2013-2014学年广东省东莞市八年级(下)期末数学试卷(解析版)【精品】

合集下载

2022-2023学年广东省广州市增城区八年级(下)期末数学试卷(含解析)

2022-2023学年广东省广州市增城区八年级(下)期末数学试卷(含解析)

2022-2023学年广东省广州市增城区八年级(下)期末数学试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各组数中,能构成直角三角形的是( )A. 4,7,5B. 3,4,5C. 2,3,4D. 1,2,22. 一组数据2、2、3、4、5,则这组数据的中位数是( )A. 4B. 3.5C. 3D. 23.如图,在Rt△ABC中,∠C=90°,AB=5cm,D为AB的中点,则CD等于( )A. 2cmB. 2.5cmC. 3cmD. 4cm4. 代数式1x−1有意义时,x应满足的条件为( )A. x≠1B. x≤1C. x<1D. x>15. 下列计算中,正确的是( )A. 3+3=33B. 23−3=3C. 5×2=10D. 6÷3=26. 关于x的一元二次方程x2+4x+m=0有两个不相等的实数根,则m的值可能是( )A. 9B. 6C. 4D. −17. A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是( )A. −xA >−xB且S2A>S2B B. −x A<−x B且S2A>S2BC. −xA >−xB且S2A<S2B D. −x A<−x B且S2A<S2B8. 下列命题中正确的是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相垂直平分且相等的四边形是正方形D. 一组对边相等,另一组对边平行的四边形是平行四边形9. 已知点(−2,y1)(−1,y2)(1,y3)都在直线y=−3x+b上,则y1,y2,y3的值的大小关系是( )A. y3<y2<y1B. y2<y1<y3C. y1<y3<y2D. y1<y2<y310. 如图,在平面直角坐标系中,直线a的解析式为y=3x+1,直线b的解析式为y=33 x,直线a交y轴于点A,以OA为边作第一个等边三角形△OAB,交直线b于点B,过点B作y轴的平行线交直线a于点,以为边作第二个等边三角形Δ A1BB1,交直线b于点B1,…顺次这样做下去,第2020个等边三角形的边长为( )A. 22019B. 22000C. 4038D. 4040第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 将直线y=2x向下平移2个单位,所得直线的函数表达式是______.12. 已知x=1是一元二次方程x2+ax+2=0的一个根,则a的值为______ .13. 一组数据84,84,88,89,89,95,95,95,98,则这组数据的众数是______ .14. 计算:(42−6)÷2=______ .15.如图,a//b,点A、B分别在直线a、b上,∠1=45°,点C在直线b上,且∠BAC=105°,若a、b之间的距离为3,则线段AC的长度为______ .16. 已知四边形ABCD中,AB=4,CD=6,M、N分别是AD,BC的中点,则线段MN的取值范围是______ .三、计算题(本大题共1小题,共4.0分)17. 解方程:x2+4x+3=0.四、解答题(本大题共8小题,共68.0分。

2014-2015学年广东省东莞市八年级上期末统考测试卷答案

2014-2015学年广东省东莞市八年级上期末统考测试卷答案

2014-2015学年度第一学期教学质量自查八年级数学参考答案解得:x=40--------------------------------------------------------------------------------------3分检验:当x=40时x(x-20)≠0,∴x=40是原方程的解-------------------------------------------------------------------------4分答:现在平均每天生产40台机器. -----------------------------------------------------------5分20. (1)A’(2,3),B’(3,1),C’(-1,-2)-----------------------------------------------3分(2)画图------------------------------------------------------------------------------------------------5分21.分分分分分22.分分分分分23. (1)解:∵BO平分∠ABC,CO平分∠ACB∴∠DBO=∠OBC,∠ECO=∠OCB----------------------------------------------------------1分∵DE∥BC∴∠DOB=∠OBC,∠EOC=∠OCB∴∠DOB=∠DBO,∠EOC=∠ECO---------------------------------------------------------2分∴OD=DB,OE=EC-----------------------------------------------------------------------------3分∵AB=7,AC=5∴△ADE的周长=AD+AE+DE=AD+DO+OE+AE=AD+DB+AE+EC=AB+AC=12-------4分(2) 图中等腰三角形的有:△ADE , △DBO , △EOC , △OBC , △ABC ----------------6分 (注:没有写全面给1分,全部写对给2分) ∵∠ABC =∠ACB , AC =10∴AB =AC =10--------------------------------------------------------------------------------------7分 由(1)得△ADE 的周长=AB +AC =20---------------------------------------------------------------8分24. (1)第④个算式为:27918⨯+= -----------------------------------------------------------------2分第⑤个算式为:2911110⨯+= ------------------------------------------------------------4分分 分 分25.分分 分 分 分 又∵AC =8,AB =10, 且△ABC 的面积等于24 ∴DE CD ⋅+⋅=102182124 ∴DE =38----------------------------------------------------------------------------------------6分 (3) AB =AF +2EB ---------------------------------------------------------------------------------8分。

2022-2023学年广东省汕尾中学八年级(上)期末数学试卷+答案解析

2022-2023学年广东省汕尾中学八年级(上)期末数学试卷+答案解析

2022-2023学年广东省汕尾中学八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列图形不属于轴对称图形的是()A. B. C. D.2.下列运算不正确的是()A. B. C. D.3.点关于y 轴的对称点的坐标是()A. B. C. D.4.下列分式中,属最简分式的是()A. B. C. D.5.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.6.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出的依据是()A.SASB.ASAC.AASD.SSS 7.如图,,于D ,,则PD 的长度为()A.4B.3C.2D.18.如图,中,,,BC的垂直平分线l与AC相交于点D,则的周长为()A.10cmB.12cmC.14cmD.16cm9.下列说法中,错误的是()A.若分式的值为0,则x的值为3或B.三角形具有稳定性,而四边形没有稳定性C.锐角三角形的角平分线、中线、高均在三角形的内部D.若一个正多边形的内角和为,则这个正多边形的每一个内角是10.的积中不含x的二次项,则m的值是()A.0B.C.D.二、填空题:本题共7小题,每小题4分,共28分。

11.当x______时,分式有意义.12.计算:______.13.分解因式:______.14.是一个完全平方式,则______.15.已知等腰三角形的一个外角为,则它的顶角的度数为________.16.计算,则,______.17.我国南宋数学家杨辉用如图的三角形解释二项和的乘方规律,我们称这个三角形为“杨辉三角”,观察左边展开的系数与右边杨辉三角对应的数,则展开后最大的系数为______.三、解答题:本题共6小题,共62分。

