工程力学压杆稳定

合集下载

工程力学-26压杆稳定11-2

工程力学-26压杆稳定11-2

Pcr2
=σcr ⋅ A= 200.9×106
(3)、d=63.8mm
×3.2×10−3 = 644KN
i = 1 d =15.95mm
3m
Pcr 3
λ3 =
= σ cr
μ
i

l
A
=
=
94 (λs≤ λ< λ4p)中柔度杆 (304 −1.12 × 94) ×106 × 2.3
×10
−3
= 635KN
1
1
5 Pa 3 − N (2 a ) 3 = Na
1 6 EI
3 EI
EA
(1) BC杆的稳定: C
λ = μl = 4 ×1 = 66.6
N = 0.312 P
(λ0≤ λ< λp)中柔度杆
i 0.06
Pcrσ=crσ=c3r ⋅3A8-=12.1528λ×1=036 3×8π-1×.610242××1606−.66=258MPa
8
四、中小柔度压杆的临界力
1. 直线型经验公式
σ
σs σcr=σs A
σp
σcr=a−bλ
B
σ cr
=
π 2E λ2
O
λO
λp
λ
10
中长杆: σcr= a - bλ
λo≤ λ< λp
a , b 查表 11-2
粗短杆: σcr= σs (σb)
λ< λo
11
λo 的计算
σs = a-bλo
σ
σs σcr=σs A
=
353.5 105
=
3.367 >[nw]
满足稳定条件
22
例题10:图示结构用低碳钢A5制成,求:[P]。已知:E=

简明工程力学14章压杆稳定

简明工程力学14章压杆稳定
4π 2 EI F1cr Fcr ' ' = = 2 cos α l cos α
1 Fcr ' = Fcr ' ' , tgα = , α = 18.43o 3
§14-4 欧拉公式的应用范围 · 临界应力总图
一、 欧拉公式的应用范围 1.临界应力:压杆处于临界状态时横截面上的平均应力。
σ cr
Fcr = A
w Fcr
w=0;
代表了压杆的直线平衡状态。 代表了压杆的直线平衡状态。
此时A可以不为零。 此时 可以不为零。 可以不为零
l
w l 2 x
M (x)= Fcrw
x
B y (a)
B y (b)
w = A sin kx ≠ 0 失稳 失稳!!!
失稳的条件是: 失稳的条件是: sin kl = 0
kl = nπ
§14–1 压杆稳定性的概念
构件的承载能力: ①强度 ②刚度 ③稳定性 工程中有些构 件具有足够的强度、 刚度,却不一定能 安全可靠地工作。
P
一、稳定平衡与不稳定平衡 :
1. 不稳定平衡
2. 稳定平衡
3. 稳定平衡和不稳定平衡
二、压杆失稳与临界压力 :
1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 理想压杆
y
B y (c)
B (d)
x
§14-3 不同杆端约束下细长压杆临界力的 欧拉公式 · 压杆的长度系数
各种支承约束条件下等截面细长压杆临界力的欧拉公式
支承情况 两端铰支 一端固定 两端固定 另端铰支 Fcr 失 稳 时 挠 曲 线 形 状 A C— D C B Fcr B Fcr B 一端固定 另端自由 Fcr 两端固定但可沿 横向相对移动 Fcr

工程力学——压杆稳定

工程力学——压杆稳定
Pcr 2 EI 2E I 2E 2 2E cr i 2 2 2 2 A ( l ) A ( l ) A ( l )
欧拉公 式
其中:i
I — 截面的惯性半径;为截 面的几何性质; A

l
i
称为压杆的柔度(长细 比);反映压杆的柔软 程度。
15N
32 mm
1mm
第一节
压杆稳定的概念
FP<FPcr :直线平衡形式(稳定平衡)
在扰动作用下,直线平衡形式转为弯曲平衡形式,扰动除 去后,能够恢复到直线平衡形式,则称原来的直线平衡构形是 稳定的。 FP>FPcr :弯曲平衡形式(不稳定平衡) 在扰动作用下,直线平衡形式转为弯曲平衡形式,扰动除去 后,不能恢复到直线平衡形式,则称原来的直线平衡形式是不稳 定的。
F
F
1.
计算柔度判断两杆的临界荷载
5m
d
9m
d
d 4 64 d I i 4 d 2 4 A 1 5 L a 125 d i 0 .5 9 4 112.5 b d 4
(a)
(b )
a b
1
0.5
2. 计算各杆的临界荷载
b a P 101
(n ) EI Fcr 2 L Fcr
n 1

kL sin 2
A
适用条件: •理想压杆(轴线为直线,压力 与轴线重合,材料均匀) •线弹性,小变形 •两端为铰支座
y sin

x 挠曲线中点的挠度 l
挠曲线为半波正弦曲线
由此得到两个重要结果:
临界载荷
(a)
z
b
h
正视图:

