相似三角形常见模型总结

合集下载

相似三角形典型模型及其例题

相似三角形典型模型及其例题

.\1:相像三角形模型一:相像三角形判断的基本模型(一) A 字型、反 A 字型(斜 A 字型)AADD E EB C B C(平行)(不平行)(二) 8 字型、反 8 字型AA BBO JC DC D(蝴蝶型)(平行)(不平行)(三)母子型AADDB C C(四)一线三等角型:三等角型相像三角形是以等腰三角形(等腰梯形)或许等边三角形为背景,一个与等腰三角形的底角相等的极点在底边所在的直线上,角的两边分别与等腰三角形的两边订交以下图:.\(五)一线三直角型:三直角相像能够看着是“一线三等角”中当角为直角时的特例,三直角型相像往常是以矩形或许正方形形为背景,或许在一条直线上有一个极点在该直线上挪动或许旋转的直角,几种常有的基本图形以下:当题目的条件中只有一个或许两个直角时,就要考虑经过增添协助线结构完好的三直角型相像,这常常是好多压轴题的打破口,从而将三角型的条件进行转变。

(六)双垂型:ADC二:相像三角形判断的变化模型旋转型:由 A 字型旋转获得AD EB C8 字型拓展AE FGB C 共享性一线三等角的变形.\一线三直角的变形2:相像三角形典型例题( 1)母子型相像三角形例 1:如图,梯形ABCD 中, AD ∥ BC,对角线 AC、 BD 交于点 O, BE∥ CD 交 CA 延伸线于E.求证: OC2OA OE .例 2:已知:如图,△ABC中,点E在中线AD上,D EB ABC .求证:( 1)DB2DE DA ;(2)DCE DAC .BDEA C例 3:已知:如图,等腰△ABC中,AB=AC,AD⊥ BC于D,CG∥ AB,BG分别交AD、AC于E、F.求证: BE2EF EG .1、如图,已知AD 为△ABC 的角均分线, EF 为 AD 的垂直均分线.求证:FD 2FB FC .2、已知: AD 是 Rt△ABC 中∠ A 的均分线,∠ C=90°,EF 是 AD 的垂直均分线交AD 于 M ,EF、BC 的延.\长线交于一点N。

相似三角形常见模型(总结材料)

相似三角形常见模型(总结材料)

第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)ABCDE(平行)CBA DE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型ABCDCAD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.AC D E B2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

相似三角形模型总结以及例题

相似三角形模型总结以及例题

相似三角形模型总结以及例题
相似三角形模型是同一个三角形被两次放大或缩小的一种模型,具有
以下特点:
1. 比较定理:三条边的比值相等,两个三角形都是一样的形状,只有
大小不同。

2. 角平分线定理:若两个三角形相似,则其中一角被平分线分割,得
到的两条边构成另一个三角形,且两个三角形也是相似的。

3. 中位线定理:若两个三角形相似,则其中一角的一边被中线分割,
形成的两个三角形,也是相似的。

理解相似三角形模型,最重要的是理解它的边和角之间的关系。

例题:若两个三角形的边比例是2:3:4和8:24:32,则它们是否相似?
答案:是的,它们是相似的。

由比较定理可知,若两个三角形的边比
例满足x:ax:ax^2关系,则它们是相似的,而2:3:4 = 8:24:32,满足
x:ax:ax^2关系,所以它们是相似的。

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。

下面给出几个几何问题。

1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。

2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。

3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。

相似三角形典型模型及例题

相似三角形典型模型及例题

1:相似三角形模型一:相似三角形判定的根本模型〔一〕 A 字型、反 A 字型〔斜 A 字型〕〔平行〕〔不平行〕〔二〕 8 字型、反 8 字型AA BBO JC DC D〔蝴蝶型〕〔平行〕〔不平行〕〔三〕母子型〔四〕一线三等角型:三等角型相似三角形是以等腰三角形〔等腰梯形〕或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如下图:〔五〕一线三直角型:三直角相似可以看着是“一线三等角〞中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的根本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

〔六〕双垂型:二:相似三角形判定的变化模型旋转型:由 A 字型旋转得到8 字型拓展AE FGB C共享性一线三等角的变形一线三直角的变形2:相似三角形典型例题〔 1〕母子型相似三角形例 1:如图,梯形ABCD 中, AD ∥ BC,对角线 AC、 BD 交于点 O, BE∥ CD 交 CA 延长线于 E.求证: OC 2OA OE.例 2::如图,△ABC 中,点 E 在中线 AD 上 ,DEBABC .求证:〔 1〕DB2DE DA ;〔2〕 DCE DAC .BDEA C例 3::如图,等腰△ABC 中, AB= AC,AD⊥ BC 于 D, CG∥ AB, BG 分别交 AD 、 AC 于 E、 F.求证: BE 2EF EG .1、如图,AD 为△ABC 的角平分线, EF 为 AD 的垂直平分线.求证:FD2FB FC.2、: AD 是 Rt△ABC 中∠ A 的平分线,∠ C=90°,EF 是 AD 的垂直平分线交AD 于 M ,EF、BC 的延长线交于一点 N。