解答应写出文字说明,证明过程或演算步骤。

18.本小题24分计算:;;;19.本小题6分分解因式:20.本小题8分先化简,再求值:,其中21.本小题7分已知:如图,,,求证:22.本小题7分如图,格点在网格中的位置如图所示.画出关于直线MN的对称;若网格中每个小正方形的边长为1,则的面积为______;在直线MN上找一点P,使最小不写作法,保留作图痕迹23.本小题10分已知是等边三角形,点D是AC的中点,点P在射线BC上,点Q在射线BA上,如图1,若点Q与B点重合,求证:;如图2,若点P在线段BC上,点Q在线段AB上,,求的值.答案和解析1.【答案】C【解析】解:是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不合题意.故选:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.2.【答案】C【解析】解:A、,故A不符合题意;B、,故B不符合题意;C、,故C符合题意;D、,故D不符合题意;故选:利用同底数幂的乘法的法则,幂的乘方与积的乘方的法则,合并同类项的法则对各项进行运算即可.本题主要考查幂的乘方与积的乘方,合并同类项,解答的关键是对相应的运算法则的掌握.3.【答案】A【解析】直接利用关于y轴对称点的性质得出答案:纵坐标不变,横坐标互为相反数.解:点关于y轴对称点,的坐标是故选:此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标关系是解题关键.4.【答案】D【解析】解:,不属于最简分式,故本选项不符合题意;B.,不属于最简分式,故本选项不符合题意;C.,不属于最简分式,故本选项不符合题意;D.属于最简分式,故本选项符合题意;故选:根据最简分式的定义逐个判断即可.本题考查了最简分式的定义,能熟记最简分式的定义的内容是解此题的关键.5.【答案】D【解析】解:A、没把一个多项式转化成几个整式积的形式,故A不符合题意;B、是整式的乘法,故B不符合题意;C、是整式的乘法,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式.6.【答案】D【解析】解:由作法易得,,,在与中,,≌,全等三角形的对应角相等故选:由作法易得,,,依据SSS定理得到≌,由全等三角形的对应角相等得到本题考查了作图-基本作图,全等三角形的判定与性质,熟练掌握三角形全等的对应角相等是正确解答本题的关键.7.【答案】D【解析】解:作于E,,,,角平分线上的点到角两边的距离相等,,,,,在中,在直角三角形中,角所对的直角边等于斜边的一半,,故选作于E,根据角平分线的性质可得,根据平行线的性质可得,由直角三角形中的角所对的直角边等于斜边的一半,可求得PE,即可求得此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.8.【答案】C【解析】解:的垂直平分线l与AC相交于点D,,的周长,故选:根据线段的垂直平分线的性质得到,根据三角形周长公式计算,得到答案.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.【答案】A【解析】解:若,则且,,选项符合题意.三角形具有稳定性,而四边形没有稳定性,选项不合题意.锐角三角形的三线都在三角形内部,选项不合题意.若一个正多边形的内角和为,则,解得,,选项不合题意.故选:根据分式值为0的条件可判断A,根据三角形具有稳定性可判断B,根据三角形的性质可判断C,根据多边形的内角和公式可判断本题主要考查三角形和多边形的性质以及分式值为0的条件,考点知识点较多,关键是要牢记各个概念.10.【答案】C【解析】解:,的积中不含x的二次项,,解得,,故选:根据多项式乘多项式和的积中不含x的二次项,可以求得m的值,本题得以解决.本题考查多项式乘多项式,解答本题的关键是明确不含x的二次项,说明多项式乘多项式的展开式中二次项的系数为零.11.【答案】【解析】解:由题意得:,解得故答案为:根据分式有意义的条件可得,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12.【答案】【解析】解:,故答案为:先去括号,然后合并同类项即可.本题考查整式的加减,熟练掌握运算法则是解题的关键.【解析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取2,再利用平方差公式分解即可.解:原式故答案为:14.【答案】36【解析】解:是一个完全平方式,,,故答案为:根据完全平方式得出,即可求出答案.本题考查了对完全平方公式的应用,注意:完全平方式有两个,是和15.【答案】或【解析】解:等腰三角形的一个外角为,与此外角相邻的内角为,当为顶角时,其他两角都为、,当为底角时,其他两角为、,所以等腰三角形的顶角为或故答案为:或等腰三角形的一个外角等于,则等腰三角形的一个内角为,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.本题考查了等腰三角形的性质及三角形内角和定理.16.【答案】32【解析】解:当时,利用幂的乘方的法则及同底数幂的乘法的法则对所求的式子进行整理,再整体代入相应的值运算即可.本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握.17.【答案】20【解析】解:所以展开后最大的系数为20,故答案为:由,,可得的各项展开式的系数除首尾两项都是1外,其余各项系数都等于的相邻两个系数的和,由此可得.本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.18.【答案】解:原式;原式;原式;原式【解析】先进行单项式乘多项式,多项式乘多项式,再合并同类项,进行计算即可;先利用完全平方公式及平方差公式计算,再进行加减运算;先进行积的乘方及同底数幂的乘法,再进行除法运算;按照分式的乘除法运算法则,进行计算即可.本题考查整式及的混合运算、分式的乘除法以及乘法公式.熟练掌握相关运算法则,正确地计算是解题的关键.19.【答案】解:,,【解析】先提取公因式x,再根据完全平方公式进行二次分解.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.【答案】解:原式,当时,原式【解析】先对分式的分子和分母因式分解,再将除号变为乘号计算并化简,最后代值运算即可.本题主要考查分式的化简运算,需要有一定的运算求解能力,属于基础题,熟练掌握运算法则是解题的关键.21.【答案】解:,,在与中,,,【解析】运用HL定理证明直角三角形全等即可.本题考查了直角三角形全等的判定与性质,熟练掌握HL定理是解题关键.22.【答案】【解析】解:如图所示,即为所求.的面积为,故答案为:;如图所示,点P即为所求.分别作出三个顶点关于直线MN的对称点,再首尾顺次连接即可;用矩形的面积减去周围三个三角形的面积即可;连接,与直线MN的交点即为所求.本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质.23.【答案】证明:为等边三角形,,,为AC的中点,平分,,,;如图2,过点D作交AB于H,是等边三角形,,点D是AC的中点,,,,,,是等边三角形,,,,,,且,,≌,【解析】由等边三角形和等腰三角形的性质得出,即可得出;如图2,过点D作交AB于H,可证是等边三角形,由“ASA”可证≌,可得,即可求解.本题考查了全等三角形的判定与性质,等边三角形的判定与性质,熟练掌握等边三角形的性质和等腰三角形的性质,证明三角形全等是解题的关键.。

