基因克隆和表达

合集下载

基因克隆和表达技术及其应用研究

基因克隆和表达技术及其应用研究

基因克隆和表达技术及其应用研究在现代生物技术领域,基因克隆和表达技术被广泛应用于生物医药、农业生产、环境保护等多个领域,是一项重要的研究方向。

本文将介绍基因克隆和表达技术的原理、工具和应用,旨在深入探讨该技术在现代生物科技领域中的应用价值。

一、基因克隆的原理与工具基因克隆是指将目标DNA片段放入载体中,通过复制和传递,获得大量相同的DNA分子的过程。

基因克隆需要用到一系列工具和分子生物学技术。

其基本的步骤包括:DNA提取、限制酶切割、连接和转化等。

DNA提取是指从细胞中获取目标DNA,一般从细胞核中提取DNA样品。

限制酶切割是一种利用特定的限制酶将DNA切割成不同长度的碎片的技术。

连接是指将目标DNA片段与载体DNA进行配对,在适当的连接条件下会形成一个大的DNA分子,也称作重组DNA。

最后的转化是将重组DNA重新引入一个宿主细胞,使其进行繁殖。

这些步骤组成了一个典型的基因克隆工作流程。

在基因克隆中,一些关键工具也是必不可少的。

例如,限制酶和DNA连接酶是进行酶切和连接的酶类;载体是将目标DNA载入的载体分子。

当然,在实验设计过程中,也需要考虑到多种子序列的选择,以获得最优的结果。

二、基因表达技术基因表达技术是指将克隆好的基因转录和翻译为蛋白质的过程。

基因表达技术所涉及的核心部分主要为转染和转录。

转染是指将载体转化到目标细胞中的过程。

转染可以分为多次批量的直接转染和、转染载体的两种方式。

对于细胞质和细胞核分离的情况,病毒载体或质粒载体也可以被用来介导转录。

质粒载体在转录的时候需要被移入到细胞的核中,由此促进了 DNA 受体和 RNA聚合酶之间的相互作用。

另一种重要的基因表达技术是转录,也称作转录调节。

转录调节可以分为两类:正调节和负调节。

正调节是指通过上调特定基因的表达、促进特定转录的过程;负调节是指通过下调特定基因的表达、抑制特定转录的过程。

转录调节受到多种因素的影响,例如转录因子和超融合酶等分子的运作。

基因克隆与表达及功能鉴定研究

基因克隆与表达及功能鉴定研究

基因克隆与表达及功能鉴定研究在现代生命科学领域中,基因克隆与表达以及功能鉴定是非常重要的研究方向之一,它涉及到许多生物医学、农业、工业和环境等领域的研究和实际应用。

本文将从基因克隆与表达的基本原理、方法、技术和应用,以及功能鉴定的原理、方法、技术和应用等方面进行探讨。

一、基因克隆与表达基因克隆是指通过分子生物学技术,将含有某个或某些特定基因的DNA序列从一个大的DNA分子(如染色体)中分离出来,然后插入到特定的载体DNA中,形成重组DNA分子的过程。

基因表达是指基因信息的转录和翻译过程,将基因的DNA序列转录成RNA分子,然后翻译成蛋白质分子的过程。

基因表达是生物体形成和发展的基础,也是生命活动的重要表现形式。

1. 基因克隆原理基因克隆的主要原理是利用限制酶、DNA连接酶、DNA聚合酶以及质粒或噬菌体等DNA载体的特性,将特定DNA序列插入到载体DNA中,形成重组DNA分子。

