简单线性规划问题一 课件
合集下载
高一数学《简单的线性规划问题》课件

x y 4 0 例2、已知变量x, y满足 x y 0 , x 1 y 求 的取值范围. x
y B A
C
x
y B A
C
x
方法小结
非线性目标函数的最值问题的求解 ① 分析目标函数的几何意义 ② 将目标函数化归成具有明显几何 意义的函数
考点讲解
三、含参变量线性规划问题的求解
y
B
A
C
x
方法小结
简单线性规划求解的步骤:
①画 ②作 ③移 ④求
画可行域 作线性目标函数 平移线性目标函数 求目标函数的最值
方法小结
简单线性规划求解需要注意的问题:
① 可行域是否包含边界 ② 目标函数最值与直线截距之间的关系 ③ 目标函数对应直线的斜率与边界线 斜率之间的关系
考点讲解
二、非线性目标函数的最值问题
小结提升
简单的线性规划问题求解的步骤:
画
作
移
求
简单的线性规划的作用:
二元函数的最值问题
简单的线性规划的基本思想:
数形结合
课后作业
作业手册:P263
x y 4 0 例3、已知变量x, y满足 x y 0 , x 1 z -kx y在点 1,3 取得最大值,求 k的取值范围.
考点讲解
四、线性规划的应用
例5、在平面直角坐标系xOy中,已知平 面区域A= ( x, y ) x y 0, 且x 2, y 0, 则平面区域B ( x, y) ( x y, x y) A 的面积为 ___________ .
简单的线性规划问题
考点分析
线性规划是优化的具体模型之一.考纲要 求 学生能够体会线性规划的基本思想,并能
简单的线性规划问题(第1课时)课件2

x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3
x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3
的
M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。
0051数学课件:简单的线性规划

坐标即为最优整解.
2.调整优解法:即先求非整数条件下的最优解,
调整Z的值使不定方程Ax+By=Z存在最大(小) 的整点值,最后筛选出整点最优解.
巩固练习一
设每天应配制甲种饮料x杯,乙种饮料y杯,则
咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g 、咖啡4g、糖 9 x 4 y 3600 4 x 5 y 2000 3g,乙种饮料每杯含奶粉4g 、咖啡5g、糖10g.已知每天原料 的使用限额为奶粉3600g ,咖啡2000g 糖3000g,如果甲种饮 3x 10 y 3000 料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料 x 0 的使用限额内饮料能全部售出,每天应配制两种饮料各多少 目标函数为:z =0.7x +1.2y y 0 杯能获利最大? 练习一.gsp 解:将已知数据列为下表:
直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解. 答(略) 你能否猜测一下Z的最小值可能是多少?
3.最优解的几何意义是什么 (最优解可以转化为什么几何意义)?
结论2:
线性规划求最优整数解的一般方法:
1.平移找解法: 即先打网格,描出可行域内的
整点,平移直线,最先经过或最后经过的整点
9 x + 4 y = 3600 _
得点C的坐标为(200,240)
小结
答:每天配制甲种饮料200杯,乙种饮料240杯可获取最大利润.
巩固练习 二
某货运公司拟用集装箱托运甲.乙两种货物,一个大集装箱所装托 3 运货物的总体积不能超过24 m ,总重量不能超过1500kg,甲.乙 两种货物每袋的体积.重量和可获得的利润,列表如下:
原 料 奶粉(g) 咖啡(g) 糖(g) 利 润(元) 每配制1杯饮料消耗的原料 甲种饮料 x 乙种饮料 y 9 4 3 0.7 4 5 10 1.2 原 料限 额 3600 2000 3000
高二数学人教A必修5课件:3.3.2 简单的线性规划问题 (一)