2023-2024学年江西省赣州市崇义县八年级(下)期末数学试卷+答案解析

2023-2024学年江西省赣州市崇义县八年级(下)期末数学试卷+答案解析

2023-2024学年江西省赣州市崇义县八年级(下)期末数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.要使在实数范围内有意义,x应满足的条件是()A. B. C. D.2.已知中,a、b、c分别是、、的对边,则下列条件中不能判断是直角三角形的是()A.a:b::4:5B.:::4:5C. D.3.矩形具有而菱形不一定具有的性质是()A.对角线垂直B.对边平行C.对角相等D.对角线相等4.关于函数,下列结论不正确的是()A.函数图象过点B.函数图象经过第一、三象限C.y随x的增大而增大D.不论x为何值,总有5.如图,一次函数的图象过,两点,则关于x的不等式的解集是()A.B.C.D.6.某公司统计了今年3月销售部10名员工的销售某种商品的业绩如表:每人销售量/件数510250210120人数人1252则这10名销售人员在该月销售量的中位数和众数分别为()A.250,230B.250,210C.210,230D.210,210二、填空题:本题共6小题,每小题3分,共18分。

7.已知是最简二次根式,请你写出一个符合条件的正整数a的值______.8.在平行四边形ABCD中,若,则______9.某一次函数的图象经过点,且函数值y随自变量x的增大而减小,请你写出一个符合上述条件的函数表达式:______.10.为进一步增强文化自信,肩负起传承发展中华优秀传统文化的历史责任,某校举行了“诵读国学经典传承中华文明”演讲比赛.演讲得分按“演讲内容”占,“语言表达”占,“形象风度”占,“整体效果”占进行计算,小颖这四项的得分依次为85,88,92,90,则她的最后得分是______分. 11.如图,,过P作且,得;再过作且,得;又过作且得;…依此法继续作下去,得______.12.平面直角坐标系中,已知点,,,若以点A,B,C,D为顶点的四边形是平行四边形,则点D的坐标是______.三、解答题:本题共11小题,共84分。

2023-2024学年广东省揭阳市惠来一中八年级(上)期末数学试卷+答案解析

2023-2024学年广东省揭阳市惠来一中八年级(上)期末数学试卷+答案解析

2023-2024学年广东省揭阳市惠来一中八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列四个图形中,是轴对称图形的有()A.4个B.3个C.2个D.1个2.下列选项中,计算正确的是()A. B. C. D.3.点P在第三象限内,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A. B. C. D.4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,下列表述错误的是()A.平均数是80B.极差是15C.中位数是80D.标准差是255.在平面直角坐标系中,点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.若直线:与直线:的交点在第二象限,则k的取值范围是()A. B. C. D.7.已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.C.4或D.2或8.已知是二元一次方程组的解,则的平方根为()A. B.2 C. D.9.如图所示,在长方形ABCD中,,,若将长方形ABCD沿DE折叠,使点C落在AB边上的点F处,则线段CE的长为()A. B. C. D.1010.已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。

11.在平面直角坐标系中,点关于原点对称的点的坐标是_________.12.若的值是8,则的值是______.13.函数中,自变量x的取值范围是______.14.若的小数部分为a,的小数部分为b,则的值为______.15.的三边a、b、c满足试判断的形状是______.16.如图,直线,点坐标为,过点作x轴的垂线交直线于点,以原点O为圆心,长为半径画弧交x轴于点;再过点作x轴的垂线交直线于点,以原点O为圆心,长为半径画弧交x轴于点,…,按照此做法进行下去,点的坐标为______.三、解答题:本题共8小题,共72分。

广东省四校(华附、省实、广雅、深中)2023-2024学年高二下学期期末联考数学试题(解析版)

广东省四校(华附、省实、广雅、深中)2023-2024学年高二下学期期末联考数学试题(解析版)