专题07 相似三角形的五种模型(老师版)

专题07 相似三角形的五种模型(老师版)

专题07 相似三角形的五种模型相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复。

模型一、A 字型A 字型(平行) 反A 字型(不平行)例.如图,在中,点分别在上,且.(1)求证:;(2)若点在上,与交于点,求证:.【答案】见解析【详解】解:(1)在△AEF 和△ABC 中,∵,,∴△AEF ∽△ABC ;(2)∵△AEF ∽△ABC ,∴∠AEF =∠ABC ,∴EF ∥BC ,∴△AEG ∽△ABD ,△AGF ∽△ADC ,∴,,∴.【变式训练1】已知:如图,点D ,F 在△ABC 边AC 上,点E 在边BC 上,且DE ∥AB ,CD 2=CF •CA .(1)求证:EF ∥BD ;(2)如果AC •CF =BC •CE ,求证:BD 2=DE •BA .ABC ∆,E F ,AB AC AE ABAF AC=AEF ABC ∆∆:D BC AD EF G EG FGBD CD=EAF BAC ∠=∠AE ABAF AC=EG AG BD AD =FG AGCD AD =EG FG BD CD=【答案】见解析【解析】证明:(1)∵DE∥AB,∴CDAC =CECB,∵CD2=CF•CA.∴CDAC =CFCD,∴CFCD=CECB,∴EF∥BD;(2)∵EF∥BD,∴∠CEF=∠CBD,∵AC•CF=BC•CE,∴ACBC =CECF,且∠C=∠C,∴△CEF∽△CAB,∴∠CEF=∠A,∴∠DBE=∠A,∵DE∥AB,∴∠EDB=∠DBA,且∠DBE=∠A,∴△BAD∽△DBE,∴BABD =BDDE∴BD2=BA•DE【变式训练2】如图所示,在△ABC中,DE∥BC,AD=5,BD=10,AE=3.(1)求CE的长.(2)在△ABC中,点D,E,Q分别是AB,AC,BC上,且DE∥BC,AQ交DE于点P.小明认为DPBQ =PEQC,你认为小明的结论正确吗?请说明你的理由.【答案】(1)6;(2)见解析【解析】(1)由DE∥BC,∴△ADE∽△ABC,∴ADAD+BD=AEAE+EC,∵AD=5,BD=10,AE=3,∴CE=6.(2)结论正确,理由如下,在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,∴DPBQ =APAQ,同理可得:EPCQ=APAQ,∴DPBQ=EPCQ【变式训练3】如图,在中,,,,平分,交边于点,过点作的平行线,交边于点.(1)求线段的长;(2)取线段的中点,联结,交线段于点,延长线段交边于点,求的值.【答案】(1)4;(2)【解析】解:(1)∵平分,,∴.在中,,,,∴.在中,,,,∴.∴.∵,∴∴.∴.(3)∵点是线段的中点,∴.∵,∴∴.∴.∵,∴∴∴.模型二、8字型与反8字型相似Rt ABC∆90ACB∠=︒60BAC∠=︒6AC=AD BAC∠BC D D CA AB E DE AD MBM DE F BM AC GEFDF23EFDF=AD BAC∠60BAC∠=︒30DAC∠=︒Rt ACD∆90ACD∠=︒30DAC∠=︒6AC=CD=Rt ACB∆90ACB∠=︒60BAC∠=︒6AC=BC=BD BC CD=-=//DE CA BDE BCAV V∽23DE BDCA BC==4DE=M ADDM AM=//DE CA DFM AGM△∽△DF DMAG AM=DF AG=//DE CA BEF BAG△∽△23EF BE BDAG BA BC===23EFDF=例.如图,已知在△ABC 中,BE 平分∠ABC 交AC 于E ,点D 在BE 延长线上,且BA •BC =BD •BE .(1)求证:△ABD ∽△EBC ;(2)求证:AD 2=BD •DE .【答案】见解析【解答】证明:(1)∵BE 平分∠ABC ,∴∠ABD =∠EBC ,∵BA •BC =BD •BE .即ABBC =BDBE ,∴△ABD ∽△EBC ;(2)∵△ABD ∽△EBC ,∴∠BAD =∠BEC ,∠ADB =∠BCE ,∵∠AED =∠BEC ,∴∠BAD =∠AED ,∴△ADE ∽△BEC ,∴△AED ∽△ABD ,∴ADBD =DEAD ,即AD 2=BD •DE .【变式训练1】如图,AD 与BC 交于点O ,EF 过点O ,交AB 与点E ,交CD 与点F ,BO =1,CO =3,AO =32,DO =92.(1)求证:∠A =∠D .(2)若AE =BE ,求证:CF =DF .【答案】【解析】证明:(1)∵BO =1,CO =3,AO =32,DO =92.∴OBOC =AODO ,∵∠AOB =∠COD ,∴△OAB ∽△ODC ,∴∠A =∠D .(2)∵∠A =∠D ,∴AB ∥CD ,∴AEDF =OEOF ,BECF =OEOF ,∴AEDF =BECF .∵AE =BE ,∴CF =DF .【变式训练2】如图,AG ∥BD ,AF :FB =1:2,BC :CD =2:1,求GEED 的值【答案】32【解析】∵AG ∥BD ,∴△AFG ∽△BFD ,∴AGBD =AFBF =12,∵BCCD =2,∴CD =13BD ,∴AGCD =32,∵AG ∥BD ,∴△AEG ∽△CED ,∴GEED =AGCD =32.【变式训练3】如图,四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC 、CD 于点P 、Q .(1)求证:△PCQ ∽△RDQ ;(2)求BP :PQ :QR 的值.