线性约束
的可行解 条件下求线性目标函
数的最大值或最小值问题
2.目标函数的最值 线性目标函数z=ax+by (b≠0)对应的斜截式直线方程是y = ,在y轴上的截距是 ,当z变化时,方程表示一 的直线.
a z - x+ 组 b b
最
当b互相平行 >0,截距最大时,z取得最
z b
值,截距最小时,z取得 值,截距最小时,z取得
答 如图,由于这些直线的斜率是确定 的,因此只要给定一个点,就能确定一 条直线,因而确定出唯一截距 ,
z 3
z 与不等式组(1)表示的区域的交点 x + 3 3 坐标满足不等式组(1),而且当截距最大时 z,z取得最大值. 3 z 因此,在区域内找一个点 P,使直线经过点 P 时截距3最大.
2 z 由图可以看出,当直线 y=-3x+3经过直线 x=4 与直线 x z 14 +2y-8=0 的交点 M(4,2)时, 截距 的值最大, 最大值为 , 3 3 这时 2x+3y=14.所以,每天生产甲产品 4 件,乙产品 2 件 时,工厂可获得最大利润 14 万元.
探究点一
线性规划中的基本概念
问题 某工厂用A、B两种配件生产甲,乙两种产品,每生
产一件甲种产品使用4个A配件耗时1 h,每生产一件乙种产
品使用4个B配件耗时2 h,该厂每天最多可从配件厂获得16 个A配件和12个B配件,按每天工作8小时计算,该厂所有 可能的日生产安排是什么?若生产1件甲种产品获利2万元 ,生产1件乙种产品获利3万元,采用哪种生产安排利润最 大?
任务x,y都是有意义的,就代表所有可能的日生产安排.
思考3
采用哪种生产安排利润最大问题应当转化成怎样的
问题来解答?
答 设生产甲产品 x件,乙产品y件时,工厂获得的利润为 z
的可行解 条件下求线性目标函
数的最大值或最小值问题
2.目标函数的最值 线性目标函数z=ax+by (b≠0)对应的斜截式直线方程是y = ,在y轴上的截距是 ,当z变化时,方程表示一 的直线.
a z - x+ 组 b b
最
当b互相平行 >0,截距最大时,z取得最
z b
值,截距最小时,z取得 值,截距最小时,z取得
答 如图,由于这些直线的斜率是确定 的,因此只要给定一个点,就能确定一 条直线,因而确定出唯一截距 ,
z 3
z 与不等式组(1)表示的区域的交点 x + 3 3 坐标满足不等式组(1),而且当截距最大时 z,z取得最大值. 3 z 因此,在区域内找一个点 P,使直线经过点 P 时截距3最大.
2 z 由图可以看出,当直线 y=-3x+3经过直线 x=4 与直线 x z 14 +2y-8=0 的交点 M(4,2)时, 截距 的值最大, 最大值为 , 3 3 这时 2x+3y=14.所以,每天生产甲产品 4 件,乙产品 2 件 时,工厂可获得最大利润 14 万元.
探究点一
线性规划中的基本概念
问题 某工厂用A、B两种配件生产甲,乙两种产品,每生
产一件甲种产品使用4个A配件耗时1 h,每生产一件乙种产
品使用4个B配件耗时2 h,该厂每天最多可从配件厂获得16 个A配件和12个B配件,按每天工作8小时计算,该厂所有 可能的日生产安排是什么?若生产1件甲种产品获利2万元 ,生产1件乙种产品获利3万元,采用哪种生产安排利润最 大?
任务x,y都是有意义的,就代表所有可能的日生产安排.
思考3
采用哪种生产安排利润最大问题应当转化成怎样的
问题来解答?
答 设生产甲产品 x件,乙产品y件时,工厂获得的利润为 z
【湖南师大内部资料】高中数学精美可编辑课件:高一数学(简单的线性规划问题(1))