华附、省实、广雅、深中2022级高二下学期四校联考数学注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号、座位号等相关信息填写在答题卡指定区域内,并用2B 铅笔填涂相关信息.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后.再选涂其它答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的本试卷共4页,19小题,满分150分.考试用时120分钟..1.若()i 11z +=(i为虚数单位),则z z −=( )A.2−B.2i− C.2D.2i【答案】D 【解析】【分析】根据复数代数形式的除法运算化简z ,即可求出其共轭复数,再由复数的减法计算可得.【详解】因为()i 11z +=,所以11i iz +==−,所以1i z =−−,则1i z =−+,所以()()1i 1i 2i z z −=−+−−−=.故选:D2.已知等比数列{}n a 中,1241,9a a a ==,则7a =( ) A.3 B.3或-3C.27D.27或-27【答案】C【解析】【分析】根据等比数列的通项公式,计算得到等比数列的等比,结合通项公式计算得出答案;【详解】设等比数列{}n a 的公比为1212134,1,9,93q a a a qa a q q ==∴=⇒= , 则6371327a a q ===, 故选:C.3. 已知圆22:2O x y +=与抛物线2:2(0)C x py p =>的准线相切,则p 的值为( )A. B.C. 4D. 2【答案】A 【解析】【分析】写出抛物线C 的准线方程,根据该准线与圆O 相切求出实数p 的值.【详解】由题意可知,圆O 的圆, 抛物线C 的准线方程为2py =−,由于抛物线C 的准线方程与圆O 相切,则2p=,解得p =. 故选:A.4. 如图所示,在正方形铁皮上剪下一个扇形和一个直径为2的圆,使之恰好围成一个圆锥,则圆锥的高为( )A. B.C.D.【答案】C 【解析】【分析】由扇形的弧长等于圆锥底面圆的周长得2π2π2R r =,求得4R =,进而由h =可求得圆锥的高.【详解】由图可知,扇形的弧长等于圆锥底面圆的周长,圆锥底面圆的半径为1r =, 设扇形半径为R ,则有π2π2R r =,解得4R =,所以圆锥的母线长为4R =,故圆锥的高h =故选:C.5. 某校高二年级下学期期中考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级800名学生的数学成绩近似服从正态分布,试卷的难度系数(=平均分/150)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X N µσ ,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈. A. 127人 B. 181人 C. 254人 D. 362人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩()273.5,22X N ,再根据所给条件求出()5790P X ≤≤,即可求出()90P X ≥,即可估计人数.【详解】依题意可知平均分为1500.4973.5×=,又标准差为22, 所以学生的数学成绩()273.5,22X N ,即73.5µ=,22σ=,又9073.50.7522−=, 所以()()()00.57900.75.750.54775P X P X p µσµσ≤≤=−≤≤+=≈,所以()10.547900.22652P X −≥=≈=,又8000.2265181.2×=,所以该次数学考试及格的人数约为181人. 故选:B6. 已知双曲线2213y x −=的左、右焦点分别为12,F F ,直线y x =与双曲线的右支交于点P ,则12PF PF ⋅=( )A. 1−B. 0C. 1D. 2【答案】A 【解析】【分析】首先求出焦点坐标,再联立直线与双曲线方程,求出交点P 的坐标,再由数量积的坐标表示计算可得.【详解】双曲线2213y x −=的左、右焦点分别为()12,0F −,()22,0F ,由2213y x y x −= =,解得x y= =x y = =P ,则12PF =−,22PF =− ,所以212221PF PF ⋅=−×+=− . 故选:A7. 现有一组数据0,1,2,3,4,5,若将这组数据随机删去两个数,则剩下数据的平均数小于3的概率为( ) A.23B.1115C.45D.1315【答案】B 【解析】【分析】设删去的两数之和为x ,依题意可得15362x−<−,求出x 的范围,再列出所有可能结果,最后利用古典概型的概率公式计算可得.【详解】依题意得这组数据各数之和为01234515+++++=, 设删去的两数之和为x ,若剩下数据的平均数小于3,则15362x−<−,解得3x >, 则删去的两个数可以为()0,4,()0,5,()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,()3,4,()3,5,()4,5共11种情况,从0,1,2,3,4,5中任意取两个数有:()0,1,()0,2,()0,3,()0,4,()0,5,()1,2,()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,()3,4,()3,5,()4,5,共15种情况,故所求概率1115P=. 故选:B8. 若函数()()21e 12xg x x b x =−+−存在单调递减区间,则实数b 的取值范围是( ) A. [0,)+∞ B. ()0,∞+C. (],0−∞D. (),0∞−【答案】D【解析】【分析】根据题意转化为导函数e 10x x b −+−<有解,参变分离e 1x b x <−++有解,设()e 1x f x x =−++,则实数max ()b f x <,求导计算可得解;【详解】函数()()21e 12xg x x b x =−+−的定义域为R , 求导得()e 1xg x x b ′=−+−,函数存在单调递减区间, 所以e 10x x b −+−<有解,即e 1x b x <−++有解, 设()e 1x f x x =−++,则实数max ()b f x <, 则()e 1x f x ′−+=,令()0f x ′=,得0x =, 当0x <时,()0,()′>f x f x 在(),0∞−上递增; 当0x >时,()0,()′<f x f x 在(),0∞−上递减; 所以函数()f x 有最大值(0)0f =, 因此0b <. 故选:D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分.9. 若“2x k <−或x k >”是“23x −<<”的必要不充分条件,则实数k 的值可以是( ) A. 3B. 3−C. 5D. 5−【答案】BCD 【解析】【分析】令{|2A x x k =<−或}x k >,{}|23B x x =−<<,依题意可得B 真包含于A ,即可求出参数的取值范围.【详解】令{|2A x x k =<−或}x k >,{}|23B x x =−<<,因为“2x k <−或x k >”是“23x −<<”的必要不充分条件, 所以B 真包含于A ,所以2k ≤−或23k −≥,解得2k ≤−或5k ≥,结合选项可知符合题意的有B 、C 、D. 故选:BCD10. 下列关于成对数据统计的表述中,正确的是( ) A. 成对样本数据的经验回归直线一定经过点(),x yB. 依据小概率事件0.1α=的2χ独立性检验对零假设0H 进行检验,根据22×列联表中的数据计算发现20.10.837 2.706x χ≈<=,由()2 2.7060.1P χ≥=可推断0H 不成立,即认为X 和Y 不独立,该推断犯错误的概率不超过0.1C. 在残差图中,残差点的分布随解释变量增大呈现扩散的趋势,说明残差的方差不是一个常数,不满足一元线性回归模型对随机误差的假设D. 决定系数2R 越大,表示残差平方和越大,即模型的拟合效果越差 【答案】AC 【解析】【分析】根据经验回归方程的性质判断A ,根据独立性检验的基本思想判断B ,根据回归分析的相关知识判断C 、D.【详解】对于A :成对样本数据的经验回归直线一定经过点(),x y ,故A 正确;对于B :因为20.10.837 2.706x χ≈<=,由()22.7060.1P χ≥=可推断0H 成立,即认为X 和Y 独立,故B 错误;对于C说明残差的方差不是一个常数,不满足一元线性回归模型对随机误差的假设,故C 正确; 对于D :决定系数2R 越大,表示残差平方和越小,即模型的拟合效果越好,故D 错误. 故选:AC11. 如图,心形曲线22:()1L x y x +−=与y 轴交于,A B 两点,点P 是L 上的一个动点,则( )A. 点和()1,1−均在L 上B. 点PC. OP 的最大值与最小值之和为3D. PA PB +≤ 【答案】ABD 【解析】【分析】点代入曲线判断A ,根据曲线分段得出函数取得最大值判断B ,应用三角换元再结合三角恒等变换求最值判断C ,应用三角换元结合椭圆的方程得出恒成立判断D. 