第十一章压杆的稳定 - 工程力学

第十一章压杆的稳定 - 工程力学

第十一章压杆的稳定承受轴向压力的杆,称为压杆。

如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。

直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。

然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。

杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。

本章研究细长压杆的稳定。

§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。

物体的平衡受到外界干扰后,将会偏离平衡状态。

若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。

如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。

(a) 稳定平衡图11.1 稳定平衡与不稳定平衡上述小球是作为未完全约束的刚体讨论的。

对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。

如二端铰支的受压直杆,如图11.2(a)所示。

当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。

若轴向压力F较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a),平衡是稳定的;若轴向压力F足够大,即使微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。

在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。

如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。

工程力学压杆稳定ppt

工程力学压杆稳定ppt

0
铸铁 331.9 1.453
松木 39.2 0.199 59
3:小柔度杆(短粗压杆)只需进行强度计算。
——直线型经验公式 细长压杆。
ls
lP
临界应力总图[a]
细长杆—发生弹性屈曲 (llp) 中长杆—发生弹塑性屈曲 (ls l< lp) 粗短杆—不发生屈曲,而发生屈服 (l< ls)
——直线型经验公式
B=0 sinkl • A =0
y FN
0•A+1•B=0 sinkl • A +coskl • B=0
B=0 sinkl • A =0
若 A = 0,则与压杆处于微弯状态 的假设不符,因此可得:
sinkl = 0
(n = 0、1、2、3……)
y Fcr
临界载荷:
屈曲位移函数 :
临界力 F c r 是微弯下的最小压 力,故取 n = 1。且杆将绕惯性矩最 小的轴弯曲。
l=50cm,
求临界载荷 .(已知
)
F
解: 惯性半径:
柔度: A3钢:
可查得
因此
l0 l< lp 可用直线公式.
例:截面为120mm200mm的矩形木柱,长l=7m,材料的弹性模量
E=10GPa,p=8MPa。试求该木柱的临界力。
解: 在屏幕平面内(xy)失稳时柱的两端可 视为铰支端(图a);
若在垂直于屏幕平面内(xz)失稳时, 柱的两端可视为固定端(图b)。
最小临界载荷:
——两端铰支细长压杆的临界载荷 的欧拉公式
二、支承对压杆临界载荷的影响
两端铰支
一端自由 一端固定
一端铰支 一端固定
两端固定
临界载荷欧拉公式的一般形式:

工程力学压杆稳定

工程力学压杆稳定
4
MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。

压杆稳定问题中,欧拉公式成立的条件

压杆稳定问题中,欧拉公式成立的条件

压杆稳定问题中,欧拉公式成立的条件以压杆稳定问题中,欧拉公式成立的条件为题,我们来探讨一下这个问题。

压杆稳定问题是工程力学中的一个经典问题,研究的是在受到外力作用下,压杆是否会发生失稳。

而欧拉公式则是描述了在何种条件下,压杆会发生失稳的公式。

我们来看一下欧拉公式的表达式。

欧拉公式可以用数学语言来表示为Fcr = π²EI / L²,其中Fcr表示压杆的临界压力,E表示杨氏模量,I表示截面惯性矩,L表示杆长。

这个公式告诉我们,只有当外力超过了临界压力时,压杆才会发生失稳。

那么,欧拉公式成立的条件是什么呢?欧拉公式的推导是基于一些假设条件的。

这些条件包括:杆件是理想的无限细杆,杆的截面是均匀的,杆材的弹性模量是常数,杆件的边界条件是完美固定或者挠度为零。

只有在满足这些条件的情况下,欧拉公式才能成立。

欧拉公式的成立还与杆件的形状有关。

对于不同形状的杆件,其欧拉公式的形式也会有所不同。

例如,对于长方形截面的杆件,欧拉公式可以写成Fcr = π²Ebh² / L²,其中b和h分别表示杆件的宽度和高度。

对于圆形截面的杆件,欧拉公式可以写成Fcr = π²Eπr⁴ / L²,其中r表示杆件的半径。

欧拉公式还要求杆件处于稳定的静力平衡状态。

也就是说,在外力作用下,杆件的挠度要小到可以忽略不计。

如果杆件的挠度过大,那么欧拉公式就不再适用。

欧拉公式成立的条件还包括杆件的材料特性。

杆件的弹性模量E是杆件材料的一个重要参数,它描述了杆件材料的刚度。

当杆件的材料刚度较大时,欧拉公式更加准确。

欧拉公式成立的条件包括:杆件是理想的无限细杆,杆的截面是均匀的,杆材的弹性模量是常数,杆件的边界条件是完美固定或者挠度为零;杆件处于稳定的静力平衡状态;杆件的形状和材料特性。