x+2y=8
2 3 x
经过对应的平面区域,并平行移动.
探究新知
6.从图形来看,当直线l运动到什么位 置时,它在y轴上的截距取最大值?
y
经过点M(4,2) M
O y=3 x x+2y=8
x=4
探究新知
7. 工厂应采用哪种生产安排才能使 利润最大?其最大利润为多少? y
y=3
M(4,2)
x
O x=4
课堂小结
2.对于直线l:z=Ax+By,若B>0, 则当直线l在y轴上的截距最大(小)时, z取最大(小)值;若B<0,则当直线l 在y轴上的截距最大(小)时,z取最小 (大)值.
布置作业
P91练习:1,2.
(4)作答。
典例讲评
例2
求z=2x+y的最大值.
ìy £ x ï ï ï ï ïx + y 已知x、y满足:í ï ï ï y ? 3x ï ï î
y 2x+y=0
2 6
y=x
M
最优解(3,3), 最大值9.
O
x
x+y=2
y=3x-6
课堂小结
1.在线性约束条件下求目标函数的最 大值或最小值,是一种数形结合的数 学思想,它将目标函数的最值问题转 化为动直线在y轴上的截距的最值问 题来解决.
探究新知
1.设每天分别生产甲、乙两种产品x、 y件,则该厂所有可能的日生产安排 应满足的基本条件是什么?
x 2y 8 4 x 16 4 y 12 x 0 y 0
x 2y 8 即 0 x 4 0 y 3
探究新知
采用哪种生产安排利润最大?
探究新知
4.将z=2x+3y看作是直线l 的方程, 那么z有什么几何意义? 直线l在y轴上的截距的三倍.
3.3.2hao简单线性规划(第1课时)_课件

五、课堂作业
P86 练习2 P93 A组4 B组 3
(3)求:通过解方程组求出最优解; (4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
三、在哪个顶点取得不仅与B的符号有关,而且 还与直线 Z=Ax+By的斜率有关.
四、本课小结
本节主要学习了线性约束下如何求目 标函数的最值问题; 正确列出变量的不等关系式,准确作出 可行域是解决目标函数最值的关健; 线性目标函数的最值一般都是在可行 域的顶点或边界取得; 把目标函数转化为某一直线,其斜率与 可行域边界所在直线斜率的大小关系一定 要弄清楚.
二、概念学习
1.线性约束条件
x 2 y 8, 4 x 16, 4 y 12, x 0, y 0.
象这样关于x,y二元一次不等式组 的约束条件称为线性约束条件.
2.线性目标函数 3.线性规划
Z=2x+3y称为目标函数,(因这里目标函数 为关于x,y的一次式,又称为线性目标函数). 在线性约束下求线性目标函数的最值问题, 统称为线性规划.
x
问题:求利润2x+3y的最大值. 若设利润为z,则z=2x+3y,这样上述问题转化为: 当x,y在满足上述约束条件时,z的最大值为多少?
2 z 2 把z =2x +3y变形为y =- x + ,这是斜率为- , 3 3 3 z z 在y轴上的截距为 的直线(x 0时,y = ), 3 3 当点P在可允 z 的最值 求 求 z的最值. 许的取值范 3 围内
4
N(2,3)
x
3
0
4
1 x4 2 1 z y x 3 3 y
简单的线性规划问题课件