限制酶是一种能够识别、切割DNA分子特定序列的酶,其识别序列具有一定的特异性。

DNA连接酶是一种能够连接两个DNA分子的酶,常用的有T4 DNA连接酶和快速连接酶等。

DNA聚合酶是一种能够在DNA模板上合成互补链的酶,其作用是在重组DNA分子中完成互补链的合成。

2. 基因克隆方法基因克隆的主要方法有限制性片段长度多态性(RFLP)分析、聚合酶链式反应(PCR)克隆、原核表达克隆和真核表达克隆等。

RFLP分析是一种利用限制酶对DNA序列进行切割,并根据不同的RFLP位点进行区分的方法,其主要应用于基因型鉴定和进化研究等领域。

PCR克隆是一种利用PCR技术扩增目标基因或DNA片段,并将扩增产物克隆到载体DNA中的方法,其主要应用于基因检测、DNA测序和分子克隆等领域。

原核表达克隆是一种利用质粒或噬菌体等原核生物作为DNA载体,将外源基因转入细菌或古细菌等原核生物细胞中,通过蛋白质表达实现基因功能研究的方法。

真核表达克隆是一种利用真核生物(如哺乳动物、鸟类、昆虫、线虫等)作为DNA载体,将外源基因转入具有表达能力的真核细胞中,通过蛋白质表达实现基因功能研究的方法。

重组蛋白诱导表达方法

重组蛋白诱导表达方法

重组蛋白诱导表达方法一、基因克隆和表达载体构建基因克隆是重组蛋白诱导表达的第一步,包括基因的获取、基因的剪切和拼接等步骤。

在获取基因时,可以通过基因文库筛选、PCR 扩增、人工合成等方法。

剪切和拼接基因时,需要选择合适的限制性内切酶和连接酶,以确保基因的准确拼接。

表达载体的构建是将克隆的基因插入到载体中,以使基因在宿主细胞中表达。

常见的载体包括质粒、噬菌体、病毒等,根据基因的大小和表达需求选择合适的载体。

二、宿主菌的选择和转化宿主菌是用于表达重组蛋白的微生物细胞,根据基因的表达需求选择适合的宿主菌。

将构建好的表达载体导入宿主菌中,使基因在宿主菌中表达。

转化方法包括电转化、化学转化、显微注射等。

三、重组蛋白的表达诱导将转化后的宿主菌进行培养,在适当的温度、pH、营养等条件下,诱导重组蛋白的表达。

根据不同的宿主菌和载体,选择合适的诱导剂和诱导条件。

四、重组蛋白的分离和纯化重组蛋白在宿主菌中表达后,需要进行分离和纯化,以获得高纯度的蛋白质。

分离和纯化方法包括离心、沉淀、过滤、离子交换、亲和层析等。

五、重组蛋白的检测和鉴定通过电泳、免疫学、质谱等技术对重组蛋白进行检测和鉴定,以确定蛋白质的分子量、等电点、抗原性等性质。

六、重组蛋白的应用和功能研究重组蛋白具有广泛的应用价值,可用于制备抗体、研究蛋白质的结构和功能、开发新药等。

同时,通过对其功能的研究,可以深入了解蛋白质的作用机制和生物学过程。

七、重组蛋白的表达优化为了提高重组蛋白的表达量和纯度,需要进行表达优化。

包括选择适合的宿主菌和载体、调整培养条件、优化诱导条件等。

同时,可以通过蛋白质工程手段对蛋白质进行改造,以提高其表达量和稳定性。

基因工程中的基因克隆与基因表达实验总结

基因工程中的基因克隆与基因表达实验总结

基因工程中的基因克隆与基因表达实验总结基因工程作为一门新兴的交叉学科,已经广泛应用于生物医学、农业、环境保护等领域。

其中,基因克隆和基因表达实验是基因工程的核心技术,对于研究基因功能和开发新药已经起到了重要作用。

本文将对基因工程中的基因克隆和基因表达实验进行总结,并探讨其在科学研究和应用中的前景。

一、基因克隆实验基因克隆是通过重组DNA技术,将感兴趣的基因从一个生物体中复制并插入到另一个生物体中的过程。

它是研究基因功能、生物制药和转基因等领域的基础。