在工程实践中,我们经常使用欧拉公式来计算杆件的临界压力,以确定杆件是否会发生失稳。

通过合理选择杆件的形状和材料,我们可以满足欧拉公式成立的条件,从而保证杆件的稳定性。

《工程力学》第六章 压杆的稳定性计算

《工程力学》第六章  压杆的稳定性计算

x
Fcr
图示两端铰支(球铰)的细长压杆,当压力
B
F达到临界力FCr时,压杆在FCr作用下处于
微弯的平衡状态,
考察微弯状态下局部压杆的平衡
M (x) Fcr w
d 2w dx2
M (x) EI
d 2w Fcr w
w
dx2
EI
x
FCr
M
w
x
根据杆端边界条件,求解上述微分方程 可得两端铰支细长压杆的临界力
FCr
2EI (l)2
Cr
FCr A
Cr
FCr A
2EI (l)2 A
2E (l / i)2
2E 2
Cr
2E 2
——临界应力的欧拉公式
柔度(长细比): L
i
i I A
——截面对失稳时转动
轴的惯性半径。
——表示压杆的长度、横截面形状和尺寸、杆端的约束 情况对压杆稳定性的综合影响。
200
2.中柔度杆(中长压杆)及其临界应力
工程实际中常见压杆的柔度往往小于p,其临界应力超过材料的
比例极限,属于非弹性稳定问题。这类压杆的临界应力通常采用直线 经验公式计算, 即
Cr a b ——直线型经验公式
式中,a、b为与材料有关的常数,单位为MPa。
由于当应力达到压缩极限应力时,压杆已因强度问题而失效,因此
12 h
1 2300 60
12 133
在xz平面内,压杆两端为固定端,=0.5,则
iy
Iy A
b 12
y
l
iy
l 12
b
0.5 2300 40
12 100
因为 z>y,连杆将在xy平面内失稳(绕z轴弯曲),因 此应按 =z=133计算连杆的临界应力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.02
4
Fcr
y
B
z
24.2 (kN)
l
2、从强度分析 s 235 MPa
Fs
A s
0.02 2
4
235 106
73.8
(kN)
A
22
第三节 欧拉公式的使用范围 临界应力总图
一、临界应力与柔度
cr
Fcr A
2EI (l)2 A
2E (l)2
i 2
2E ( l )2
2E 2
i
由 k 2 Fcr 可得 EI
Fcr
n2 2 EI
l2
17
临界载荷:
Fcr
n2 2 EI
l2
nx
屈曲位移函数 :y(x) Asin
l
临界力 F c r 是微弯下的最小压 力,故取 n = 1。且杆将绕惯性矩最
小的轴弯曲。
最小临界载荷:
Fcr
2 EI min
l2
——两端铰支细长压杆的临界载荷 的欧拉公式
18
二、支承对压杆临界载荷的影响
两端铰支
一端自由 一端固定
一端铰支 一端固定
两端固定
19
临界载荷欧拉公式的一般形式:
Fcr
2EI ( l ) 2
一端自由,一端固定 : 一端铰支,一端固定 :
两端固定 : 两端铰支 :
= 2.0 = 0.7 = 0.5 = 1.0
20
欧拉临界力公式
Fcr
——临界应力的欧拉公式
l ——压杆的柔度(长细比)
i
柔度是影响压杆承载能力的综合指标。
i I A
——惯性半径 Iz Aiz2,I y Aiy2.
cr 压杆容易失稳
23
二、欧拉公式的适用范围
p,
cr p
cr
2E 2
p
.
2E p
p
2E p
cr
无效
(细长压杆临界柔度)
p
欧拉公式的适用围:

