an。
该不等式表明,n个非负实数的算术平均值大于等于它们的几何平均值。
2. 几何平均不等式对于任意n个正实数a1, a2, …, an,有(a1a2…an)^(1/n) ≤ (a1 + a2 + … + an)/n其中“=”号成立当且仅当a1 = a2 = … = an。
该不等式表明,n个正实数的几何平均值小于等于它们的算术平均值。
3. 调和平均不等式对于任意n个正实数a1, a2, …, an,有n/(1/a1 + 1/a2 + … + 1/an) ≤ (a1 + a2 + … + an)/n ≤ (n/(1/a1 + 1/a2 + … + 1/an))其中“=”号成立当且仅当a1 = a2 = … = an。
柯西不等式 赫尔德 卡尔松

柯西不等式赫尔德卡尔松柯西不等式、赫尔德不等式和卡尔松不等式是数学中的重要概念,它们在分析、几何和概率论等领域都有着广泛的应用。
本文将从深度和广度两个方面对这三个不等式进行全面评估,并撰写有价值的文章来帮助您更好地理解这些重要的数学概念。
一、柯西不等式柯西不等式是数学分析中的一个重要定理,它是用来衡量两个向量内积的大小关系的不等式。
具体来说,对于两个n维实数向量a和b,它们的内积可以表示为a·b=∑(a_i * b_i),而柯西不等式则可以表示为|a·b|<=||a||*||b||,其中||a||和||b||分别表示向量a和b的模长。
柯西不等式在几何学、泛函分析和概率论中都有广泛的应用,它可以帮助我们理解向量之间的相对位置关系,以及在求解最优解或估计问题中的重要作用。
在柯西不等式的证明和推广过程中,我们可以利用欧几里德空间的内积和范数的性质,结合线性代数的知识,展开严谨的数学推导和分析。
柯西不等式还可以推广到希尔伯特空间以及一般的内积空间中,有着深刻而广泛的数学意义。
二、赫尔德不等式赫尔德不等式是另一个重要的不等式定理,它是用来衡量函数间积分的大小关系的不等式。
具体来说,对于两个可积函数f和g以及两个常数p和q,赫尔德不等式可以表示为||∫(f*g)dx||<=||f||_p*||g||_q,其中||f||_p和||g||_q分别表示函数f和g在L^p和L^q范数下的大小,而f*g表示f和g的卷积或乘积运算。
赫尔德不等式在数学分析、数学物理和信号处理等领域有着重要的应用,它可以帮助我们理解积分函数之间的大小关系,以及在估计和逼近问题中的关键作用。
赫尔德不等式的证明和推广过程中,我们需要利用Lebesgue积分和Lebesgue测度的性质,结合实变函数和泛函分析的理论,展开严密的数学推导和分析。
赫尔德不等式还可以推广到广义的Lebesgue空间以及一般的测度空间中,有着深刻而广泛的数学意义。
4个基本不等式

4个基本不等式不等式是数学中的一种重要概念,用于描述数值之间的相对大小关系。
在数学中,我们常常会遇到各种各样的不等式,其中最基本的有四个,被称为”四个基本不等式”。
这四个基本不等式分别是:加法不等式、减法不等式、乘法不等式和除法不等式。
在本文中,我们将详细介绍这四个基本不等式及其应用。
1. 加法不等式加法不等式是最简单也是最容易理解的一种不等式。
它用于描述两个数相加后与另一个数的大小关系。
加法不等式的性质:•如果 a > b,则 a + c > b + c (对任意实数 c 成立)•如果 a > b 且 c > d,则 a + c > b + d加法不等式的应用:加法不等式常常被用于解决实际问题。
例如,假设小明去商场购买商品,他手上有100 元钱,并且他想要买一件价格为 x 元的商品。
如果 x 小于或者等于 100 元,则小明能够购买这件商品;反之,如果 x 大于 100 元,则小明将无法购买该商品。
2. 减法不等式减法不等式是加法不等式的一种推广,它用于描述两个数相减后与另一个数的大小关系。
减法不等式的性质:•如果 a > b,则 a - c > b - c (对任意实数 c 成立)•如果 a > b 且 c > d,则 a - c > b - d减法不等式的应用:减法不等式同样常常被用于解决实际问题。
例如,假设小明和小红参加了一次数学竞赛,他们分别得到了 x 分和 y 分。
如果小明得分比小红多 10 分以上,则可以说小明在这次竞赛中获胜;反之,如果小明得分比小红少于或者等于 10 分,则可以说小红在这次竞赛中获胜。
3. 乘法不等式乘法不等式是描述两个数相乘后与另一个数的大小关系的一种不等式。
乘法不等式的性质:•如果 a > b 且 c > 0,则 ac > bc•如果 a > b 且 c < 0,则 ac < bc (注意:当乘以一个负数时,不等号方向会发生改变)乘法不等式的应用:乘法不等式同样经常被应用于解决实际问题。
2几个重要不等式-简单难度-讲义