基因克隆实验主要包括以下几个步骤:1. DNA提取与限制性内切酶切割:通过提取DNA样品,使用限制性内切酶切割将目标基因和载体DNA切割成相应片段。

2. 基因插入:将目标基因与载体DNA片段进行连接,常用的方法是使用DNA连接酶将两者黏合。

3. 转化与筛选:将连接后的DNA转入到宿主细胞中,使其成为转基因细胞。

通过选择性培养基进行筛选,可以获得拥有目标基因的转基因细胞。

通过基因克隆实验,我们可以获得不同生物体的目标基因,并进行后续的研究和应用。

例如,通过将某种植物的耐旱基因克隆到其他作物中,可以提高作物的抗旱能力,增加农作物产量。

二、基因表达实验基因表达实验是将目标基因在宿主细胞中进行转录和翻译,产生具有特定功能的蛋白质的过程。

基因表达实验是研究基因功能和制备重组蛋白等领域的重要手段。

基因表达实验主要包括以下几个步骤:1. 选择合适的表达系统:根据需要表达的蛋白质的性质和规模,选择合适的表达系统。

常用的表达系统包括细菌、酵母、哺乳动物细胞等。

2. 构建表达载体:将目标基因插入到表达载体中,通常使用限制性内切酶和DNA连接酶进行连接,并通过测序确保插入正确。

3. 细胞转染:将构建好的表达载体导入到宿主细胞中。

不同表达系统有不同的转染方法,如细菌的化学转型、酵母的电转染等。

4. 表达和纯化:经过一定时间的培养,宿主细胞会表达目标基因,合成目标蛋白质。

可以通过蛋白质纯化技术,如亲和层析、凝胶电泳等手段获得纯度较高的目标蛋白质。

基因克隆与表达

基因克隆与表达

基因克隆与表达基因克隆与表达是生物学领域中重要的技术手段和研究方法。

通过基因克隆和表达,科学家能够研究特定基因的功能、调控机制以及其在生物体内的作用,这对于深入了解生物体的生理过程和疾病发生机制具有重要意义。

本文将介绍基因克隆与表达的原理、方法以及应用。

一、基因克隆基因克隆是将特定基因从一个生物体中分离并复制到另一个载体中的过程。

这个过程主要涉及DNA的分离、复制和连接。

常用的基因克隆技术包括PCR、限制性内切酶切割、琼脂糖凝胶电泳和基因插入等。

1. PCR聚合酶链反应(PCR)是一种强大的基因扩增技术。

它通过不断地重复某一特定区域的DNA序列,使其得以大规模复制。

PCR可以在短时间内合成大量目标DNA片段,为基因克隆提供了充足的材料。

2. 限制性内切酶切割限制性内切酶可以识别并切割特定的DNA序列。

通过选择合适的限制性内切酶,可以实现将目标基因从源DNA中切割下来,为下一步的基因克隆做好准备。

3. 琼脂糖凝胶电泳琼脂糖凝胶电泳是一种常用的DNA分离技术。

通过将DNA样品加入琼脂糖凝胶槽中,并施加电场,DNA片段会根据其大小在凝胶中迁移。

凝胶电泳可以帮助科学家分离和纯化目标基因。

4. 基因插入基因插入是将目标基因连接到载体上的过程。

载体可以是质粒、病毒或者人工染色体等。

通过连接酶的作用,目标基因与载体可以稳定地结合在一起。

二、基因表达基因表达指特定基因通过转录和翻译过程转化为蛋白质的过程。

从基因克隆到基因表达,可以分为以下几个步骤:转染或转化、筛选和检测。

1. 转染或转化转染是指将外源DNA导入到动物细胞中的过程,而转化是将外源DNA导入到细菌细胞中的过程。

转染和转化可以通过多种方法实现,如化学法、电穿孔法和基因枪法等。

2. 筛选筛选是为了确定是否成功将目标基因表达在宿主细胞中而进行的步骤。

常见的筛选方法包括荧光筛选和克隆筛选。

荧光筛选利用荧光蛋白标记目标基因,观察细胞是否出现荧光信号。

克隆筛选则利用选择性培养基,筛选出含有目标基因的克隆。

基因工程的基本过程

基因工程的基本过程