【答案】(1)见解析;(2)【解析】解:(1)∵,∴.又∵.∴.(2)∵四边形和四边形都是平行四边形,∴,.∴,.又∵点是中点,∴.由(1)知,∴,∴.又∵,∴.模型三、AX 型(A 字型及X 字型两者相结合)例.如图,△ABC 中,D .E 分别是AB 、AC 上的点,且BD =2AD ,CE =2AE .(1)求证:△ADE ∽△ABC ;(2)若DF =2,求FC 的长度.【答案】见解析【解答】(1)证明:∵BD =2AD ,CE =2AE ,∴ADAB =AEAC =13,又∵∠DAE =∠BAC ,∴△ADE ∽△ABC ;:3:1:2BP PQ QR =PC DR ∥PCQ RDQ ∠=∠PQC RQD ∠=∠PCQ RDQ △∽△ABCD ACED BC AD CE ==//AC DE PB PR =12PC RE =R DE DR RE =PCQ RDQ △∽△12PQ PC PC QR DR RE ===2QR PQ =3BP PR PQ QR PQ ==+=::3:1:2BP PQ QR =(2)解:∵△ADE ∽△ABC ,∴DE BC =AD AB =13,∠ADE =∠ABC ,∴DE ∥BC ,∴△DEF ∽△CBF ,∴DFCF =DECB ,即2CF =13,∴FC =6.【变式训练1】如图,在菱形ABCD 中,∠ADE 、∠CDF 分别交BC 、AB 于点E 、F ,DF 交对角线AC 于点M ,且∠ADE =∠CDF .(1)求证:CE =AF ;(2)连接ME,若=,AF =2,求的长.【解析】解:(1)∵四边形ABCD 是菱形,∴AD =CD ,∠DAF =∠DCE ,又∵∠ADE =∠CDF ,∴∠ADE ﹣∠EDF =∠CDF ﹣∠EDF ,∴∠ADF =∠CDE ,在△ADF和△CDE 中,,∴△ADF ≌△CDE ,∴CE =AF .(2)∵四边形ABCD 是菱形,∴AB =BC ,由(1)得:CE =AF =2,∴BE =BF ,设BE =BF =x ,∵=,AF =2,∴,解得x ,∴BE =BF ,∵=,且CE =AF ,∴==,∵∠CMD =∠AMF ,∠DCM =∠AMF ,∴△AMF ∽△CMD ,∴,∴,且∠ACB =∠ACB,∴△ABC ~△MEC, ∴∠CAB =∠CME=∠ACB ,∴ME=CE=2.【变式训练2】如图,已知AB ∥CD ,AC 与BD 相交于点E ,点F 在线段BC 上,AB CD =12,BF CF =12.(1)求证:AB ∥EF ;(2)求S △ABE :S △EBC :S △ECD .【答案】见解析【解析】(1)证明:∵AB ∥CD ,∴ABCD =BEED =12,CE BE CDCEME ADF CDF AD CD DAF DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩CE BE CD CE 222x x +=11CE BE CD CE CE BE CD CE CDAFCD CMAF AM=CD CM CEAF AM BE==∵BF CF =12,∴BE ED =BFFC ,∴EF ∥CD ,∴AB ∥EF .(2)设△ABE 的面积为m .∵AB ∥CD ,∴△ABE ∽△CDE ,∴S △ABES △EDC =(ABCD )2=14,∴S △CDE =4m ,∵AECE =ABCD =12,∴S △BEC =2m ,∴S △ABE :S △EBC :S △ECD =m :2m :4m =1:2:4.【变式训练3】如图:AD ∥EG ∥BC ,EG 交DB 于点F ,已知AD =6,BC =8,AE =6,EF =2.(1)求EB 的长;(2)求FG 的长.【答案】见解析【解答】解:(1)∵EG ∥AD ,∴△BAD ∽△BEF ,∴BEBA =EFAD ,即BE BE+6=26,∴EB =3.(2)∵EG ∥∥BC ,∴△AEG ∽△ABC ,∴EGBC =AEAB ,即EG8=66+3,∴EG =163,∴FG =EG ﹣EF=103.模型四、共边角模型(子母型)例.在中,,垂足为,求的长【答案】4【解析】∵,∴,∴,∵,∴,∴,Rt ABC V 90,ACB CD AB ∠=︒⊥,8,2D AD DB ==CD CD AB ⊥90ADC CDB ∠=∠=︒90ACD A ∠+∠=︒90ACB ∠=︒90ACD BCD ∠+∠=︒A BCD ∠=∠∴,∴,∴,∴.【变式训练1】如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,ADAB =12,△CEF 的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于( )A .116B .15C .14D .125【解答】解:∵ADAB =12,∴设AD =BC =a ,则AB =CD =2a ,∴AC =5a ,∵BF ⊥AC ,∴△CBE ∽△CAB ,△AEB ∽△ABC ,∴BC 2=CE •CA ,AB 2=AE •AC ∴a 2=CE •5a ,4a 2=AE •5a ,∴CE =5a5,AE=45a5,∴CE AE =14,∵△CEF ∽△AEB ,∴S 1S 2=(CEAE )2=116,故选:A .【变式训练2】如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果BD =4,CD =6,那么BC :AC 是( )A .3:2B .2:3C .3:13D .2:13.