经典排列组合问题100题配超详细解析版

合集下载

(完整版)经典排列组合问题100题配超详细解析

(完整版)经典排列组合问题100题配超详细解析

1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。

38种 D 。

108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。

7中选两个数字,组成无重复数字的四位数。

其中偶数的个数为 ( ) A 。

56 B. 96 C. 36 D 。

360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。

排列组合题目精选(解析版)

排列组合题目精选(解析版)

排列组合题目精选(解析版)1. A ,B ,C ,D ,E 五人并排站成一排,如果A ,B 必须相邻且B 在A 的右边,则不同的排法种数有 A . 60种 B . 48种 C . 36种 D . 24种 解析:选D 。

A 、B 相邻且顺序一定,可把A 、B 捆绑看成一个整体与其他三人全排列,一共有24A 44=种方法。

2. 七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A . 1440种B . 3600种C . 4820种D . 4800种解析:选B 。

7个人全排列,有77A 种方法,其中甲乙相邻时,甲乙交换位置,有22A 种方法,再与其他5人全排列,有6622A A 种方法。

则甲乙不相邻的排法种数为3600A A A 662277=-。

3. 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A . 6种B . 9种C . 11种D . 23种解析:选B 。

先填数字1,有3种方法。

填数字2,有两种情况。

①填入方格1,有1种方法,剩下的3和4只有1种方法;②不填入1,有1种方法,剩下两个数字可以全排列。

有22A 种方法。

故由计数原理,一共有9)A 1(322=+种填法。

4. 将四封信投入5个信箱,共有多少种方法? 解析:分以下4种情况: (1)只投1个,有15C 种方法;(2)投2个,有25A 种投信方法。

分两种情况:①分为1+3式,有14C 种分法;②分为2+2式,有2224A C 种方法; (3)投3个,有221224A C C 种分法,35A 种投法; (4)投4个,有45A 种投法。

由计数原理,一共有625A A A C C )A C C (A C 45352212242224142515=++++种投信方法。

5. 12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 种。

解析:填34650。

排列组合题目精选(附答案)

排列组合题目精选(附答案)

排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。

选项D正确。

2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。

选项B正确。

3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。

选项D 错误。

4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。

5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。

6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。

选项B正确。

7.首先从8个元素中选出2个排在前排,有8选2种选择方式。

然后从剩下的6个元素中选出1个排在后排,有6种选择方式。

最后将剩下的5个元素排在后排,有5!种排列方式。

因此不同的排法有8选2×6×5!=28×720=20,160种。

8.首先将甲、乙、丙三人排成一排,有3!种排列方式。

然后将其余4人插入到相邻的位置中,有4!种排列方式。

因此不同的排法有3!×4!=144种。

9.首先将10个名额排成一排,有10!种排列方式。

然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。

因此不同的分配方案有10!÷(6×8)=21,000种。

10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。

然后将甲和乙插入到相邻的位置中,有2种插入方式。

因此不同的派遣方案有8!×2=80,640种。

11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。

排列组合典型题大全包括答案

排列组合典型题大全包括答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客〞,能重复的元素看作“店〞,那么通过“住店法〞可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例 1】〔1〕有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2〕有 4 名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3〕将 3 封不同的信投入 4 个不同的邮筒,那么有多少种不同投法?【解析】:〔1〕34〔 2〕43〔 3〕43【例2】把 6 名实习生分配到7 个车间实习共有多少种不同方法?【解析】:完成此事共分 6 步,第一步;将第一名实习生分配到车间有7 种不同方案,第二步:将第二名实习生分配到车间也有7 种不同方案,依次类推,由分步计数原理知共有76 种不同方案.【例3】 8 名同学争夺 3 项冠军,获得冠军的可能性有〔〕A、83 B、38 C、A8 3 D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8 名学生看作8 家“店〞,3 项冠军看作 3 个“客〞,他们都可能住进任意一家“店〞,每个“客〞有8 种可能,因此共有83种不同的结果。

所以选 A1、 4 封信投到 3 个信箱当中,有多少种投法?2、 4 个人争夺 3 项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、 4 个同学参加 3 项不同的比赛(1〕每位同学必须参加一项比赛,有多少种不同的结果?(2〕每项竞赛只许一名同学参加,有多少种不同的结果?4、 5 名学生报名参加 4 项比赛,每人限报 1 项,报名方法的种数有多少?又他们争夺这 4 项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10 瓶汽水的方法有多少种?6、〔全国 II文〕5位同学报名参加两个课外活动小组, 每位同学限报其中的一个小组, 那么不同的报名方法共(A)10 种(B) 20 种(C) 25 种(D) 32种7、 5 位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,那么不同的负责方法有多少种?8、 4 名不同科目的实习教师被分配到 3 个班级,不同的分法有多少种?思考: 4 名不同科目的实习教师被分配到 3 个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 .【例 1】A, B,C , D , E五人并排站成一排,如果A, B 必须相邻且B在A的右边,那么不同的排法种数有【解析】:把 A, B 视为一人,且B固定在A的右边,那么此题相当于4 人的全排列, A44 24 种例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 .解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合典型题大全含答案.