几个重要不等式知识讲解一、柯西不等式1.二维形式的柯西不等式代数形式(定理1):对任意实数a b c d ,,,,则()()()22222+a bcd ac bd ++≥.(当且仅当向量()a b ,与向量()c d ,共线,即ad bc =时,等号成立). 向量形式:设αβ,是平面上任意两个向量,则αβαβ≥g .(当且仅当向量α与向量β共线时,等号成立)。
三角形式:对任意实数a b c d ,,,,则()()222222a b c d a c b d +++≥-+-(当且仅当ad bc =时,等号成立.) 证明:()()()()22222222222222222222222222222222-2a b c d a b c d a b c d a b c d ac bd a ac c b bd d a c b d a b c d a c b d ⎡⎤+++=++++++⎣⎦≥+++++≥-+++=-+-+++≥-+- 注:表示绝对值两边开根号,得几何背景:如图,在三角形OPQ 中,θ=∠QOP d c Q b a P ),,(),,(,则 ,,2222d c OQ b a OP +=+=.)()(22d b c a PQ -+-=将以上三式代入余弦定理θcos 2222⋅⋅-+=OQ OP OQ OP PQ ,并化简,可得2222cos dc b a bdac +⋅++=θ或.))(()(cos 222222d c b a bd ac +++=θ 因为1cos 02≤≤θ,所以,1))(()(22222≤+++d c b a bd ac , 于是 22222)())((bd ac d c b a +≥++ 注意:①柯西不等式的代数形式可以看作是向量形式的坐标化表示;②定理1的变形:若a 、b 、c 、d 2222+a b c d ac bd ++≥g ,(当且仅当向量()a b ,与向量()c d ,共线,即ad bc =时,,等号成立)2.一般形式的柯西不等式定理2:设12n a a a L ,,,与12n b b b L ,,,是两组实数,则 ()()()222222212121122n n n n aa ab a a a b a b a b ++++≥+++L L L ,当且仅当向量()12n a a a L ,,,与向量()12n b b b L ,,,共线时,等号成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三个重要不等式目的:掌握三个重要不等式及其应用重点、难点:综合应用三个重要不等式解决竞赛数学中的不等式问题 1、排序不等式[2]设有两组数1212, ,,;,,,n n a a a b b b L L ,满1212 ,n n a a a b b b ≤≤≤≤≤≤L L , 则有 1122n n a b a b a b +++L (顺序和)1212n i i n i a b a b a b ≥+++L (乱序和)1211n n n a b a b a b -≥+++L (逆序和)其中12, ,,n i i i L 是1,2,,n L 的一个排列,当且仅当12= n a a a ==L 或12n b b b ===L 时等号成立.证明 先证左端 设乱序和为S ,要S 最大,我们证明必须n a 配n b ,1n a -配1n b -,L ,1a 配1b , 设n a 配n i b ()n i n <,n b 配某个()k a k n <, 则有 n n n i n k k i n n a b b a a b a b +≤+这是因为 ()()0n n n n n k i k n n i n k n i a b a b a b a b a a b b +--=--≥ 同理可证1n a -必配1n b -,2n a -必配2n b -,L ,1a 必配1b , 所以 12121122n i i n i n n a b a b a b a b a b a b +++≤+++L L 再证右端 又1211 ,n n n a a a b b b -≤≤≤-≤-≤≤-L L ,由以上证明结论(乱≤ 同) 可得,()()()()()()12121112nn n n i i n i a b a b a b a b a b a b --+-++-≥-+-++-L L于是有12121112n n n n i i n i a b a b a b a b a b a b -+++≤+++L L当且仅当12= n a a a ==L 或 12n b b b ===L 时,等号成立. 证毕. 2.均值不等式设12,n a a a L 是正实数,则n n n a a a n a a a ............2121≥+++na a a n1 (112)1+++≥即n n n H G A ≥≥,等号当且仅当n a a a ===......21时成立.