热力学喷管和扩压管
热力学十套题(1)

一、 填空题(每空1分,共20分)1.能源按使用程度和技术可分为 能源和 能源。
2.孤立系是与外界无任何 和 交换的热力系。
3.单位质量的广延量参数具有 参数的性质,称为比参数。
4.测得容器的真空度48V p KPa =,大气压力MPa p b 102.0=,则容器内的绝对压力为 。
5.只有 过程且过程中无任何 效应的过程是可逆过程。
6.饱和水线和饱和蒸汽线将压容图和温熵图分成三个区域,位于三区和二线上的水和水蒸气呈现五种状态: 、 、 、 和 。
7.在湿空气温度一定条件下,露点温度越 说明湿空气中水蒸气分压力越 、水蒸气含量越 ,湿空气越潮湿。
(填高、低和多、少)8.克劳修斯积分/Q T δ⎰为可逆循环。
9.熵流是由 引起的。
10.能源按其有无加工、转换可分为 能源和 能源。
二、选择题(每题2分,计20分)1.压力为10 bar 的气体通过渐缩喷管流入1 bar 的环境中,现将喷管尾部截去一段,其流速、流量变化为( )。
(A ) 流速减小,流量不变 (B )流速不变,流量增加(C ) 流速不变,流量不变 (D ) 流速减小,流量增大2.P V = R T 描述了( )的变化规律。
(A )任何气体准静态过程中 (B )理想气体任意过程中(C )理想气体热力平衡状态 (D )任何气体热力平衡状态3.某制冷机在热源T1= 300 K ,及冷源T2= 250K 之间工作,其制冷量为1000 KJ ,消耗功为250 KJ ,此制冷机是( )。
(A )可逆的(B )不可逆的(C )不可能的(D )可逆或不可逆的4.系统的总储存能为( )。
(A )U (B )U + p V(C )U + 122m c +m g z (D )U + p V + 122m c +m g z5.卡诺定理表明:所有工作于同温热源与同温泠源之间的一切热机的热效率为( )。
(A )都相等,可以采用任何循环(B )不相等,以可逆热机的热效率为最高(C )都相等,仅仅取决与热源和泠源的温度 (D )不相等,与所采用的工质有关系6.通过叶轮轴对绝热刚性容器中的气体搅拌,其参数变化为( )。
化工热力学第四章热力学第一定律及其应用课件

400
2.0
23.80J mol 1K 1
化工热力学 第四章 热力学第一定律及其应用
熵变为正值。对于绝热过程,环境没有熵变,因而孤立体系 熵变也为正值,这表明节流过程是不可逆的。此例说明,第三章 的普遍化关联法也可以应用于节流过程的计算。
化工热力学 第四章 热力学第一定律及其应用
例 4—3 300℃、4.5 MPa乙烯气流在透平机中绝热膨胀到 0.2MPa。试求绝热、可逆膨胀(即等熵膨胀)过程产出的轴功。 (a)用理想气体方程;(b)用普遍化关联法,计算乙烯的热
即:
能入 能出 能存
封闭体系非流动过程的热力学第一定律:
U Q W
化工热力学 第四章 热力学第一定律及其应用 第一节
§4-2 开系流动过程的能量平衡
开系的特点: ① 体系与环境有物质的交换。 ② 除有热功交换外,还包括物流输入和 输出携带能量。
开系的划分: ➢ 可以是化工生产中的一台或几台设备。 ➢ 可以是一个过程或几个过程。 ➢ 可以是一个化工厂。
化工热力学 第四章 热力学第一定律及其应用
例 4—2 丙烷气体在2MPa、400K时稳流经过某节流装置后 减压至0.1MPa。试求丙烷节流后的温度与节流过程的熵变。
[解] 对于等焓过程,式(3—48)可写成
H
CP T2 T1
H
R 2
H1R
0
化工热力学 第四章 热力学第一定律及其应用
已知终压为0.1MPa,假定此状态下丙烷为理想气体,
S
C* pms
ln T2 T1
R ln
P2 P1
S1R
因为温度变化很小 ,可以用
C* pms
C* pmh
92.734J