y
y 2x 12
y 2x 3
C(1, 4.4)
y 2x 5
x 4 y 3 这 纵是 截3xx斜距1率为5为zy的-2直,2线5
B(1, 1)
O1
x=1
x-4y+3=0 求z=2x+y的最大
A(5, 2)
值和最小值。
所以z最大值12
5
x
3x+5y-25=0
z最小值为3
【解析】
由z 2x y y 2x z
A
3, 2
5 2
,
zmax
17
B 2, 1, zmax 11
5x+3y≤15 y≤ x+1 x-5y≤3
【解析】
5x 3y 15 0
x y1 0
A
练习 B
x 5y 3 0
7
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域,
和直线 ax by 不0(全a,b为 目标0函,数为
y
C
5
A B
O1
x
5
1
复习: vv二元一次不等式Ax+By+C>0在平面直角 坐标系中表示直线Ax+By+C=0某一侧所有 点组成的平面区域。
确定方法:
方法1:直线定界,特殊点定域;
若C≠0,则直线定界,原点定域;
方法2:如:x-y+1<0
x<y-1
表示直线x-y+1=0左侧的区域。
注意:若不等式中是严格不等号,则边界
【解析】
由z 2x y y 2x z
A(5,2) C(1, 22)
5
zmin
21
22 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不在这个三角形 区域内,当x=0, y=0时,z=2x+y =0,点(0,0)在直 线l0: 2x+y=0上.
y x 1
4C
l02
B
O2
x4y3 0
A 3x 5y 25 0
4 6x
讲授新课
作一组和l0平行的直线l:2x+y=z,z∈R. 可知,当l在l0的右上方时,直线l上的 点(x,y)满足2x+y>0.
由已知条件可得二元一次不等式组: (2)将上述不等式组表示成平面上的区域,
引入新课
(3)若生产一件甲产品获利2万元,生产一 件乙产品获利3万元,采用哪种生产安排 利润最大? 设生产甲产品x乙产品y件时,工厂获得的 利润为z,则z=2x+3y.上述问题就转化为: 当x、y满足不等式※并且为非负整数时, z的最大值是多少?
即z>0,而且l 往右 y x 1
平移时,z随之增Βιβλιοθήκη 4C大,在经过不等式
组(1)表示的三角形 l02
区域内的点且平行
B
于l的直线中,
O2
x4y3 0
A 3x 5y 25 0
4 6x
讲授新课
练习1.解下列线性规划问题:求z=2x+y 的最大值和最小值,使式中的x、y满足
约束条件
y x x y 1 y 1
3.3.2简单的线性规划 问题(一)
引入新课
1. 某工厂用A、B两种配件生产甲、乙两种 产品,每生产一件甲产品使用4个A配件耗 时1h,每生产一件乙产品使用4个B配件耗 时2h,该厂最多可从配件厂获得16个A配 件和12个B配件,按每天工作8h计算,该 厂所有的日生产安排是什么? (1) 设甲、乙两种产品分别生产x、y件,
x-4y -3 下列条件: 3x 5y 25
x 1 求z的最大值和最小值.
讲授新课
x - 4y -3 3x 5y 25 x 1
y x 1
4C
2
B
O2
x4y3 0
A 3x 5y 25 0
4 6x
讲授新课
我们先画出不等式组(1)表示的平面区
域,如图中△ABC内部且包括边界,点(0,0)
3. 一般地,求线性目标函数在线性约束 条件下的最大值或最小值的问题,统称 为线性规划问题.
讲授新课
4. 满足线性约束条件的解(x,y)叫做可行解. 5. 由所有可行解组成的集合叫做可行域. 6. 使目标函数取得最大值或最小值的可行
解,它们都叫做这个问题的最优解.
讲授新课 例题分析
例1. 设 z=2x+y,式中变量x、 y满足
l0 y
l1
O
-1
B1,1
A 1 , 1 2 2
1 C2,1x
l2
讲授新课
解答线性规划问题的步骤:
第一步:根据约束条件画出可行域; 第二步:令z=0,画直线l0; 第三步:观察,分析,平移直线l0,
从而找到最优解; 第四步:求出目标函数的最大值或最
小值.
课外作业
1. 阅读教科书P.87-P.88; 2. 教科书P.91面练习第1题(2); 3.同步练习册习题
讲授新课
解:先作出可行域,见图中△ABC表示的
区域, 且求得 A 1 ,1 、B1,1、C2,1 2 2
作出直线l0:2x+y=0,再将直线平移,当l0
平行线l1过B点时,可使 z=2x+y达到最小值,当
l0平行线l2过C点时,可 使z=2x+y达到最大值. zmin=2×(1)+(1)=3, zmax=2×2+(1)=3.
讲授新课
1. 上述问题中,不等式组是一组对变量 x、y的约束条件,这组约束条件都是 关于x、y的一次不等式,所以又叫线 性约束条件. 线性约束条件除了用一次不等式表示 外,有时也用一次方程表示.
讲授新课
2. 欲求最大值或最小值的函数z=2x+3y 叫做目标函数. 由于 z=2x+y又是x、y的一次解析式, 所以又叫线性目标函数.