【详解】令0x =,得出1y =±,则()()1,0,1,0,A B −对于A :x =时,2112y += 得0y =或y =,=1x −时,()2111y +−=得1y =,所以和()1,1−均在L 上,A 选项正确;对于B :因为曲线关于y 轴对称,当0x ≥时,()221x y x+−=,所以y x =+()()222221112y y x x x x ==+−+≤++−=,所以x =y B 选项正确;对于C :OP =,因为曲线关于y 轴对称,当0x ≥时,设cos ,sin x y x θθ=−=, 所以()2222222cos cos sin 2cos sin 2sin cos OP x y θθθθθθθ=+=++=++()1cos23131sin2cos2sin222222θθθθθϕ+=++=++=++,因为θ可取任意角,所以OP 取最小值=,OP 取最大值=,C 选项错误;对于D :PA PB +≤等价为点P 在椭圆22132y x +=内,即满足()222cos sin 3cos 6θθθ++≤,即()()31+cos221sin 262θθ++≤,整理得4sin23cos25θθ+≤,即()sin 21θβ≤+恒成立,故D 选项正确. 故选:ABD.【点睛】方法点睛:应用三角换元,再结合三角恒等变换化简,最后应用三角函数值域求最值即可.三、填空题:本题共3小题,每小题5分,共15分.12. 6(21)x y +−的展开式中,所有项的系数和为__________. 【答案】64 【解析】【分析】令1xy ==计算可得. 【详解】令1xy ==,可得所有项的系数和为()642611+−=. 故答案为:6413. 如图,正八面体ABCDEF 的12条棱长相等,则二面角E AB F −−的余弦值为__________.【答案】13−.【解析】【分析】AB 的中点为G ,EGF ∠为二面角E AB F −−的平面角,结合正八面体的几何特征,利用余弦定理求值即可.【详解】连接,AC BD 交于点O ,连接EF ,取AB 的中点G ,连接,EG FG ,根据正八面体的几何特征,有EF 过点O ,EG AB ⊥,FG AB ⊥, 又EG ⊂平面ABE ,FG ⊂平面ABF , 平面ABE ∩平面ABF AB =,所以EGF ∠为二面角E AB F −−的平面角.正八面体中, EF ⊥平面ABCD ,AC ⊂平面ABCD , 则EF AC ⊥,所以AOE △是直角三角形,设正八面体棱长为2,则AO =,2AE =,所以OE =,得EF =在AEB △中,EGAB =,同理GF =在EGF △中, 由余弦定理,可得2221cos 23EG FG EF EGF EG FG +−∠==−⋅⋅ 故答案为:13−.14. 数列{}n a 前n 项和为n S ,且111,22n n a a a n +=−=,则满足2024n S >的最小正整数n 为__________. 【答案】9 【解析】【分析】先构造等比数列,再应用等比等差数列前n 项和公式计算,最后判断最小值n 即可.【详解】因为122n n a a n +−=,所以()124244n n a n a n +++++, 所以()()124222n n a n a n +++=++,所以{}22n a n ++是公比为2首项为1225a ++=的等比数列,所以112252,5222n n n n a n a n −−++=×=×−−.则()()()()()0112512422522246225213122n n n n n n S n n n −−++=+++−++++=−=−−−− ,因为152220,n n a n −=×−−>则n S 单调递增,又因为()8285218385255642411872024S =−−−×=×−−=<,()9295219395511812724472024S =−−−×=×−−=>.则2024n S >的最小正整数n 为9. 故答案为:9.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC 的内角,,A B C 的对边分别为,,a b c ,且sin sin sin A B Cb c a b+=+−. 的(1)求A ;(2)如图,若点D 是BC 边上一点,且,2AB AD BD CD ⊥=,求ADB ∠. 【答案】(1)2π3A =(2)π3ADB ∠= 【解析】【分析】(1)利用正弦定理将已知等式统一成边的形式,化简后利用余弦定理可求出角A ; (2)由AB AD ⊥结合2π3A =可得π6DAC ∠=,然后在ABD △和ACD 分别利用正弦定理结合已知条件可得b c =,进而可求出ADB ∠. 【小问1详解】 因sin sin sin A B Cb c a b+=+−,所以由正弦定理得a b b c bca +=+−,所以222ab bc c −=+, 所以222b c a bc +−=−所以由余弦定理得2221cos 222b c a bc A bc bc +−−===−,因为()0,πA ∈,所以2π3A =; 【小问2详解】因为AB AD ⊥,所以π2BAD ∠=,所以2πππ326DAC BAC BAD ∠=∠−∠=−=, 在ABD △中,由正弦定理得πsin sin sin 2AB BD BD BDADB BAD ===∠∠, 在ACD 中,由正弦定理得2πsin sin sin 6AC CD CD CDADC DAC===∠∠, 因为πADB ADC ∠+∠=,所以sin sin ADB ADC ∠=∠为因为2BD CD =,所以AB AC =,即b c =,所以π6BC ==, 所以πππππ263ADB BAD B ∠=−∠−=−−=. 16. 如图,四棱锥P ABCD −的侧面PCD 为正三角形,底面ABCD 为梯形,//AB CD ,平面PCD ⊥平面ABCD ,已知44CD AB ==,13PM MD =.(1)证明:AM //平面PBC ;(2)若,AC AD PA ==,求直线AM 与平面PAB 所成角的正弦值. 【答案】(1)证明见解析(2 【解析】【分析】(1)取PC 上的点N ,使14PN PC = ,可得MN AB =,则由线线平行可证线面平行;(2)取CD 中点O ,连,AO PO ,根据题意可证AO CD ⊥,PO ⊥平面ABCD ,所以以O 为坐标原点,,,OA OC OP分别为,,x y z 轴正方向,建立如图所示空间直角坐标系A xyz −,利用线面角的空间向量法求解. 【小问1详解】取PC 上的点N ,使14PN PC =,则()1144MN PN PM PC PD DC AB =−=−== ,所以四边形ABNM 为平行四边形,所以//AM BN ,又BN ⊂平面PBC ,AM ⊄平面PBC ,所以AM //平面PBC ; 【小问2详解】取CD 中点O ,连,AO PO ,因AC AD =,所以AO CD ⊥, 因为PCD为正三角形,所以,PO CD PO ⊥,又平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,PO ⊂平面PCD , 所以PO ⊥平面ABCD ,因为AO ⊂平面ABCD ,所以PO AO ⊥,AO ==以O 为坐标原点,,,OA OC OP分别为,,x y z 轴正方向,建立如图所示空间直角坐标系A xyz −,则A ,(0,2,0)C ,(0,2,0)D −,)B,(0,0,P ,则(0,1,0)AB =,PA =−,1142AM AP PD =+=−, 设(,,)n x y z =为平面PAB 的法向量,则0000y n AB n PA = ⋅=⇒ −=⋅=,可取)n = ,cos ,n AM n AM n AM⋅===⋅, 故直线AM 与平面PAB. 17. 一个袋子中有30个大小相同球,其中有10个红球、20个白球,从中随机有放回地逐次摸球作为样为的本,摸到红球或者第5次摸球之后停止.用X 表示停止时摸球的次数. (1)求X 的分布列和期望;(2)用样本中红球的比例估计总体中红球的比例,求误差的绝对值不超过0.1的概率. 【答案】(1)分布列见解析,()21181E X = (2)2081【解析】【分析】(1)对于有放回的摸球,()()112,33P A P A ==,且i A ()1,2,3,4,5i =相互独立的,X 的可能取值为1,2,3,4,5,依次求出概率,可得分布列,再由期望公式求解; (2)设样本中红球的比例为f ,B =“样本中有红球”,且7133030C f =≤≤ ,分B 不发生,和B 发生求概率,从而得解. 【小问1详解】设=i A “第i 次摸出红球”,1,2,3,4,5i =,对于有放回的摸球,()()1101202,303303P A P A ====,且i A ()1,2,3,4,5i =相互独立的, X 的可能取值为1,2,3,4,5,则由题意可知,()(()()11212121,23339P X P A P X P A A ======⋅=, ()()212321433327P X P A A A ===⋅= ,()()3123421843381P X P A A A A ===⋅=,()()412342165381P X P A A A A ====,期望()124816211123453927818181E X =×+×+×+×+×=. 