排列组合典型题大全含答案.

>排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果)(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种-不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果(2)每项竞赛只许一名同学参加,有多少种不同的结果4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少又他们争夺这4项比赛的冠军,获得冠军的可能性有多少5、甲乙丙分10瓶汽水的方法有多少种。

6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.]【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合典型题大全含答案

排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种 (B) 20种 (C) 25种 (D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合经典题型及解析

排列组合经典题型及解析

排列组合经典题型及解析1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.`例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( ) A 、24种 B 、60种 C 、90种 D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种, … 选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C 种 B 、44412843C C C 种C 、4431283C C A 种D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种,答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( ) A 、210种 B 、300种 C 、464种 D 、600种 ]解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B. (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

排列组合典型例题(带详细答案)

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法(2)如果女生必须全分开,可有多少种不同的排法(3)如果两端都不能排女生,可有多少种不同的排法(4)如果两端不能都排女生,可有多少种不同的排法例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法例7 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数(2)可以组成多少个无重复数字且被3整除的三位数1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. (4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.n N 且n 55,则乘积(55 n)(56 n)L (69 n) 等于A.55 nA B .69 n15A C.55 n15A D .69 n14A69 n【答案】 C【分析】依据摆列数的定义可知,(55 n)(56 n)L (69 n) 中最大的数为69-n, 最小的数为55-n ,那么可知下标的值为69-n, 共有69-n- (55-n )+1=15 个数,所以选择C2.某企业新招聘8 名职工,均匀分派给部下的甲、乙两个部门,此中两名英语翻译人员不能分在同一部门,此外三名电脑编程人员也不可以全分在同一部门,则不一样的分派方案共有()A. 24 种B. 36 种C. 38 种D. 108 种【答案】 B【分析】因为均匀分派给部下的甲、乙两个部门,此中两名英语翻译人员不可以分在同一部门,此外三名电脑编程人员也不可以全分在同一部门,那么特别元素优先考虑,分步来达成可知所有的分派方案有36 种,选B*3.n∈N,则(20-n )(21-n) ⋯⋯(100-n) 等于()A.80A B.100 n20A100nnC.81A D.100 n81 A20 n【答案】 C*【分析】因为依据摆列数公式可知n∈N,则(20-n )(21-n) ⋯⋯(100-n) 等于81A ,选C 100 n4.