证明: ),......,2,1(n i R a i =∈+Θ∴设)1(log )(>=a x f xa,则)(x f 为),0(+∞内的上凸函数 由琴生不等式,得:na a a a a a nnn n n a a a aa a a a a a nn ............log)log ......log (log 12121 (2121)++≤≤+++++即所以n n G A ≥对于na a a 1,......,1,121这n 个正数,应用n n G A ≥, 得0 (1)1 (112121)>≥+++n nn a a a n a a a 所以nn n a a a na a a 1......11......2121+++≥所以n n H G ≥成立 ,故n n n H G A ≥≥ 证毕. 此外,均值不等式还可用排序不等式、数学归纳法等其它方法证明,3、柯西不等式设,(1,2....)i i a b R i n ∈=则222111()()()nnni i i i i i i a b a b ===≤∑∑∑当且仅当(1,2....)i i b ka i n ==时等号成立证法一(数学归纳法)(1)当(1,2...)(1,2....)i i a i n b i n ==或全为零时,命题显然成立. (2)当数组1212,,...;,...n n a a a b b b 不全为零时, 采用数学归纳法.1) 当n=1时22221111a b a b =不等式成立 2)设当1n k =-时,不等式成立.令11122123111,,k k k i i i i i i i S a S b S a b ---======∑∑∑则有2123S S S ≥3)那么当n=k 时112222221111()()kkk k i i k i k i i i i a b a a b b --====⋅=++∑∑∑∑2212()()kk S a S b =++ =22221212k kk k S S S b S a a b +++223()k k S a b ≥+22332()k k k k S a b S a b ≥++=23()k k S a b + =121()k i i k k i a b a b -=+∑=21()k i i i a b =∑当且仅当(1,2....)i i b ka i n ==时等号成立综上述,对222111,,.1,2...()nnni i i i i i i i i n N a b R i n a b a b ===∀∈∀∈=≥∑∑∑均有证法二,作关于x 的二次函数222222212112212()(...)2(...)(...)n n n n f x a a a x a b a b a b x b b b =+++++++++++若22212...0n a a a +++=则12..0n a a a ====不等式显然成立.若22212...0n a a a +++≠ 则2221122()()()...()0n n f x a x b a x b a x b =++++++≥又22212...0n a a a +++>Q 222111[2()]4()()0nnni i i i i i i a b a b ===∴-≤∑∑∑222111()n n ni i i i i i i a b a b ===∴≥∑∑∑当且仅当1212...n na a ab b b ===时等号才成立 例1、(1935年匈牙利奥林匹克)假设12,,,n b b b L 是正数12, ,,n a a a L 的某个排列,证明:1212n na a a nb b b +++≥L 证明 1 不妨设12n b b b ≤≤≤L ,则12111nb b b ≥≥≥L 由排序不等式(乱序≥逆序)得,12121212111111n n n na a ab b b b b b b b b n⋅+⋅++⋅≥⋅+⋅++⋅=L L 例[5]3 设12,,,n a a a L 是个n 互不相同的自然数,证明:即1212n na a a nb b b +++≥L 例23(第20届IMO 试题) 设12,,,n a a a L 是n 个互不相等的自然数,证明:32122211112323n a a a a n n ++++≤++++L L 证法一 (用排序不等式)设12,,,n b b b L 是12,,,n a a a L 的一个排序,且12n b b b <<<L又221112n <<<L 由逆序和<乱序和得,22112222122n n b a b a b a n n ⋅+++<+++L L 又因为 121,2,,n b b b n ≥≥≥L 所以 21221111232n b b b n n ++++≤+++L L 当k k a b k ==,()1,2,k n =L 时,等号成立.