【答案】B【解答】解:∵∠ACB =90°,CD 是AB 边上的高,∴∠ADC =∠CDB =∠ACB =90°,∵∠A +∠B =90°,∠A +∠ACD =90°,∴∠ACD =∠B ,∴△ACD ∽△CBD ,∴ACBC =CDBD =64=32∴BCAC =23,故选:B .【变式训练3】如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B,(1)求证:AC•CD=CP •BP ;(2)若AB=10,BC=12,当PD ∥AB 时,求BP 的长.【答案】见解析【解析】(1)∵AB=AC ,∴∠B=∠C .∵∠APD=∠B ,∴∠APD=∠B=∠C .∵∠APC=∠BAP+∠B ,∠APC=∠APD+∠DPC ,∴∠BAP=∠DPC ,∴△ABP ∽△PCD ,∴,∴AB•CD=CP•BP .∵AB=AC ,∴AC•CD=CP•BP ;ADC CDB V V ∽CD ADBD CD=28216CD AD BD =⋅=⨯=4CD =BP ABCD CP=(2)∵PD ∥AB ,∴∠APD=∠BAP .∵∠APD=∠C ,∴∠BAP=∠C .∵∠B=∠B ,∴△BAP ∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.模型五、手拉手模型例.如图,在△ABC 与△ADE 中,∠ACB =∠AED =90°,∠ABC =∠ADE ,连接BD 、CE ,若AC :BC =3:4,则BD :CE 为( )A .5:3B .4:3C .5:2D .2:3【答案】A【解析】∵∠ACB =∠AED =90°,∠ABC =∠ADE ,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,ACAB =AEAD ,∵∠BAC +∠BAE =∠DAE +∠BAE ,即∠CAE =∠BAD ,∵ACAB =AEAD ,∴△ACE ∽△ABD ,∴BDCE =AB AC ,∵AC :BC =3:4,∠ACB =∠AED =90°,∴AC :BC :AB =3:4:5,∴BD :CE =5:3,选A .【变式训练1】如图,△ABC ∽△ADE ,∠BAC =∠DAE =90°,AB 与DE 交于点O ,AB =4,AC =3,F 是DE 的中点,连接BD ,BF ,若点E 是射线CB 上的动点,下列结论:①△AOD ∽△FOB ,②△BOD ∽△EOA ,③∠FDB +∠FBE =90°,④BF =56AE ,其中正确的是( )A .①②B .③④C .②③D .②③④【答案】D【解析】∵△ABC ∽△ADE ,∴∠ADO =∠OBE ,∵∠AOD =∠BOE ,∴△AOD ∽△EOB ,∴ODOB =OAOE ,∴ODOA =OBOE ,∵∠BOD =∠AOE ,∴△BOD ∽△EOA ,故②正确,BA BPBC BA=101210BP =253∵△AOD ∽△EOB ,△BOD ∽△EOA ,∴∠ADO =∠EBO ,∠AEO =∠DBO ,∵∠ADO +∠AEO =90°,∴∠DBE =∠DBO +∠EBO =90°,∵DF =EF ,∴FD =FB =FE ,∴∠FDB =∠FBD ,∴∠FDB +∠FBE =∠FBD +∠FBE =90°,故③正确,在R t △ABC 中,∵AB =4,AC =3,∴BC =32+42=5,∵△ABC ∽△ADE ,∴DEAE =BCAC =53,∵BF =12DE ,∴2BFAE =53,∴BF =56AE ,故④正确,∵∠ADO =∠OBE ,∴∠ADO ≠∠OBF ,∴无法判断△AOD ∽△FOB ,故①错误.选D .【变式训练2】已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD =AF ,AE •CE =DE •EF .(1)求证:△ADE ∽△ACD ;(2)如果AE •BD =EF •AF ,求证:AB =AC .【答案】见解析【解析】证明:(1)∵AD =AF ,∴∠ADF =∠F ,∵AE •CE =DE •EF ,∴AEDE =EFCE ,又∵∠AEF =∠DEC ,∴△AEF ∽△DEC ,∴∠F =∠C ,∴∠ADF =∠C ,又∵∠DAE =∠CAD ,∴△ADE ∽△ACD .(3)∵AE •BD =EF •AF ,∴AEAF =EFBD ,∵AD =AF ,∴AEAD =EFBD ,∵∠AEF =∠EAD +∠ADE ,∠ADB =∠EAD +∠C ,∴∠AEF =∠ADB ,∴△AEF ∽△ADB ,∴∠F =∠B ,∴∠C =∠B ,∴AB =AC .【变式训练3】已知,ABC 中,AB =AC ,∠BAC =2α°,点D 为BC 边中点,连接AD ,点E 为线段AD 上一动点,把线段CE 绕点E 顺时针旋转2α°得到线段EF ,连接FG ,FD .(1)如图1,当∠BAC =60°时,请直接写出的值;(2)如图2,当∠BAC =90°时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;V BFAE【答案】(1)1;(2)不成立,,理由见解析;(3)E为AD中点时,的最小值=sinα【解析】(1)连接BF,∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∵线段CE绕点E顺时针旋转60°得到线段EF,∴EC=EF,∠CEF=60°,∴△EFC都是等边三角形,∴AC=BC,EC=CF,∠ACB=∠ECF=60°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴AE=BF,∴=1.