mol 1
工程热力学与传热学(第二十七)复习题部分答案

《工程热力学与传热学》复习题答案渤海石油职业学院石油工程系——晏炳利第一篇工程热力学第一章绪论一、填空题1.水力能、风能、太阳能、地热能、燃料化学能、原子能等2.①以机械能的形式直接利用(如水力能、风能);②以热能的形式利用(如太阳能、地热能、燃料化学能、原子能等)。
3.①直接利用热能加热物体(如采暖、烘烤、冶炼、蒸煮等);②间接利用。
4.吸气、压缩、爆发、排气5.①热力学第一、第二定律;②研究工质的热物理性质;③研究各种热力设备中的能量转换过程二、概念题1.热力学:是一门研究与热现象有关的能量、物质和它们之间相互作用规律的科学。
2.工程热力学:是从工程应用的角度研究热能与机械能之间相互转换的规律,达到提高能量有效利用率目的的学科。
三、简答题1.工程热力学的基本任务.:通过对各种用能设备及系统中的能量转换过程及影响因素的研究,探索有效、合理利用能量的技术途径和基本方法。
第二章基本概念一、概念题1.工质:工程热力学中,把实现热能与机械能相互转换的媒介物或工作介质称为工质。
2.环境(外界):指系统以外与系统相联系的部分称为环境。
3.热力状态:系统在某一瞬间的宏观物理状况称为系统的热力状态简称状态。
4.平衡态:指在不受外界影响的条件下,系统的宏观性质不随时间改变的状态。
5.绝对压力(P):一般情况下,容器内系统的实际压力称为绝对压力(P)。
测压计测出的不是绝对压力,而是气体的绝对压力与当地大气压力的差值,是一个相对压力。
6.表压力(Pg):当容器内气体的实际压力大于大气压力时,测压计(压力表)的读数为正,读数称为表压力。
7.真空度(Pv):当容器内气体的实际压力小于大气压力时,测压计(真空表)的读数为负,读数的绝对值称为真空度。
状态方程:表示基本状态参数之间函数关系的方程称为状态方程。
热力过程(过程):系统从一个状态变化到另一个状态所经历的状态称为热力过程。
准静态(准平衡)过程:系统由平衡态(I)变化到平衡态(II)的过程中,所经历的每一个中间状态都可看作平衡态,这样的过程均称为准静态(准平衡)过程。
工程热力学蒸汽的流动

c2 ' c2
h2
h2
/
2
2'
x=1
0
s
21
6-4 绝热节流及其应用
一、绝热节流的概念
流体流经阀门、孔板等装置时,由于局部阻力较 大,使流体压力明显下降,称为节流现象。如果节 流过程是绝热的,则为绝热节流,简称节流。
二、节流过程的特点
1 3 2
1、过程的基本特性: (1)节流过程是典型 的不可逆过程; (2)绝热节流前后焓 值相等。
第一篇
工程热力学
第六章 蒸汽的流动
新课引入
前面讨论的热力系中所实施的热力过程,一般都没有考 虑工质流动状况(如流速)的改变。但在有些热力设备中, 能量转换是在工质的流速和热力状态同时变化的热力过程 中实现的。如蒸汽在汽轮机中喷管内的流动过程;气体在 叶轮式压气机中扩压管内的流动过程等,其能量转换的规 律需专门研究,为以后汽轮机专业课的学习奠定一定的理 论基础知识。
h
节流前汽轮机按1-2进行:
p1
/
p1
t1
/
wt=h1-h2 wt′=h1′-h2′ 由于h1=h1′及h2′>h2, 则有 wt′<wt
h1Hale Waihona Puke h11t1/
1'
节流后汽轮机按1′-2′进行:
p2
h2
/
h2
2' 2
x=1
0
s
虽然蒸汽绝热节流后,焓不变,1kg蒸汽的总能量的数量 没变,但其作功能力降低了。
14
工程中常用的喷管型式为:渐缩喷管和缩放喷管
15
Ma<1
Ma<1
Ma>1
渐缩喷管
热力学第三章 热一律

out m out
h c / 2 gz
2
in min Wnet
一、稳定流动条件
1、 m out m in m