p
称大柔度杆(细长压杆 )
o
例:Q235钢,E 200 GPa, p 200 MPa.
有效 crຫໍສະໝຸດ E 2pl ip
2E p
2 200103 99.35 100
200
24
三、临界应力总图:临界应力与柔度之间的变化关系图。
1、大柔度杆(细长压杆)采用欧拉公式计算。
cr a b ——直线型经验公式
P
cr
2E 2
细长压杆。
o
s
P
l
i
26
cr a b ——直线型经验公式
a, b是与材料性能有关的常数。
s
a
s
b
直线公式适合合金钢、铝合金、铸铁与 松木等中柔度压杆。
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
9
10
11
12
受压直杆平衡的三种形式
F Fcr
F Fcr
F Fcr
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
13
电子式万能 试验机上的压杆 稳定实验
14
第二节 细长压杆临界压力的欧拉公式 一、两端铰支细长压杆的临界载荷
当达到临界压力时,压杆处于微弯状态下的平衡。
p ( p )
临界压力:
Fcr
2EI (l)2
cr
临界压应力:
cr
2E 2
P
cr
2E 2
细长压杆。
o
l
P
i
25
2:中柔度杆(中长压杆)采用经验公式计算。
s p ( p s ) cr a b ——直线型经验公式 a, b是与材料性能有关的常数。
s
a
s
b
cr
5人死亡、7人受伤。
7
2000年10月25日上午10时许南京电视台演播厅工程封顶,由于脚手
架失稳,模板倒塌,造成6人死亡,35人受伤,其中一名死者是南京电 视台的摄象记者。
8
稳定性:平衡物体在其原来平衡状态下抵抗干扰的能力。 失 稳:不稳定的平衡物体在任意微小的外界干扰下的变 化或破坏过程。
小球平衡的三种状态
细长压杆的破坏形式:突然产生显著的
弯曲变形而使结构丧失工件能力,并非因强
度不够,而是由于压杆不能保持原有直线平
(a)
(b)
衡状态所致。这种现象称为失稳。
5
稳定问题:主要针对细长压杆
课堂小实验:横截面为26mm×1mm的钢尺,求其能承受的 Fmax=?
F
l
若取l 2cm, 按屈服强度 s 235MPa计算,
第十一章 压杆稳定
§11-1 压杆的稳定概念 §11-2 细长压杆临界压力的欧拉公式 §11-3 欧拉公式的使用范围 临界应力总图 §11-4 压杆的稳定计算 §11-5 提高压杆稳定性的措施
1
工程实例 工程中把承受轴向压力的直杆称为压杆.
压杆
液压缸顶杆
2
木结构中的压杆
脚手架中的压杆 3
桁架中的压杆 4
Fmax 235 106 26 106 6110N
若取l 30cm, 按两端铰接方式使其受轴向压力, 当产生明显变形时,Fmax 180N
若取l 100cm,则产生明显变形时, Fmax 50N
若取l 200cm, 则产生明显变形时,
1mm
26mm
Fmax 12.80N
6
1983年10月4日,高 54.2m、长17.25m、 总重565.4KN大型脚 手架局部失稳坍塌,
y FN
y
Fcr
15
y FN
Fcr
考察微弯状态下局部压杆的平衡:
M (x) = Fcr y (x)
d2y
M (x) = –EI
d x2
令 k 2 Fcr EI
d2y dx2
k
2
y
0
二阶常系数线性奇次微分方程
微分方程的解: y =Asinkx + Bcoskx
y 边界条件: y ( 0 ) = 0 , y ( l ) = 0
第一节 问题的提出
压杆的稳定概念
拉压杆的强度条件为:
= —F—N [ ] A
(a): 木杆的横截面为矩形(12cm),高为 3cm,当荷载重量为6kN时杆还不致破坏。
(b):木杆的横截面与(a)相同,高为1.4m (细长压杆),当压力为0.1KN时杆被压弯, 导致破坏。
(a)和(b)竟相差60倍,为什么?
0•A+1•B=0 sinkl • A +coskl • B=0
B=0 sinkl • A =0
16
y FN
y Fcr
0•A+1•B=0 sinkl • A +coskl • B=0
B=0 sinkl • A =0
若 A = 0,则与压杆处于微弯状态 的假设不符,因此可得:
sinkl = 0
kl n (n = 0、1、2、3……)
2 EI min ( l ) 2
中的
Imin 如何确定

定性确定 Imin
21
例:图示细长圆截面连杆,长度 l 800 mm,直径 d 20 mm,材 料为Q235钢,E=200GPa.试计算连杆的临界载荷 Fcr .
解:1、细长压杆的临界载荷
Fcr
2 EI
l2
2E
l2
d4
64
3
200 109 0.82 64
相关文档
最新文档