【小问2详解】总体中的红球比例13,设样本中红球的比例为f ,设B =“样本中有红球”,且17130.133030C f f =−≤=≤≤ , 若B 不发生,则0f =,此时C =∅,所以()0P BC =, 若B 发生,则1f X =,此时711330303030137BC X X =≤≤=≤≤, 所以()()()482034278181P BC P X P X =+===+=, 所以,()()()2081P C P BC P BC =+=. 18. 已知椭圆2222:1(0)x y E a b a b+=>>的长轴长为()()1,2,0,2,02M N −.(1)求椭圆E 的方程;(2)过()4,0P 作一条斜率存在且不为0的直线l 交E 于,A B 两点. (i )证明:直线AM 和直线BM 的斜率均存在且互为相反数; (ii )若直线AM 与直线BN 交于点Q ,求Q 的轨迹方程. 【答案】(1)22186x y +(2)(i )证明见解析;(ii)()212,02x x y −=≠≠【解析】【分析】(1)根据已知条件直接计算出椭圆相关基本量即可;(2)(i )设()11,A x y ,()22,B x y ,直线l 的方程为()()40y k x k =−≠,联立方程组,利用韦达定理证明;(ii )设直线,直线()()22:22BM x y y x +=+,联立方程组得204x x =,0202y y x =,采用代入法可得Q 的轨迹方程. 【小问1详解】根据题意,2a =,因为椭圆离心率为12,所以12c ea ==,所以c =6b =,所以椭圆的方程为22186x y +; 【小问2详解】(i )设()11,A x y ,()22,B x y ,直线l 的方程为()()40y k x k =−≠,联立方程()224186y k x x y =− += ,消去y 得:()2222343264240k x k x k +−+−=, 则()2Δ96340k=−>,即k <由韦达定理得,212232=34k x x k++,2122642434k x x k −⋅=+,当k =Δ0=,122x x ==,不合题意,故122,2x x ≠≠, 所以直线AM 和直线BM 的斜率均存在,1212,22B A M M y y k k x x =−−=, 所以()()()()()()122112121242422222AM BM k x x k x x y yk k x x x x −−+−−+=+=−−−− ()()222121212122616024k x x x x x x x x ⋅−++ =⋅−++, 即直线AM 和直线BM 的斜率均存在且互为相反数; (ii )由(i )知22x ≠,且222BM AM y k k x ==−−, 可设直线()()22:22AM x y y x −=−,直线()()22:22BM x y y x +=+,设()00,Q x y ,则()()()()202020202222x y y x x y y x −=−− +=+ ,整理得20202022x y y y y x = = ①,由题意知20y ≠,由①知000,0y x ≠≠, 所以由①知,204x x =,0202y y x =②, 将②代入2222186x y +=得2022002213y x x +=,化简得0022123x y −=,又因为22x ≠,所以02x ≠,所以Q 的轨迹方程为()2212,023x y x y −=≠≠..【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y ,()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为1212,x x x x +的形式; (5)代入韦达定理求解.19. 拟合(Fittiong )和插值(Imorterpolation )都是利用已知的离散数据点来构造一个能够反映数据变化规律的近似函数,并以此预测或估计未知数据的方法.拟合方法在整体上寻求最好地逼近数据,适用于给定数点.适用于需要高精度模型的场景,实际应用中常用多项式函数来逼近原函数,我们称之为移项式插值.例如,为了得到1cos 2的近似值,我们对函数()πcos 2f x x=进行多项式插值.设一次函数()1L x ax b =+满足()()()()11001110L f L f == == ,可得()f x 在[]0,1上的一次插值多项式()11L x x =−+,由此可计算出1cos 2的“近似值”11111cos10.6822πππf L=≈=−≈,显然这个“近似值”与真实值的误差较大.为了减小插值估计的误差,除了要求插值函数与原函数在给定节点处的函数值相等,还可要求在部分节点处的导数值也相等,甚至要求高阶导数也相等.满足这种要求的插值多项式称为埃尔米特(Hermite )插值多项式.已知函数()πcos 2f x x = 在[]0,1上的二次埃尔米特插值多项式()2H x ax bx c ++满足()()()()()()001100H f H f H f =′=′ =(1)求()H x ,并证明当[]0,1x ∈时,()()f x H x ;(2)若当[]0,1x ∈时,()()2f x H x x λ− ,求实数λ的取值范围;(3)利用()H x 计算1cos 2的近似值,并证明其误差不超过140. (参考数据:2110.318,0.101ππ≈≈;结果精确到0.001) 【答案】(1)()21H x x =−+,证明见解析; (2)2π1,8−+∞(3)1cos 0.8992≈,证明见解析 【解析】【分析】(1)由题意列方程组求出,,a b c ,得()H x ;通过构造函数,利用导数求最值证明()()f x H x ≤;(2)令()()()()22π1cos 12G x H x f x x x x λλ=−−=−+−+,问题转化为()0G x ≤在[]0,1x ∈时恒成立,利用导数求函数单调性和最值,得条件满足时实数λ的取值范围;(3)由111cos 2ππf H =≈,代入求值即可,由误差2211π11ππ8πe f H =−≤− ,可证得结论.【小问1详解】()πcos 2f x x = ,()10f =,()01f =,()ππsin 22f x x′=−,()0 0f ′=,()2H x ax bx c ++,()2H x ax b ′=+,由()()()()()()001100H f H f H f =′=′=得100c a b c b = ++== ,解得101a b c =− = = ,因此()21H x x =−+. 设()()()2πcos 12F x f x H x x x =−=+−,[]0,1x ∈,()ππsin 222F x x x ′=−+ ,令()()1F x F x ′=,则()21ππcos 242F x x′=−+ ,因为()1F x ′在[0,1]上单调递增,且()21π0204F ′=−+<,()1120F ′=>,故存在()10,1x ∈使()110F x ′=,且()F x ′在()10,x 上单调递减,在()1,1x 上单调递增,又()00F ′=,()()100F x F ′′<=,()π120 2F ′=−+>, 所以()F x ′在()0,1上存在唯一的零点()21,1x x ∈,使得()20F x ′=, 且()F x 在()20,x 上单调递减,在()2,1x 上单调递增,又()()010F F ==,所以()0F x ≤,即()()f x H x ≤.【小问2详解】由(1)知()()2f x H x x λ−≤等价于()()2H x f x x λ−≤,且0λ≥,设()()()()22π1cos 12G x H x f x x x x λλ=−−=−+−+,[]0,1x ∈,则()0G x ≤, ()()ππ21sin 22G x x x λ′=−++, 令()()1G x G x ′=,则())21ππ21cos 42G x x λ′=−++, 令()()21G x G x ′=,则()32ππsin 082G x x′=−≤,所以1()G x ′在[]0,1上单调递减, 若2π18λ≥−,则()()()211π02104G x G λ′′≤=−++≤,所以()G x ′在[]0,1上单调递减,所以()()00G x G ′′≤=, 所以()G x 在[]0,1上单调递减,所以()(0)0G x G ≤=; 若2π018λ≤<−,则()21π(0)2104G λ′=−++>,而1(1)2(1)0G λ′=−+<,故存在()00,1x ∈,使10()0G x ′=,从而()00,x 上,1()0G x ′>,()G x ′单调递增,()()00G x G ′′>=, 在于是()G x 单调递增,()()00G x G >=不符合题意. 综上所述,λ的取值范围为2π1,8 −+∞. 【小问3详解】21111cos10.8992πππf H=≈=−+≈. 由(2)知,()()22π18f x H x x −≤−, 所以,误差22211π1111111ππ8π8π81040e f H =−≤−=−<−=. 【点睛】方法点睛:在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,合理归纳,结合相关的数学技巧与方法来分析与解决. 不等式证明或不等式恒成立问题常转化为函数的单调性、极(最)值问题处理,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.。