从0,4,6 中选两个数字, 从中选两个数字,构成无重复数字的四位数. 此中偶数的个数为()B. 96C. 36【答案】 B【分析】因为第一确立末端数为偶数,那么要分为两种状况来解,第一种,末端是0,那么3其余的有 A 5=60,第二种状况是末端是4,或许6,首位从 4 个人选一个,其余的再选2个摆列即可 4 3 3,共有96 种5.从6 名志愿者中选出 4 人分别从事翻译、导游、导购、保洁四项不一样的工作,若此中甲、乙两名志愿者不可以从事翻译工作,则选派方案共有()A. 280 种B. 240 种C. 180 种D. 96 种【答案】B【解析】依据题意,由摆列可得,从 6 名志愿者中选出 4 人分别从事四项不一样工作,有4A6 360 种不一样的状况,此中包含甲从事翻译工作有3A5 60 种,乙从事翻译工作的有3A5 60 种,若此中甲、乙两名增援者都不可以从事翻译工作,则选派方案共有360-60-60=240 种.6.如图,在∠AOB的两边上分别有A1、A2、A3、A4 和B1、B2、B3、B4、B5 共9 个点,连接线段A iB j(1≤i ≤4,1 ≤j ≤5),假如此中两条线段不订交,则称之为一对“友善线”,则图中共有()对“友善线”.A.60 B .62 C.72【答案】A【解析】在∠AOB的两边上分别取 A , A (i j), 和B p ,B q (p q) ,可得四边形A i A j B p B qi j中,恰有一对“友善线”( A B 和A j B q ),而在OA上取两点有i p2C 种方法,在OB 上取两5点有 2C 种方法,共有10 6 60对“友善线”.47.在某种信息传输过程中,用 4 个数字的一个摆列(数字同意重复)表示一个信息,不一样摆列表示不一样信息,若所用数字只有0 和1,则与信息0110 至多有两个对应地点上的数字同样的信息个数为()A.10 B.11 C.12 D.15【答案】B【解析】由题意知与信息0110 至多有两个对应地点上的数字同样的信息包含三类:第一类:与信息0110 有两个对应地点上的数字同样有C42=6(个)第二类:与信息0110 有一个对应地点上的数字同样的有C41=4 个,第三类:与信息0110 没有一个对应地点上的数字同样的有C4 =1,由分类计数原理知与信息0110 至多有两个对应地点数字同样的共有6+4+1=11 个8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中起码有1门不同样的选法共有()A.6 种B.12 种C.30 种D.36 种【答案】C【解析】分有一门不相同和二门不相同两种情况,所以共有 2 1 1 2C4 C2C2 C4 30 9.从一个不透明的口袋中摸出红球的概率为1/5 ,已知袋中红球有 3 个,则袋中共有球的个数为() .A.5 个 B .8 个 C .10 个 D .15 个【答案】D【解析】由于从一个不透明的口袋中摸出红球的概率为1/5 ,而且袋中红球有 3 个,设袋中共有球的个数为n,则3 1 ,n 5 所以n 15.10.从编号为1,2,3,4 的四个不一样小球中取三个不一样的小球放入编号为1,2,3 的三个不一样盒子,每个盒子放一球,则1号球不放 1 号盒子且 3 号球不放 3 号盒子的放法总数为A.10 B.12 C .14 D .16【答案】 C解决,,要分类意知元素的限制条件比许多【分析】解:由题,从前一组为例,当选出的三个球是1、2、3 或1、3、4时1 号球在2 号盒子里, 2 号和3 号只有一种方法,1 号球在 3 号盒子里,2 号和3 号各有两种结果,选1、2、3时共有 3 种结果,选1、3、4时也有 3 种结果,,各有C2当选到1、2、4 或2、3、4时1A 2=4 种结果,2果,数原理获取共有3+3+4+4=14 种结和分步计由分类应选C.11..在实验室进行的一项物理实验中,要先后实行 6 个程序,此中程序A只好出此刻第一或最后一步,程序B和C 在实行时一定相邻,则实验次序的编排方法共有()A.34 种B.48 种C.96 种 D .144种【答案】 C题,数问【分析】解:此题是一个分步计刻第一步或最后一步,意知程序 A 只好出此∵由题1果∴从第一个地点和最后一个地点选一个地点把A摆列,有A2 =2 种结一定相邻,时∵程序 B 和C实行还有一个摆列,共有∴把 B 和C看做一个元素,同除 A 外的 3 个元素摆列,注意B和C之间A44A 2=48 种结果. 依据分步计数原理知共有2×48=96 种结果,2应选C.12.由两个1、两个2、一个3、一个4这六个数字构成6 位数,要求同样数字不可以相邻,则这样的 6 位数有A. 12 个B. 48 个C. 84 个D. 96 个【答案】 C依据同样数字不可以相邻【分析】解:因为先排雷1,2,3,4 而后将其与的元素插入进去,则意的 6 位数有84 个。