2、 Q Const , W net Const Ws
Ws为轴功 Shaft work
3、 CV内总能不随时间变化: dEcv/=0
间所传递的一种机械功,表现为流动工质进 出系统使所携带和所传递的一种能量
二、开口系能量方程的推导
Wf= moutpoutvout- minpinvin e=u+c2/2+gz
带入的能量
ein+ minpinvin CV
= u+c2/2+gz+ minpinvi
h=u+pv
二、开口系能量方程的推导 定义 h=u+pv为 比焓,将推导结 果进行整理得开 口系能量方程的 一般形式:
二、稳定流动方程
Q m h c / 2 gz out h c / 2 gz in Ws
2
2
Q mq
2
Ws m ws
2
q ( h c / 2 gz ) out ( h c / 2 gz ) in ws
q h c / 2 g z ws
dU 代表某微元过程中系统通过边界 交换的微热量与微功量两者之差值,即 系统内部能量的变化。 U 代表储存于系统内部的能量
内部储存能(内能)
内能
分子动能(移动、转动、振动) 分子位能(相互作用) 核能 化学能
工程热力学名词解释

工程热力学名词解释专题注:参考哈工大的工程热力学和西交大的工程热力学第一章——基本概念1、闭口系统:热力系与外界无物质交换的系统。
2、开口系统:热力系与外界有物质交换的系统。
3、绝热系统:热力系与外界无热量交换的系统。
4、孤立系统:热力系与外界有热量交换的系统。
5、热力平衡状态:热力系在没有外界作用的情况下其宏观性质不随时间变化的状态。
6、准静态过程:如果造成系统状态改变的不平衡势差无限小,以致该系统在任意时刻均无限接近于某个平衡态,这样的过程称为准静态过程7、热力循环:热力系从某一状态开始,经历一系列中间状态后,又回复到原来状态。
8、系统储存能:是指热力学能、宏观动能、和重力位能的总和。
9、热力系统:根据所研究问题的需要,把用某种表面包围的特定物质和空间作为具体指定的热力学的研究对象,称之为热力系统。
第二章——热力学第一定律1、热力学第一定律:当热能与其他形式的能量相互转换时,能的总量保持不变。
或者,第一类永动机是不可能制成的。
2、焓:可以理解为由于工质流动而携带的、并取决于热力状态参数的能量,即热力学能与推动功的总和。
3、技术功:技术上可资利用的功,是稳定流动系统中系统动能、位能的增量与轴功三项之和4、稳态稳流:稳定流动时指流道中任何位置上的流体的流速及其他状态参数都不随时间而变化流动。
第三章——热力学第二定律1、可逆过程:系统经过一个过程后,如果使热力系沿原过程的路线反向进行并恢复到原状态,将不会给外界留下任何影响。
2、热力学第二定律:克劳修斯表述:不可能把热从低温物体转移到高温物体而不引起其他变化。
开尔文普朗克表述:不可能从单一热源吸热而使之全部转变为功。
3、可用能与不可用能:可以转变为机械功的那部分热能称为可用能,不能转变为机械功的那部分热能称为不可用能。
4、熵流:热力系和外界交换热量而导致的熵的流动量5、熵产:由热力系内部的热产引起的熵的产生。
6、卡诺定理:工作再两个恒温热源(1T 和2T )之间的循环,不管采用什么工质,如果是可逆的,其热效率均为121T T ,如果不是可逆的,其热效率恒小于121T T 。
喷管和扩压管

第五章 热工基础的应用
§5-1 喷管和扩压管 §5-2 换热器及其热计算 §5-3 压气机 §5-4 内燃机循环 §5-5 燃气轮机循环 §5-6 蒸汽动力循环 §5-7 制冷循环
1/20
热工基础
第一节 喷管和扩压管
对象:气体和蒸汽在管路设备,如喷管、扩压管、节
流阀内的流动过程。 喷管:用于增加气体或蒸气流速的变截面短管。 主要问题:气体在流经喷管等设备时,气流参数变化与
pcr Tcr vcr 称临界压力、临界温度及临界比体积。