基因工程的基本过程介绍基因工程是一项重要的生物技术领域,它利用DNA重组技术,对生物体的基因信息进行修改和重新组合,实现改变生物体性状的目的。

基因工程的基本过程包括基因定位、基因克隆、基因表达和基因转导等步骤。

本文将详细介绍基因工程的基本过程。

一、基因定位基因定位是基因工程的第一步,通过确定目标基因在染色体上的位置,为后续的基因克隆提供准确的目标。

基因定位可以通过物理方法、遗传方法和分子生物学方法等多种手段来实现。

1. 物理方法物理方法主要包括荧光原位杂交(FISH)和比较基因组杂交(CGH)等。

其中,荧光原位杂交可以通过标记特定探针并与目标基因序列进行杂交,从而在染色体上检测到目标基因的位置。

比较基因组杂交可以通过将目标基因与参考基因组进行杂交,通过比较两者的杂交强度,确定目标基因在染色体上的位置。

2. 遗传方法遗传方法主要包括连锁分析和关联分析等。

连锁分析是利用基因在染色体上的连锁关系,通过研究特定遗传标记和目标基因之间的连锁程度,来确定目标基因在染色体上的位置。

关联分析则是通过研究染色体多态性和目标基因之间的关联程度,来确定目标基因与某个特定区域的关系。

3. 分子生物学方法分子生物学方法主要包括PCR、Southern blotting和DNA测序等。

PCR可以通过目标基因的序列信息,设计特定引物并进行扩增,从而实现对目标基因的定位。

Southern blotting可以通过转移DNA片段到膜上,并进行测序等。

二、基因克隆基因克隆是基因工程的关键步骤,它通过将目标基因从来源生物体中分离出来,并进行扩增,得到足够多的DNA材料用于后续的实验。

1. DNA提取DNA提取是基因克隆的第一步,它可以通过细胞裂解、溶解和沉淀等步骤将DNA从生物体中提取出来。

常用的DNA提取方法包括酚-氯仿法、盐析法和商业DNA提取试剂盒等。

2. PCR扩增PCR扩增是基因克隆的关键技术,它可以通过DNA聚合酶的作用,将目标基因序列进行扩增。

基因的克隆与表达

基因的克隆与表达

PL启动子---温度
诱导
插入位点--HpaI
(三)分泌型表达载体: 1、主要元件: 启动子和SD序列
信号肽序列 : SD 下游,编码信号肽, 可引导蛋白跨膜 2、优点:分泌表达,避免降解。
分泌型表达载体----pINIII-ompA1
分泌型融合表达载体----pEZZ18
六.提高表达水平的手段 1、选择合适载体,提高翻译水平 • 强启动子----提高转录水平
1、启动子:建立表达载体时,选择强 启动子。
常见原核强启动子:
• Plac :受 Lac 阻遏蛋白负调,受 IPTG 的 诱导 • Ptrp:取自大肠杆菌色氨酸操纵子。
• Ptac :Lac 启动子和 Trp 启动子的杂合启 动子。 • PL和PR启动子:噬菌体早期左/右向启 动子,受λ噬菌体CI基因负调控。温度 诱导。
1973年Cohen完成第一个基因工程实验 经体外重组获得杂合DNA 杂合子转化入大肠杆菌
所需元件:
限制性内切酶
连接酶
载体
受体细胞
基因克隆(分子克隆molecular cloning)----通过体外重组技术,将一 段目的DNA经切割、连接插入适当载 体,并导入受体细胞,扩增形成大量 子代分子的过程。
三、受体细胞
1、定义:外源DNA导入的细胞,是重 组体扩增的场所。 2、要求:易于接纳外源DNA 无特异的内源性核酸内切酶
载体复制、扩增不受阻
与载体有互补性
四、体外重组的策略
1、粘末端连接
1)全同源粘末端连接
• 最方便简单
• 高背景-载体自身环化 • 双向插入
2)定向克隆:使外源基因定向插入到载体 中的克隆策略
分泌型表达载体:----产物可跨膜分泌 至胞周间隙