选题C的原则获取知足13.若把英语单词“hello ”的字母次序写错了,则可能出现的错误的种数是()A.119 B.59 C.120 D.60【答案】 B果,【分析】解:∵五个字母进行全摆列共有A55=120 种结字母中包含 2 个l ,果,果要除以2,共有60 种结行全摆列的结∴五个字母进果里有一个是正确的,在这60 种结的错误的种数是60-1=59 ,∴可能出现应选B.14.用三种不一样的颜色填涂如图33方格中的9 个地区,要求每行每列的三个地区都不一样不一样的填涂种数共有色,则A. 6B. 12C. 24D. 48【答案】 B【分析】解:先填正中间的方格,由 1C 中涂法,再添第二行第一个方格有 2 种涂法,再涂3第一行第一列有 2 种涂法,其余各行各列都已经确立,故共有涂法 1C ×2×2=12 种.315.、A,B,C,D,E五人并排站成一排,假如 B 一定站在 A 的右侧,(A,B 能够不相邻)那么不一样的排法有()A.24 种B.60 种C.90 种D.120 种【答案】 B【分析】解:依据题意,使用倍分法,五人并排站成一排,有A55 种状况,而此中 B 站在A 的左侧与 B 站在 A 的右侧是等可能的,则其状况数量是相等的,12则B站在A的右侧的状况数量为应选B.5×A5 =60,16.由数字2,3,4,5,6 所构成的没有重复数字的四位数中5,6 相邻的奇数共有()A.10 个 B .14 个 C .16 个D.18 个【答案】 D【分析】解:奇数的最后一位只好是;以3结尾56 相邻的数有3×2×2 个(把看成一个数,四位数变为三位数,除掉3,有两位能够在 3 个数中选:,三选二有 3×2 种选择,而56 摆列不分先后又有两种选择.)以5结尾的数有3×2 个(5结尾倒数第二位为6,还剩三个数能够选,三选二有3×2 种选择.)一共有3×2×3 个没有重复的四位数中 5 6 相邻的奇数18 个;故答案为D.17.6 个人排成一排,此中甲、乙不相邻的排法种数是()A、288 B 、480 C、600 D 、640【答案】 A6 4 2 【分析】解:因为6 个人排成一排,所有的状况为A , 那么不相邻的方法为A A =288,选6 4 5A18.由1,2,3,4,5构成没有重复数字且1,2 都不与 5 相邻的五位数的个数为A.24 B .28 C .32 D .36【答案】D2 2【解析】假如 5 在两头,则1、2 有三个地点可选,排法为2×A3 A2 =24 种,假如 5 不在两头,则1、2 只有两个地点可选,3×A 22A 2=12 种,合计12+24=36 种.219.有 6 个座位连成一排,现有 3 人入坐,则恰有两个空位相邻的不一样坐法是()种A.36 B.48 C.72 D.96【答案】C【解析】 3 2A3 A4 72 .20.记者要为5名志愿者和他们帮助的 2 位老人摄影,要求排成一排, 2 位老人相邻但不排A.1440 种B.960 种C.720 种D.480 种4【答案】B【解析】 5 1 2A5 A4 A2 960.21.5 人排成一排,此中甲一定在乙左侧不一样排法有()A、60 B、63 C、120 D、124 【答案】A【解析】5A5 60 2.22.从6 名同学中选派 4 人分别参加数学、物理、化学、生物四科知识比赛,若此中甲、乙两名同学不可以参加生物比赛,则选派方案共有()A.240 种 B .280 种 C .96 种 D .180 种【答案】 D【分析】解:由题意,从 6 名学生中选用4 名学生参加数学,物理,化学,外语比赛,共有5×4×3×6=360 种; 运用间接法先求解甲、乙两名同学能参加生物比赛的状况180,而后总数减去即为甲、乙两名同学不可以参加生物比赛则选派方案共有180 种,选D23.如图,一环形花坛分红A、B、C、D四块,现有 4 种不一样的花供选种,要求在每块里种一栽花,且相邻的2块种不一样的花,则不一样的种法总数为()A BC DB. 84C. 60D. 48【答案】 B【分析】解:分三类:种两栽花有 2A 各种法;4种三栽花有 2 3A 各种法;4种四栽花有 4A 各种法.4共有 2 3A +42A +44A =84.4应选B24.2 位教师与 5 位学生排成一排,要求 2 位教师相邻但不排在两头,不一样的排法共有()A. 480 种种 C. 960 种种【答案】 C【分析】解:因为先将老师捆绑起来有 2 种,而后利用确立两头有A52 种,而后进行全摆列共有A44,依据分步计数原理获取所有的摆列方法共有960 种25.用13 个字母A,A,A,C,E,H,I ,I ,M,M,N,T,T 作拼字游戏,若字母的摆列是5随机的,恰巧构成“MATHEMATICIA”N一词的概率1 48 216 1728 (A)13! (B)13! (C)13! (D)13! 