(2)不成立,结论:.证明:连接BF,∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∴∠BAC=∠CEF=90°,∴△ABC和△CEF为等腰直角三角形,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴=,∴△ACE∽△BCF,∴∠CBF=∠CAE=α,∴==.课后训练1.如图,在中,、分别是边、的中点,、分别交于点、,则图中阴影部分图形的面积与的面积之比为 A.B.C.D.【解答】B【解析】,是的中点,,,即,同理可得,,,,、分别是边、的中点,,,,AEBFDFDCBFAEAEBFACBCCECFAEBFACBCABCDY E F BC CD AE AF BD G HABCDY()7:127:2413:3613:72//BE AD E B∽∴∆∆BEG DAG∴BG12==BEDG DA13=BG BD13=DH BD13∴=GH BD1136四边形∆∆∴==AGH ABD ABCDS S SE F BC CD//∴EF BD12=EF BD∽∴∆∆CEF CBD,,图中阴影部分图形的面积,即图中阴影部分图形的面积与的面积之比为.2.如图,△ABC 中,D 为BC 中点,E 为AD 的中点,BE 的延长线交AC 于F ,则AF FC 为( ) A .1:5B .1:4C .1:3D .1:2【答案】D【解析】过D 作BF 的平行线,交AC 边于G ,如下图所示:∵D 为BC 中点,DG ∥BF ,∴∠CGD =∠CFB ,又∵∠C =∠C ,∴△CDG ∽△CBF∴CG CF =CD CB =12,即:CG =12CF =FG又E 为AD 的中点,BE 的延长线交AC 于F ,DG ∥BF同理可得:△AEF ∽△ADG ,∴AE AD =AF AG =12,即:AF =12AG =FG∴AF =FG =GC ,∴AF FC =AF 2AF =12=1:2,选D .3.如图平行四边形,为中点,延长至,使,连结交于点,则 .【答案】2:9【解析】如图,连接∵四边形是平行四边形,,,为中点,,,,,,,∴211()24∆∆==CEF CBD S S 1148四边形∆∆∴==CEF BCD ABCD S S S ∴1176824四边形四边形⎛⎫=+= ⎪⎝⎭ABCD ABCD S S Y ABCD 7:24=ABCD F BC AD E :1:3DE AD =EF DC G :DEG BGC S S ∆∆=BGABCD //∴AD BC =AD BC ∴∠=∠E CFG F BC 1122∴==FC BC AD :1:3= DE AD :1:3∴=DE BC :2:3∴=DE CF ∠=∠ E CFG ∠=∠DGE CGF ∽∴∆DGE CGF :4:9∆∆∴=DEG CFG S S为中点,,.4.如图,等边三角形ABC 中,AB =3,点D 是CB 延长线上一点,且BD =1,点E 在直线AC 上,当∠BAD =∠CDE 时,AE 的长为 .【分析】分两种情形分别画出图形,利用相似三角形的性质解决问题即可.【解析】∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AC =BC =AB =3,∴∠ABD =120°,①当点E 在边AC 上时.作EF ∥AB 交BC 于F ,如图1所示:则△EFC 是等边三角形.∴∠CFE =60°,EF =CF =CE ,∴∠BFE =120°=∠ABD ,∵∠BAD =∠CDE ,∴△ABD ∽△DFE ,∴AB BD =DF EF ,即31=DF EF ,∴DF =3EF ,∴DF =3CF ,∴CD =4CF ,∵BC =3,BD =1,∴CD =BC +BD =4,∴CF =1,∴CE =1,∴AE =AC ﹣CE =2;②点E 在AC 的延长线上时.如图2所示:∵∠ABD =∠DCE =120°,∠BAD =CDE ,∴△ABD ∽△DCE ,∴AB CD =BD CE ,即34=1CE ,解得:CE =43,∴AE =AC +CE =3+43=133;综上所述,当∠BAD =∠CDE 时,AE 的长为2或133;5.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,线段AG 分别交线段DE ,BC 于点F ,G ,且AD AC =DF CG .(1)求证:△ADF ∽△ACG ;(2)若AD AC =37,求AF FG的值. F BC 2∆∆∴=BGC CFG S S :4:182:9∆∆∴==DEG BGC S S【解答】(1)证明:∵∠AED =∠B ,∠DAE =∠CAB ,∴△AED ∽△ABC ,∴∠ADF =∠C ,又∵AD AC =DF CG ,∴△ADF ∽△ACG ;(2)解:∵△ADF ∽△ACG ,∴AD AC =AF AG ,∵AD AC =37,∴AF AG =37,∴AF FG =34.6.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE 并延长,交对角线BD 于点F 、DC 的延长线于点G .如果CE BE =23,求FE EG 的值.【解答】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC .∵AD ∥BE ,∴△BEF ∽△DAF ,∴EF AF =BE DA .