《基因克隆与表达》课件

《基因克隆与表达》课件
总结基因克隆与表达的重要性,并鼓励进一步学习和研究。
2 留下问题和展望
引发学生对基因克隆与表达的思考和问题,并展望该领域的未来发展。
什么是基因克隆与表达
解读基因克隆与表达的定义, 了解其在基因研究中的作用。
基因克隆和表达的重要 性
探讨基因克隆与表达在科学 研究和应用中的重要价值。
课程大纲介绍本课程的内容和学习 Nhomakorabea 标,为后续的学习做好准备。
基因克隆
基因克隆是获取目标基因及其背后的DNA片段的过程。PCR、限制性酶切和连接反应是基因克隆中常用的关键 技术。
2 重组蛋白表达
探讨重组蛋白表达的步骤以及在基因工程和生物医药领域中的可行表达体系选择。
3 基因治疗
介绍基因治疗的原理和在疾病治疗中的应用前景。
结论
在基因研究和应用中,基因克隆和表达起着至关重要的作用。通过了解相关技术和应用,我们可 以更好地理解基因的功能和探索其在生物科学中的潜力。
1 基因克隆和表达的重要性再强调
PC R
探讨聚合酶链式反应(PCR)在 基因克隆中的原理、步骤和应 用。
限制性酶切
介绍限制性酶切的原理及其在 基因克隆中的应用。
连接反应
讨论连接反应在基因克隆中的 原理、步骤和应用。
基因表达
基因表达是指利用转化和重组蛋白表达系统来实现基因功能研究和基因治疗的过程。
1 转化
深入解析转化的原理、步骤和转化后的检测方法。
《基因克隆与表达》PPT 课件
这是一份专业的《基因克隆与表达》PPT课件,将带你深入了解基因克隆和表 达的重要性以及相关技术。通过本课件,你将掌握基因克隆和表达的关键步 骤和应用。
简介
基因克隆与表达是研究基因结构和功能的重要方法。本课程将介绍基因克隆与表达的基本概念、原理和技术, 并探讨其在生物科学研究和应用中的重要性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cloning and expression of peroxisomal Ascorbate Peroxidase genefrom wheatYaping Chen,Huazhong Wang,Xiue Wang,Aizhong Cao&Peidu Chen*State Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University, Nanjing210095,People’s Republic of China;*Author for correspondence(Phone:+86-25-84396026;E-mail: pdchen@)Accepted24October2005Key words:peroxisomal ascorbate peroxidase,powdery mildew,SSH,wheatAbstractA full-length cDNA encoding wheat peroxisomal ascorbate peroxidase(pAPX)was cloned by Suppression Subtractive Hybridization(SSH)and in silico approach.The cDNA was1027bp in length and contained a complete ORF of876bp,which encodes a protein of292amino acid residues.Its deduced amino acids sequence had84%identity with that of pAPX from barley.The gene was designated as Ta-pAPX.The Ta-pAPX homologous genes were mapped on wheat chromosome7A and7D using Chinese Spring nulli-tetrasomic lines analysis.Northern analysis indicated that,after inoculation by Erysiphe graminis Dc.f.sp. tritici,the expression of Ta-pAPX gene in Yangmai5was enhanced,but its expression in wheat-Haynaldia villosa6VS/6AL translocation lines changed a little.The results implied that Ta-pAPX may be related to susceptibility of wheat to powdery mildew.The complete coding sequence of Ta-pAPX was cloned into an expression vector pET32(a+)and a protein with the same deduced molecular weight(MW)was expressed in E.coli BL21(DE3),which showed ascorbate peroxidase activity.Abbreviations:APX–ascorbate peroxidase;ESTs–expressed sequence tags;IPTG–isopropyl-beta-D-thiogalactopyranoside;MW–molecular weight;ORF–open reading frame;pAPX–peroxisomal ascorbate peroxidase;SSH–Suppression Subtractive Hybridization.IntroductionAscorbate peroxidase(APX),found in higher plants,cyanobacteria,and algae[1],is the key enzyme in degradation hydrogen peroxide.So far, at leastfive APX isoforms have been identified in plants:cytosolic isoforms,mitochondria isoforms, peroxisomal/glyoxysomal isoform and two chlo-roplastie isoforms,one in stroma and the other associated with the thylakoid membranes,all of which catalyze the reaction:2ascorbate peroxidaseþH2O2!2monodehydroascorbateþ2H2OAPXs activity increased in response to a num-ber of stress conditions,such as drought[2],salt [3],high temperature[4]and pathogen infection [5].Relationship between different stress condi-tions and changes of APX activity were observed.Powdery mildew caused by E.graminis DC.f.sp.tritici is one of the most serious diseases of common wheat in China and many other countries.The Triticum aestivum(‘‘Yangmai5’’)–Haynaldia villosa6VS/6AL translocation line carrying powdery mildew resistance gene Pm:21 confers effective resistance to all current powdery mildew races.To investigate the mechanism ofMolecular