Ma < 1
dA = 0
Ma = 1
Ma > 1
dA < 0
(临界截面)
dA > 0
pcr Tcr ccr = cfcr
12/20
1-3 喷管的计算
热工基础
喷管计算包括设计计算和校核计算。
设计计算:
已知:工质进口参数 (p1, T1, cf1)、背压(出口外环境压力) pb、流量qm 由工作条件(锅炉、发动机)决定
已知条件: p1, T1, cf1, pb, qm 设计原则:符合热力学原理(可逆绝热充分膨胀)。
(1) 外形选择 (2) 尺寸计算
p2 pb
pb pcr cr p1 pb pcr cr p1
渐缩喷管 缩放喷管
A2
qm
v2 cf2
Amin
qm
vcr cf,cr
渐缩喷管 缩放喷管
A2
qm
vdp dh
dh c f dc f 0
c f dc f vdp
流动过程中,欲使工质流速增加,必须有压力降落。
压差是提高工质流动速度的必要条件。
6/20
热工基础
工程热力学 二热力学第一定律

从上式可以看出在工质流动过程中,工 质作出的膨胀功除去补偿流动功及宏观 动能和宏观位能的差额即为轴功。
⑵技术功与轴功、膨胀功、流动功 由式 wt=ws+1/2(wg22-wg12 )+g(z2-z1) =(q-△u)-(p2v2-p1v1) =w-(p2v2-p1v1) 可以看出当忽略工质进出口处宏观动能和宏观 位能的变化,技术功就是轴功;且技术功等于 膨胀功与流动功之差。
即:h1=h2。
稳态稳流过程在工程中广泛地存在。例如热 工设备的正常运行条件下,但其启动和关闭 情况除外。 其能量方程式如下: Q=(H2-H1)+m(wg22-wg12)/2 +mg(z2-z1)+Ws J q=△h+△wg2/2+g△z+ws J/Kg
一、换热器(Heat Exchanger)
实现冷、热流体热量 交换的设备。 因ws=0,△wg2/2 =0,g△z=0,所 以有: q=h2-h1 说明工质吸收 ( 放热 ) 的热量等于其焓升 (降) 。
二、喷管(Nozzle)和扩压管
喷管实现流体压力降低、 流速增加的设备。 扩压管是流速降低,压 力增加的管道。 因q=0,ws=0, g△z=0,所以有: (wg22-wg12)/2=h1-h2 说明气体流动动能的增加 等于其焓降。
三、气轮机( Engine )
利用工质在机器中膨胀而获得机械 功的设备。 因q=0,△wg2/2=0,g△z=0, 所以有: ws=h1-h2 说明工质对外所作轴功等于其焓降。
对于可逆过程有 wt=∫21pdv-p2v2+p1v1 =∫21pdv-∫21d(pv) =-∫21vdp 在P-v图上是右图中的阴影面积。 注意:q=△h+wt及q=△u+w对 于开口系统和闭口系统均适用,只不过 前者仅对开口系统稳态稳流过程、后者 仅对闭口系统有实在的物理意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临界压比是喷管选型和确定喷管出口压力 的重要依据。
返回
热力学喷管和扩压管
2020年4月18日星期六
与喷管中的热力过程相反,在工程实际中还 有另一种转换,即高速气流进入变截面短管中 时,气流的流速降低,而压力升高。这种能使 气流压力升高而速度降低的变截面短管称为扩 压管。扩压管在叶轮式压气机中得到应用。
本节讨论比热容为定值的理想气体的可逆过 程,且仅考虑沿流动方向的状态和流速变化, 即认为流动是一维流动;同时假定气体的流动 是稳定流动。
字通常省略。
四、喷管的计算
(一)流速计算 由能量方程 当喷管进口气体流速较小,可忽略不计时
由于该式是从能量方程直接推导得到的,
故对于工质和过程是否可逆均无限制。对于
理想气体,由于
,故有
对于蒸气, 和 得到。
可通过查图、查表