又∵BC =BE +CE ,CE BE =23,∴BE =35BC =35DA ,∴EF =35AF ,∴AE =3+53EF =83EF .∵CE ∥AD ,△CEG ∽DAG ,∴GE GA =CE DA =22+3,∴GE =25GA ,∴GE =25−2AE =23×83EF =169EF ,∴FE EG =916.7.已知中,,(如图).以线段为边向外作等边三角形,点是线段的中点,连接并延长交线段于点.(1)求证:四边形为平行四边形;(2)连接,交于点.①若,求的长;②作,垂足为,求证:.【解析】(1)∵是等边三角形 ∴,在中,∴∵点是线段的中点∴∴是等边三角形∴,∴∴∴∴四边形为平行四边形;(2)①如图,连接,交于点 ∵∴∴Rt ABC V 90ACB ∠=︒30CAB ∠=︒AB ABD E AB CE AD F BCFD CD AB M 6AB =BM MN AC ⊥N 111BC AD MN+=ABD △AD AB BD ==60BAD ABD D ∠=∠=∠=︒Rt ABC V 30CAB ∠=︒60ABC ∠=︒E AB 12CE BE AE AB ===BCE V 60CEB CBE ABC ∠=∠=∠=︒BC CE =60ABD CEB ∠=∠=︒//CF BD606060180CBD D CBE ABD D ∠+∠=∠+∠+∠=︒+︒+︒=︒//BC FD BCFD CD AB M //BC FD BCM ADM ~V V BM BC AM AD=∵,∴ ∵∴;②如图,作,垂足为∵,,∴∴,∴,∴ ∴.8.如图,在平行四边形中,过点作,垂足为,连接,为线段上一点,且.(1)求证:;(2)若,,,求的长.【答案】(1)见解析;(2)AE【详解】(1)证明:四边形是平行四边形,,,,;,,,;(2)解:∵四边形是平行四边形,,,.,,.在中,,,,9.如图1,在矩形中,于点.(1)求证:;(2)如图2,若点是边上一点,且.求证:.【答案】(1)见解析;(1)见解析12BC CE AB ==AB AD =12BM BC AM AD ==6AB BM AM =+=123BM AB ==MN AC ⊥N90ACB ∠=︒306090CAD BAC BAD ∠=∠+∠=︒+︒=︒MN AC⊥////BC MN DA AMN ABC V :V C CMN DA ~V V MN AN BC AC =MN CN DA CA=1MN MN AN CN AN CN AC BC DA AC CA AC AC ++=+===111BC AD MN+=ABCD A AE BC ⊥E DE F DE AFE B ∠=∠ADF DEC ∆∆∽8AB =AD =AF =AE ABCD //∴AD BC //AB CD ∴∠=∠ADF CED 180∠+∠=︒B C 180∠+∠=︒ AFE AFD ∠=∠AFE B ∴∠=∠AFD C ∽∴∆∆ADF DEC ABCD 8∴==DC AB ∽∆∆ ADF DEC ∴=AD AFDE DC =12∴=DE // AD BC ⊥AE BC ∴⊥AE AD Rt ADE ∆90∠=︒EAD 12=DE =AD ∴===AE ABCD AE BD ⊥E BE BC AE CD =g g P AD PE EC ⊥AE AB DE AP =g g【详解】证明:∵在矩形中,,,,,,,,,,,;(2)证明:,,,,,,,,,,.10.已知,正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.(1)如图1,求证:;(2)如图2,连接,若,的值.【答案】(1)见解析;(2)【详解】(1)四边形是正方形,,,又,,又,,,在和中,,,;(2)过点作,设,,如图2所示:ABCD =AB CD =AD BC 90∠=︒BAD ⊥ AE BD 90∴∠=∠=︒AEB AED ∴∠+∠=∠+∠BAE ABE BAE EAD ∴∠=∠ABE DAE ∽∴∆∆ABE DAE ∴=AB BE AD AE ∴=CD BE BC AE∴=g g BE BC AE CD ⊥ AE BD ⊥PE EC 90∴∠=∠=︒AED PEC ∴∠=∠AEP DEC 90∠+∠=︒ EAD ADE 90∠+∠=︒ADE CDE ∴∠=∠EAP EDC ∽∴∆∆AEP DEC ∴=AE AP DE CD= AB CD ∴=g g AE AB DE AP ABCD E BC DE B BF DE ⊥F BF CD G CG CE =BD BE =DG =cos DBG ∠cos ∠=DBG ABCD ∴=BC DC 90∠=∠=︒BCG DCE ⊥ BF DE 90∴∠=︒GFD 180∠+∠+∠=︒ GBC BGC GCB 180∠+∠+∠=︒GFD FDG DGF ∠=∠BGC DGF ∆BGC ∆DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩BCG DCE BC DCCBG CDE ()∴∆≅∆BGC DEC ASA ∴=CG CE G ⊥GH BD =CE x =HD y,,又,,,,,,解得:,在中,由勾股定理得:,同理可得:,又,,在中,由勾股定理得:,= CG CE ∴=CG x =+ BE BC CE =+DC DG GC =BC DC =BE =DG ∴=+x x =x ∴=BC Rt BCD ∆6===BD 2=HD =+ BD BH HD 624∴=-=BH Rt HBG ∆===BG cos ∴∠===BH DBG BG。