2022-2023学年广东省广州市越秀区八年级(下)期末数学试卷(含解析)

2022-2023学年广东省广州市越秀区八年级(下)期末数学试卷(含解析)

2022-2023学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若二次根式a+1在实数范围内有意义,a的取值范围是( )A. a>1B. a≥1C. a>−1D. a≥−12. 下列四个二次根式中,最简二次根式是( )A. 40B. 32C. 2D. 273. 直线y=2x+n经过点(1,5),则n=( )A. 1B. 2C. 3D. 44. 在▱ABCD中,∠A=3∠B,则∠C的度数是( )A. 45°B. 60°C. 120°D. 135°5. 下列计算正确的是( )A. 2+3=5B. 32−2=3C. 3×2=5D. 23=636. 某射击队准备挑选运动员参加射击比赛.下表是其中一名运动员10次射击的成绩(单位:环):成绩7.58.5910频数2233则该名运动员射击成绩的平均数是( )A. 8.9B. 8.7C. 8.3D. 8.27. 一次函数y=mx+n(m≠0,m,n是常数)的图象经过两点A(0,3),B(2,0),则关于x的不等式mx+n>0的解集是( )A. x>2B. x<2C. x>0D. x<08. 甲、乙两人先后从A地出发开车到相距300千米的B地,在整个匀速行程中,两人行驶的路程y与时刻t的对应关系如图所示,则甲、乙两车相遇的时刻是( )A. 9:15B. 9:30C. 9:45D. 10:009.如图,矩形ABCD的对角线AC,BD相交于点O,点E是线段AC上一点,连接EB,ED.若△BED的面积等于△BEC的面积,则△ABE和△CDE的E面积比等于( )A. 2:1B. 3:1C. 3:2D. 9:410. 已知一次函数y=kx+3k−2(k≠0,k是常数),则下列结论正确的是( )A. 若点A(2,8)在一次函数y=kx+3k−2的图象上,则它的图象与两个坐标轴围成的三角形面积是2B. 若3k−2>0,则一次函数y=kx+3k−2图象上任意两点E(a1,b1)和F(a2,b2)满足:(a1−a2 )(b1−b2)<0C. 一次函数y=kx+3k−2的图象不一定经过第三象限D. 若对于一次函数y=tx+7(t≠0)和y=kx+3k−2,无论x取任何实数,总有tx+7>kx+ 3k−2,则k的取值范围是0<k<3或k<0二、填空题(本大题共6小题,共18.0分)11. 若y=(m−2)x+1是一次函数,则m的取值范围是______ .12.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD使其不变形.若AF=1米,AE=2米,则木条EF=______ 米.(结果保留根号)13. 一组数据2,1,x,1,6的平均数是3,则这组数据的中位数是______ .14.如图,四边形ABCD是菱形,DE⊥AB于点E,点O是对角线AC的中点,连接OE.若AB=5,AC=8,则OE等于______ .15. 在平面直角坐标系xOy中,直线y=kx−2(k≠0)与x轴,y轴分别相交于A,B两点,若∠O BA=30°,则点A的坐标是______ .16. 如图,Rt△ABC的两条直角边AB>AC,分别以AB,AC为边作正方形ABDE和正方形AC GF.点H是线段DE上一点,连接HB,作矩形BCKH.线段HK与EA交于点P,线段KC与BF交于点Q,连接线段BQ和CP的中点M,N.△ABC,△HEP和四边形CGFQ的面积分别记为S1S2和S3给出下列四个结论:①HB2=AB2+AC2②EP=QF;③S1>S2+S3;④∠NMA+∠ABC=45°;其中正确的结论是______ .(填写所有正确结论的序号)三、解答题(本大题共9小题,共72.0分。

八年级下第三次月考数学试卷(解析版)

八年级下第三次月考数学试卷(解析版)