【答案】 B【分析】解:因为从13 空位中选用8 个空位即可,那么所有的摆列就是13A , 而恰巧构成1348“MATHEMATICIA”N的状况有 3 2 2 2A A A A ,则利用古典概型概率可知为3 2 2 213! ,选B26.身穿红、黄两种颜色衣服的各有 2 人,现将这4人排成一行,要求穿同样颜色衣服的人不可以相邻,则不一样的排法共有(A)4 种(B)6 种(C)8 种(D)12 种【答案】 C【分析】解:此题是一个分步计数问题,第一将两个穿红衣服的人摆列,有A22=2种结果,再把两个穿黄色衣服的人摆列在上边两个人形成的两个空中,不可以排在三个空的中间一个空中,防止两个穿红色衣服的人相邻,共有2×2+2×2=8,应选C27.4 名运动员报名参加 3 个项目的比赛,每人限报一项,不一样的报名方法有(A)43 种(B) 34 种(C)3A 种(D)43C 种4【答案】 A【分析】解:因为4 名运动员报名参加 3 个项目的比赛,每人限报一项,则每一个人有 3 中选择,所以共有 4 3 种,选A28.将1,2,3 填入3 3 的方格中,要求每行、每列都没有重复数字( 右边是一种填法) ,则不一样的填写方法共有()(A)48 种(B)24 种(C)12 种(D)6 种【答案】 C【分析】解:填好第一行和第一列,其余的行和列就确立,∴A 3 3 2A =12 ,2应选C29.6 个人排成一排,此中甲、乙、丙三人一定站在一同的摆列种数为()(A) 6A (B)633 A (C)33 3A3 A (D)33 4A3 A4【答案】 D【分析】解:∵ 6 名同学排成一排,此中甲、乙、丙两人一定排在一同,∴第一把甲和乙、丙看做一个元素,使得它与此外 3 个元素摆列,共有 3 4A3 A4应选D30.将编号为1,2,3,4,5,6 的六个小球排成一列,要求 1 号球与 2 号球一定相邻, 5 号球与6 号球不相邻,则不一样的排法种数有()A. 36B. 142C. 48D. 144【答案】 D,有A2二者的次序【分析】解:依据题意,先将 1 号球与 2 号球,看作一个元素,考虑2=2 种状况,个大元素与 3 号球、4 号球进行全摆列,有A33=6种状况,排好后,再将 1 号球与 2 号球这有4 个空位,最后在 4 个空位中任取 2 个,安排 5 号球与 6 号球,有A42=12 种状况,数原理可得,共有2×6×12=144 种状况;由分步计应选D.31.用0、1、2 能构成没有重复数字的自然数个数是()A. 15B. 11C. 18D. 27【答案】 B问数,题计【分析】解:由题意知此题是一个分类,共有 3 个,没有重复数字的自然数,当自然数是一位数时∵用0、1、2 能构成当自然数是两位数是有2×2=4 个,有2×2=4 个,当自然数是 3 位数时计数原理知共有3+4+4=11 个,∴依据分类应选B.32.m(m+1)(m+2)﹒﹒(m+20)可表示为()202 21 2 21A) A ; ) A ; AB C) ; D)Am m m 20 m【答案】D【解析】21A 20 (m 20)( m19) L (m 1)(m 20 21 1) (m20)( m19) L(m1)m .m33.用0,1,2,3构成没有重复数字的四位数,此中奇数有()A. 8个B. 10 个C. 18 个D. 24 个【答案】 A利用行全摆列共有 2 中,则【分析】解:因为先排末端有 2 种,再排首位有 2 种,其余的进A散布乘法奇数原理可知一共有8 种,选34.某校共有7 个车位,现要停放3辆不一样的汽车,若要求 4 个空位一定都相邻,则不一样的停放方法共有7⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(A)16种(B)18种(C)24种(D)32种【答案】 C【分析】解:由题意知此题是一个分类计数问题,第一安排三辆车的地点,假定车位是从左到右一共7 个,当三辆车都在最左侧时,有车之间的一个摆列 3A ,3当左侧两辆,最右侧一辆时,有车之间的一个摆列 A 3 3当左侧一辆,最右侧两辆时,有车之间的一个摆列 3A ,3当最右侧三辆时,有车之间的一个摆列 3A ,3总上可知共有不一样的摆列法4× 3A =24 种结果,3应选C35.6 位好朋友在一次元旦聚会中进行礼物交换,随意两位朋友之间最多交换一次,进行交换的两位朋友互赠一份礼物,已知这6位好朋友之间共进行了13 次交换,则收到 4 份礼物的同学人数为()A、1 或4 B 、2 或4 C 、2 或3 D 、1 或3【答案】 B【分析】解:因为6 位好朋友在一次元旦聚会中进行礼物交换,随意两位朋友之间最多交换一次,进行交换的两位朋友互赠一份礼物,已知这6位好朋友之间共进行了13 次交换,则收到 4 份礼物的同学人数为2或4,选B36.神六航天员由翟志刚、聂海胜等六人构成,每两人为一组,若指定翟志刚、聂海胜两人必定同在一个小组,则这六人的不一样分组方法有A.3 种B.6 种C.36 种D.48 种【答案】A【解析】依据题可知节余四人分红两组即可。

相关文档
最新文档