在定熵条件下,若工质为理想气体,可推得
上式说明,在喷管内的气体定熵流动中,
常数 两边微分有
上式说明,在定熵流动过程中,若压力下 降,比体积增加。联系能量方程分析知,工 质流速与比体积是同时增加或减少,而压力 变化分别与比体积变化和流速变化相反。
二、声速和马赫数
由物理学知,声速
根据过程方程
有
上式说明,气体的声速与气体的热力状 态有关,气体的状态不同,声速也不同。在 气体的流动过程中,气体的热力状态发生变 化,声速也要变化。因此在气体介质中的声 速是当地声速,即某截面处热力状态下的声 速。
两边微分得
上式说明,工质的流速升高来源于工质 在流动过程中的焓降;工质的流速减小时, 焓将增加。
又
当q=0且可逆时
故
上式说明,在流动过程中欲使工质流速增加 ,必须有压力降落。所以压差是提高工质流动 速度的必要条件,也是流速提高的动力。
(三)过程方程
在定熵(绝热可逆)流动过程中,工 质的状态参数变化遵循定熵的过程方程
喷管出口的气体流速取决于工质性质、进口参
数和气体出口与进口的压比
。在工质、
气体进口状态都确定的条件下,气体出口流速
仅取决于压比
,其值随
的减小
而增大。当
时,
然而,这一最大出口流速是达不到的。因为
当
时,
,此时出口截面积
应趋于无穷大,这显然办不到。事实上,
还受到喷管形状的限制。
(二)临界压比
临界截面上的气体压力 与进口(初速 约为0)压力 之比称为临界压比,用 表示
由式 以及
求解得
由于绝热指数仅取决于气体热力性质,因 此气体一定,其临界压比一定。对于定值比 热的理想气体
单原子气体 k= 1.67 临界压比为0.487
双原子气体 k=1.4 临界压比为0.528
多原子气体 k=1.3 临界压比为0.546
对于蒸气
过热蒸气 k= 1.3 临界压比为0.546
一、一维稳定流动的基本方程
(一)连续性方程 根据质量守恒原理,流体稳定流经任一 截面的质量流量保持不变。若任一截面的面 积为A,流体在该截面的流速为c,比体积为 ,则流量
常数
上式称为稳定流动的连续性方程。对其两边微 分得
(二)能量方程
在喷管和扩压管的流动中,由于流道较 短,工质流速较高,故工质与外界几乎无热 交换。在流动中,工质与外界也无轴功交换 ,工质进出口位能差可忽略不计,因此上式 变为
渐缩喷管的出口流速在极限条件下可
增加到
,此时出口截面也是临界
截面。
工程上喷管进口处气流速度一般较低,
M总是小于1,而进口处M>1的渐扩喷管
几乎不单独使用。
对于扩压管,使用的主要目的是为了升
高气流的压力,流动过程中流速降低、压
力升高。当M<1时,
,此种
扩压管称为渐扩扩压管。工程上扩压管比
较简单,仅限于M<1的情况,故渐扩两
,则必须使
。沿流动方向上流道截面
逐渐减小的喷管称为渐缩喷管,如图所示。当
时,则应
,称为渐扩喷管,如图所示
。
工程上许多场合要求气体从
加速到
。为使气体流速增加,压力是不断下降的。气
体在喷管内的绝热流动中,压力下降,温度下
降,声速也将不断下降,流速的不断增加和声
速的不断降低使得马赫数总是不断增加。在渐
缩喷管内,马赫数可增加到极限值1;在渐扩
马赫数是气体在某截面处的流速与该处声速之比
根据M的大小,流动可分为 亚声速流动 声速流动 超声速流动
三、气体在喷管和扩压管中的定熵流动
由上面的基本方程可得到马赫数为参 变量的截面积与流速变化的关系式
故
该式称为管内流动的特征方程
对于喷管而言,增加气体流速是其主要目
的。根据特征方程,当气流的
时,要使
喷管内,马赫数可从1开始增加。
因而,为使M从
连续增加到
,在压差足够大的条件下,应采用由渐缩喷
管和渐扩喷截面即喉部
截面处的流动是M=1的声速流动。该截面
是
的亚声速流动与
的超声速流
动转折点,称为临界截面。临界截面上的状
态参数称为临界参数,用下标cr表示。