Biology Reports(2006)33:207–213DOI10.1007/s11033-005-4536-1ÓSpringer2006resistance to powdery mildew in6VS/6AL trans-location line,suppression subtractive hybridiza-tion(SSH)was performed between translocation line carrying Pm21and its recurrent parent Yangmai5to isolate resistance relative genes. Among the ESTs obtained by SSH analysis,a cDNA fragment that encodes a polypeptide homologous to barley peroxisomal ascorbate peroxidase gene did express differentially between the resistant and susceptible lines.In the present paper,we report the cloning and characterization of the full-length wheat peroxisomal APX gene by in silico approach,which is thefirst reported in wheat.The expressions of Ta-pAPX in Esc-herichia coli and pathogen infected leaves were also analyzed.Materials and methodsMaterialsPlant materials:Powdery mildew susceptible common wheat variety‘‘Yangmai5’’and resistant wheat–Haynaldia villosa6VS/6AL translocation line were provided by Cytogenetics Institute, Nanjing Agricultural University and grown in a isolation environment under room temperature for7days,leaves were then harvested at0,6, 12,24,36h after inoculation by E.graminis DC.f.sp.tritici for RNA isolation.Chinese Spring nulli-tetrasomic lines were grown under room temperature for DNA isolation.Bacterial strain and vector:pET32(a+)and BL21(Escherichia coil)were provided by Cytoge-netics Institute,Nanjing Agricultural University.Suppression subtractive hybridization(SSH)Suppression subtractive hybridization was per-formed according to Diachenko et al.[6].Total RNA was extracted by Trizol(GIBCO BRL).Poly (A)+RNA was prepared by Promega oligo(dT) kit.First-strand cDNAs were synthesized using oligo(dT)16as a primer.cDNA of Yangmai5un-inoculated by E.graminis DC.f.sp.tritici was used as Driver,cDNA of6VS/6AL translocation line inoculated for different time was used as Tester. PCR fragments obtained by SSH were cloned into a pGEM-T Easy vector(Promega).The putative clone was sequenced by Bioasia Company.A partial fragment encoding part of Ta-pAPX was obtained according to the BLAST homology searching.Cloning and sequencing of cDNAA full-length cDNA sequence encoding peroxi-somal ascorbate peroxidase(pAPX)was obtained by searching for database and splicing,Primers were then designed according to the sequences. APXF:5¢-TAGGGTCGTCCGCGA TGG-3¢AP XR:5¢-CCCCTTACTTGCTCCTC TT-3¢;RT-PCR screenings were performed using thefirst-strand cDNA of translocation line as templates. PCR were conducted by DNA Thermal Cycler (Perkin-Elmer)in25l l reaction mixture;The amplification reaction was for1cycle of3min at 94°C;33cycles of30s at94°C,40s at58°C; 2min at72°C;finally extended at72°C for7min. The PCR products were reclaimed and cloned into pGEM-T Easy vectors.The DNA sequences were determined based on BLAST program in GenBank. Expression and enzymatic activity of Ta-pAPXin E.coliThe ORF of Ta-pAPX were amplified by PCR and cloned into the pET-32(a+)expression vector. Primers were designed with an EcoRI cloning site at5¢end(5¢-TCGGAATTCATGGCGGCTC C-3¢) and with a NotI cloning site at3¢end(5¢-A GGCGGCCGCACTAGTGATT-3¢).The ampli-fied products were EcoRI/NotI restricted,ligated to EcoRI/NotI restricted pET-32(a+)and trans-formed into the strain BL21(DE3).The correct orientations of the inserts were verified by restric-tion endonuclease analyses.Individual colonies were inoculated into10ml of liquid medium with 100l g/ml of ampicillin,and allowed to continue to grow for about12h before IPTG was added to the liquid medium(1mMfinal concentration).Bac-terial cells were harvested about0.5,1,1.5,2h after IPTG added.Protein was extracted accord-ing to the protocol provided by Invitrogen.SDS-PAGE analysis followed Sambrook et al.