即 111123n++++L ≤21222n a a a n +++L 证法二 (用柯西不等式)依题设12,,,n a a a L 是n 个互不相等的自然数,不妨设1212,,n a a a n ≥≥≥L ,,则1111nn k k kk a ==≥∑∑ 由柯西不等式有,22111nn k k k ==⎛⎫⎛⎫= ⎪ ⎝⎭⎝∑2111n n k k k k a k a ==⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑ ∴2211111nn n k k k k ka k a k ===⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 111111nnk nk k kkk a ====⋅∑∑∑∴2111nn k k k a k k==≥∑∑ 即 32122211112323n a a a a n n++++≤++++L L例12设,,a b c 为任意正数,求出a b c b c c a a b+++++的最小值.解 不妨设a b c ≥≥,则a b a c b c +≥+≥+,111b c c a a b≥≥+++, 由排序不等式得,a b c b c a b c c a a b b c c a a ba b c c a b b c c a a b b c c a a b++≥++++++++++≥++++++++上两式相加则,23ab c b c c a a b ⎛⎫++≥ ⎪+++⎝⎭即 32a b c b c c a a b ++≥+++ 且当仅当a b c ==时,a b c b c c a a b +++++取最小值32. 例1[10],x y R +∈,1x y +=,求证: 11(1)(1)9x y++≥.证明: 由1x y +=,且,x y R +∈,得 11(1)(1)(1)(1)x y x y x y x y++++=++ ,(2)(2)y xx y =++52()y xx y=++又y x x y +≥ 故 11(1)(1)5229x y++≥+⋅=例2[1]若0,x > 0y >, 1x y +=,求证:221125()()2x y xy +++≥. 证明 由 222x y xy +≥, 得 2222()()x y x y +≥+,即 222()2x y x y ++≥,于是 22211()11()()2x y x yx y xy++++++≥21(1)2xy+=因为1x y =+≥所以14xy≥, 故 2221(1)11()()2xy x y xy++++≥252≥.此题用柯西不等式也可求解例[1]1 设0,1,2,,i x i n >=L ,求证:2222112231n n x x x x x x x x x +++≥+++L L .证明 构造均值不等式的模型 由均值不等式,得212122x x x x +≥ , 223232x x x x +≥ ,L ,2112n n n n x x x x --+≥ , 2112n n x x x x +≥ . 将上述n 个不等式相加得222211212231()()2()n n n x x x x x x x x x x x x +++++++≥+++L L L , 所以 2222112231n n x x x x x x x x x +++≥+++L L .说明:该题的证明方法很多,也可以构造柯西不等式的模型. :例[1]2 已知12,,,n a a a L 都是正数,试证:21212111()()n na a a n a a a ++++++≥L L . 证明 构造柯西不等式的模型 构造两个数组LL 利用柯西不等式,有222111([][]nn n i i i ===≤∑∑,即 21111(1)()()nnni i i i ia a ===≤∑∑∑,所以 21212111()()n na a a n a a a ++++++≥L L . 说明:该题也可以构造均值不等式的模型来求证. 例1[3](1984年全国高中联赛题)设 12,,,n a a a L为正整数,求证:2221212231n n a a a a a a a a a +++≥+++L L证明 由柯西不等式得,()22212231231na a a a a a a a a ⎛⎫++++++ ⎪⎝⎭L L()2212n a a a ⎛≥=+++L L故2221212231n n a a a a a a a a a +++≥+++L L 例5]5[设12,...n a a a 都是正数,且12...1n a a a +++=求证222221212111(1)()()...()n n n a a a a a a n+++++++≥证明 由柯西不等式有221111[1()]()nn k k k k k ka n a a a ==⋅+≤+∑∑又2211111[1()]()n n n k k k k k k ka a a a ===⋅+=+∑∑∑211221(1)(1)nnk k k ka a n ===+∑∑≥+ 222111()(1)nk k k a n a n=∴+≥+∑ 例6]5[设12,...(1)n a a a n >均为实数。