相似三角形六大证明技巧

相似三角形六大证明技巧

相似三角形的判定方法总结:1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.2. 三边成比例的两个三角形相似.〔SSS 〕3. 两边成比例且夹角相等的两个三角形相似. (SAS)4. 两角分别相等的两个三角形相似.(AA)5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A 〞型与“反X 〞型.示意图结论E D CB A反A 型:如图,△ABC ,∠ADE =∠C ,如此△ADE ∽△ACB 〔AA 〕,∴AE ·AC =AD ·AB.假如连CD 、BE ,进而能证明△ACD ∽△ABE (SAS)O DCBA反X 型:如图,角∠BAO =∠CDO ,如此△AOB ∽△DOC 〔AA 〕,∴OA ·OC =OD ·OB . 假如连AD ,BC ,进而能证明△AOD ∽△BOC .“类射影〞与射影模型示意图结论A BCD类射影:如图,△ABC ,∠ABD =∠C ,如此△ABD ∽△ACB 〔AA 〕,∴2AB =AD ·AC.CABH射影定理如图,∠ACB =90°,CH ⊥AB 于H ,如此222,,AC AH AB BC BH BA HC HA HB =⋅=⋅=⋅“旋转相似〞与“一线三等角〞示意图结论相似三角形6大证明技巧相似三角形证明方法ABCDE旋转相似:如图,△ABC ∽△ADE ,如此AB ADAC AE=,∠BAC =∠DAE ,∴∠BAD =∠CAE ,∴△BAD ∽△CAE 〔SAS 〕CBAED一线三等角:如图,∠A =∠C =∠DBE ,如此△DAB ∽△BCE 〔AA 〕巩固练习 反A 型与反X 型△ABC 中,∠AEF=∠ACB ,求证:〔1〕AE AB AF AC ⋅=⋅〔2〕∠BEO=∠CFO ,∠EBO=∠FCO 〔3〕∠OEF=∠OBC ,∠OFE=∠OCBOF ECBA类射影如图,2AB AC AD =⋅,求证:BD ABBC AC= A BCD射影定理△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =⋅,2BC BH BA =⋅,2HC HA HB =⋅比例式的证明方法通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型〞〔A 型,X 型,线束型〕,也离不开上述的6种“相似模型〞. 但是,王教师认为,“模型〞只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。