八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014学年广东省东莞市八年级(下)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤22.(2分)下列计算正确的是()A.B.C.D.3.(2分)数据2,4,3,4,5,3,4的众数是()A.5 B.4 C.3 D.24.(2分)一次函数y=﹣3x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.(2分)某种商品共10件,第一天以50元/件卖出3件,第二天以45元/件卖出2件,第三天以40元/件卖出5件,则这种商品的平均售价为每件()A.42 B.44 C.45 D.466.(2分)以下列各组数的线段为边,能组成直角三角形的是()A.3,5,9 B.4,6,8 C.1,,2 D.,,7.(2分)在Rt△ABC中,∠C=90°,AC=6,AB=10,则BC的值为()A.6 B.8 C.10 D.28.(2分)菱形ABCD中,已知AC=6,BD=8,则此菱形的周长为()A.5 B.10 C.20 D.409.(2分)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较10.(2分)两条对角线相等且互相垂直平分的四边形是()A.平行四边形B.矩形C.菱形D.正方形二、填空题(每小题3分,共15分)11.(3分)计算:=.12.(3分)平行四边形ABCD中,如果∠A=55°,那么∠C的度数是.13.(3分)将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为.14.(3分)根据图中的数据及规律,可以求出AB8=.15.(3分)如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.三、解答题(每小题5分,共25分)16.(5分)计算:×﹣(+)(﹣)17.(5分)某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.18.(5分)若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.19.(5分)如图,△ABC中,∠ACB=90°,∠A=45°,AC=6,求AB边上的高CD.20.(5分)如图,在▱ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.四、解答题(每小题8分,共40分)21.(8分)已知a=﹣1,b=+1,分别求下列各式的值.(1)a2+b2;(2)+.22.(8分)甲、乙两支队员的身高(单位:厘米)如下:(1)分别计算两组数据的平均数;(2)若乙队的方差S2=1.8,请计算甲队的方差,并指出哪支仪仗队的身高更为乙整齐?23.(8分)如图,已知直线l:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标;(2)若直线y=mx经过线段AB的中点P,求m的值.24.(8分)如图,四边形ABCD是平行四边形,AC,BD相交于点O,且∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠AOB=60°,AB=8,求BC的长.25.(8分)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.2013-2014学年广东省东莞市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选:D.2.(2分)下列计算正确的是()A.B.C.D.【解答】解:A、•=1,故本选项正确;B、﹣≠1,故本选项错误;C、=,故本选项错误;D、=2,故本选项错误;故选:A.3.(2分)数据2,4,3,4,5,3,4的众数是()A.5 B.4 C.3 D.2【解答】解:这组数据的众数为:4.故选:B.4.(2分)一次函数y=﹣3x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵解析式y=﹣3x﹣2中,﹣3<0,﹣2<0,∴图象过二、三、四象限.故选:A.5.(2分)某种商品共10件,第一天以50元/件卖出3件,第二天以45元/件卖出2件,第三天以40元/件卖出5件,则这种商品的平均售价为每件()A.42 B.44 C.45 D.46【解答】解:平均售价=(50×3+45×2+40×5)÷10=44(元/件).∴这种商品的平均售价为44元/件.故选:B.6.(2分)以下列各组数的线段为边,能组成直角三角形的是()A.3,5,9 B.4,6,8 C.1,,2 D.,,【解答】解:A、∵32+52≠92,∴不能围成直角三角形,此选项错误;B、∵42+62≠82,∴不能围成直角三角形,此选项错误;C、∵12+()2=22,∴能围成直角三角形,此选项正确;D、∵()2+()2≠()2,∴不能围成直角三角形,此选项错误.故选:C.7.(2分)在Rt△ABC中,∠C=90°,AC=6,AB=10,则BC的值为()A.6 B.8 C.10 D.2【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,AB=10,∴BC===8.故选:B.8.(2分)菱形ABCD中,已知AC=6,BD=8,则此菱形的周长为()A.5 B.10 C.20 D.40【解答】解:根据题意,设对角线AC、BD相交于O.则AC⊥BD.则由菱形对角线性质知,AO=AC=3,BO=BD=4.所以,在直角△ABO中,由勾股定理得AB===5.则此菱形的周长是4AB=20.故选:C.9.(2分)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.10.(2分)两条对角线相等且互相垂直平分的四边形是()A.平行四边形B.矩形C.菱形D.正方形【解答】解:根据正方形的判别方法知,两条对角线互相垂直平分的四边形是菱形,且相等又可判定为正方形,故选D.二、填空题(每小题3分,共15分)11.(3分)计算:=.【解答】解:=.故答案为:.12.(3分)平行四边形ABCD中,如果∠A=55°,那么∠C的度数是55°.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,∵∠A=55°,∴∠C=55°,故答案为:55°.13.(3分)将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为y=2x+1.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.14.(3分)根据图中的数据及规律,可以求出AB8=2.【解答】解:在Rt△ABB1中,AB1==,在Rt△AB1B2中,AB2==,…,AB8==2.故答案为:2.15.(3分)如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是x<﹣2.【解答】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx+b<0.故答案为:x<﹣2.三、解答题(每小题5分,共25分)16.(5分)计算:×﹣(+)(﹣)【解答】解:原式=﹣(5﹣3)=3﹣2=1.17.(5分)某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.【解答】解:(1)众数是:14岁;中位数是:15岁.(2)解法一:∵全体参赛选手的人数为:5+19+12+14=50名又∵50×28%=14(名)∴小明是16岁年龄组的选手.解法二:∵全体参赛选手的人数为:5+19+12+14=50名又∵16岁年龄组的选手有14名,而14÷50=28%∴小明是16岁年龄组的选手.18.(5分)若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.【解答】解:(1)将x=﹣1代入y=﹣x,得y=1,则点A坐标为(﹣1,1).将A(﹣1,1)代入y=x+m,得﹣1+m=1,解得m=2,所以一次函数的解析式为y=x+2;(2)方程组的解为.19.(5分)如图,△ABC中,∠ACB=90°,∠A=45°,AC=6,求AB边上的高CD.【解答】解:∵∠ACB=90°,∠A=45°,CD⊥AB,∴sinA=,又∵AC=6,∴CD=.20.(5分)如图,在▱ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.【解答】证明:在□ABCD中,AD=BC且AD∥BC∵BE=FD,∴AF=CE∴四边形AECF是平行四边形四、解答题(每小题8分,共40分)21.(8分)已知a=﹣1,b=+1,分别求下列各式的值.(1)a2+b2;(2)+.【解答】解:当a=﹣1,b=+1时,(1)原式=(﹣1)2+(+1)2=4﹣2+4+2=8;(2)原式====4.22.(8分)甲、乙两支队员的身高(单位:厘米)如下:(1)分别计算两组数据的平均数;(2)若乙队的方差S2乙=1.8,请计算甲队的方差,并指出哪支仪仗队的身高更为整齐?【解答】解:(1)甲队的平均数是:(178×4+177×3+179×3)÷10=178(厘米),乙队的平均数是:(178×4+177+176×2+179+180×2)÷10=177.9(厘米);(3)甲的方差是:S甲2=[4×(178﹣178)2+3×(177﹣178)2+3×(179﹣178)2]=1.2,∵S甲2=1.2,S2乙=1.8,∴S甲2<S2乙,∴甲支仪仗队的身高更为整齐.23.(8分)如图,已知直线l:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标;(2)若直线y=mx经过线段AB的中点P,求m的值.【解答】解:(1)令x=0,则y=3,令y=0,则x=﹣4,所以点A的坐标为(﹣4,0);点B的坐标为(0,3);(2)点P的坐标为(﹣2,),代入y=mx得=﹣2m,解得m=﹣.24.(8分)如图,四边形ABCD是平行四边形,AC,BD相交于点O,且∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠AOB=60°,AB=8,求BC的长.【解答】(1)证明:如图,∵四边形ABCD是平行四边形,∴OC=AC,OB=BD.又∵∠1=∠2,∴OB=OC,∴BD=AC,∴▱ABCD是矩形;(2)∵由(1)知,▱ABCD是矩形,∴∠ABC=90°,又∵∠AOB=60°,∴∠1=30°,∴∠2=30°,∴BC=AB•cot30°=8.即BC的长度是8.25.(8分)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.【解答】(1)证明:∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS);(2)∵△EAB≌△GAD,∴EB=GD,∵四边形ABCD是正方形,AB=3,∴BD⊥AC,AC=BD=AB=6,∴∠DOG=90°,OA=OD=BD=3,∴OG=OA+AG=6,∴GD==3,∴EB=3.。

相关文档
最新文档