相似三角形的基本模型归纳总结

相似三角形的基本模型归纳总结

相似三角形的基本模型归纳总结
相似三角形是指拥有相似的形状但大小不同的三角形。

在相似三角形中,对应角度相等,而对应边长之间存在比例关系。

以下是一些基本的相似三角形模型:
1. 比例模型:在两个相似三角形中,对应边长之比相等。

例如,若∆ABC与∆DEF相似,则有AB/DE = BC/EF = AC/DF。

2. 三角形高度模型:在两个相似三角形中,对应高度之比等于对应边长之比。

例如,若∆ABC与∆DEF相似,则有h_1/h_2 = AB/DE = BC/EF = AC/DF,其中h_1和h_2分别为∆ABC和
∆DEF的高度。

3. 角平分线模型:在两个相似三角形中,对应角的平分线所延伸的比例相等。

例如,若∆ABC与∆DEF相似,角A和角D相等,则有BD/CE = AB/DE = AC/DF。

4. 底角模型:在两个相似三角形中,底角对应相等。

例如,若∆ABC与∆DEF相似,并且∠A = ∠D,则有∠B = ∠E和∠C
= ∠F。

5. 周长模型:在两个相似三角形中,对应边长之比等于相似三角形的周长比。

例如,若∆ABC与∆DEF相似,则有
(A+B+C)/(D+E+F) = AB/DE = BC/EF = AC/DF。

这些是常见的相似三角形模型,可以根据具体问题选择适合的模型进行求解。

但需要注意的是,在相似三角形中,只有形状
相似,而边长比例相等,因此,对于三角形中角度的求解通常更加重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分相似三角形模型分析一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型(四)一线三等角型:(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH的中点。

求证:∠=︒GBM 905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域;(3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△和3,DE=62,求:点B 到直线AC 的距离。

共享型相似三角形1、△ABC 是等边三角形,D 、B 、C 、E 在一条直线上,∠DAE=︒120,已知BD=1,CE=3,,求等边三角形的边长.ACD ED2、已知:如图,在Rt△ABC 中,AB =AC ,∠DAE =45°.求证:(1)△ABE ∽△ACD ; (2)CD BE BC ⋅=22.一线三等角型相似三角形例1:如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60°(1)求证:△BDE ∽△CFD(2)当BD =1,FC =3时,求BE例2:(1)在ABC ∆中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠.①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长;②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出函数的定义域;(2)正方形ABCD 的边长为5(如下图),点P 、Q 分别在直线..CB 、DC 点B 重合),且保持︒=∠90APQ .当1=CQ 时,求出线段BP例3:已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD=5,AB =DC =2.(1)如图8,P 为AD 上的一点,满足∠BPC =∠A .①求证;△ABP ∽△DPC②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.例4:如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长.相关练习:C1、如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ; (2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD于点F ,同时交直线AD 于点M ,那么①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长. BC4、如图,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (4)若1AE =,试求GMN ∆的面积.例1、已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,求y 关于x 的函数关系式,并写出x 的取值范围。

例2、在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q ,(不与点B,C 重合),设y CQ x AP ==,,试求y 关于x 的函数关系,并写出定义域。

【练习1】BC 的在直角ABC ∆中,43tan ,5,90===∠B AB C o ,点D 是中点,点E 是AB 边上的动点,DE DF ⊥交射线AC 于点F(1)、求AC 和BC 的长B(2)、当BC EF //时,求BE 的长。

(3)、连结EF,当DEF ∆和ABC ∆相似时,求BE 的长。

【练习2】在直角三角形ABC 中,D BC AB C ,,90==∠o 是AB 边上的一点,E 是在AC 边上的一个动点,(与A,C 不重合),DF DE DF ,⊥与射线BC 相交于点F.(1)、当点D 是边AB 的中点时,求证:DF DE =(2)、当m DBAD=,求DF DE 的值(3)、当21,6===DB AD BC AC ,设y BF x AE ==,,求y 关于x 的函数关系式,并写出定义域 【 练习4】]如图,在ABC ∆中,90C ∠=︒,6AC =,3tan 4B =,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.【 练习5】、(2015年黄浦一模25)如图,在梯形ABCD 中,CD AB , 34tan ,4,2===C AD AB ,P DAB ADC ,900=∠=∠是腰BC 上一个动点(不含点B 、C ),作AP PQ ⊥交CD 于点Q .(图1)(1)求BC 的长与梯形ABCD 的面积;(2)当DQ PQ =时,求BP 的长;(图2)(3)设y CQ x BP ==,,试求y 关于x 的函数解析式,并写出定义域.(图1) (图2)。

相关文档
最新文档