[7].For in vitro detection of Ta-pAPX activity,the packed cells were resuspended at0.1of the original culture volume in25mM Tris buffer(pH7.5),containing 5%(w/v)glycerol,1mM EDTA,2mM ascorbic acid and250mM PMSF.After sonication,the soluble proteins were obtained by centrifugation at20812,000Âg for20min.The supernatant,which contained about50l g of protein,was directly loaded onto a native polyaciylamide gel for elec-trophoresis[8].The detection of Ta-pAPX activity in gels was the same as described by Ron Mittler et al.(1993)[9].Chromosome localization of Ta-pAPXPrimers were designed based on the sequence of Ta-pAPX gene:APX1:5¢-GTGATTCGTCAGTT TGTCC-3¢,APX2:5¢-CCCTTACTTGCTCCTC TT-3¢.PCR was performed using the DNA of Chinese Spring nulli-tetrasomic lines as templates. The amplification reaction was for1cycle of3min at94°C,33cycles of30s at94°C,30s at55°C; 2min at72°C,finally extended at72°C for 7min.PCR products were analyzed by30% PAGE gels,which stained by silvery.Assay for APX activity and Northern blotting analysisSoluble leaf protein was extracted by grinding0.5g of fresh leaf tissue and pestle in10ml of100mM sodium phosphate buffer(pH7.0)containing 5mM ascorbate and1mM EDTA,membrane and other cell debris were removed by centrifuge at 12000g for20min(4°C).The supernatant was used for APX activity analysis.Measurement of APX activity was performed as described previ-ously[10].The decrease in A290was measured when ascorbate was oxidized.Total RNAs were extracted from leaves.The equal quantity of total RNA(15l g/lane)was Figure1.Sequence of the Ta-pAPX gene and its deducted amino acid sequence(The sequence underlined is the suggested trans-membrane domain).209fractionated in 1%formaldehyde agarose gel,and blotted to nylon membranes as described by Sam-brook et al.[7].32P-dCTP-labeled 18S rRNA se-quences were used as probe for control,Northern blotting was according to Ausubel et a1.1995[11].ResultsCloning and sequencing of Ta-pAPXBy SSH,a cDNA fragment that express differen-tially between translocation line and Yangmai5was obtained.After sequencing,this fragment was found to have high homology to APX genes according to BLAST homology searching.The full-length cDNA clone was subsequently isolated from translocation line by RT-PCR using in silico approach.The cDNA was 1027bp in length and contained an open reading frame encoding a pre-dicted polypeptide of 292amino acids (Figure 1).Its deduced amino acids sequence had 84%homology to that from the Hordeum vulgare pAPX gene and 79%homology to that from Oryza sativa peroxisome type ascorbate peroxi-dase (Figure 2).Both the characteristicC-terminalFigure 2.Alignment of the deduced amino acid sequence of Ta-pAPX from wheat and the sequence of APX of barley(AB063117.1),rice(AK104490.1)and upland cotton (gb|AAB52954.1|).Black boxes indicate sequence identity;Dark gray boxes indicate sequencesimilarity.Figure 3.Analysis Chinese Spring nulli-tetrasomic lines chromosome localization of Ta-pAPX using.210part (from Phe-244to Lys-291)and the single transmembrance domain (from Thr-260to Tyr-282)as predicted by SOSUI [12]were found and conserved.Therefore,the isolated clone encodes the pAPX ,a basic protein of 31.73kD with a predicted pI of 7.74,and was hence designated as Ta-pAPX .PCR using DNA of Chinese Spring nulli-tetrasomic lines as templates showed that the Ta-pAPX homologous genes were located on wheat chromosome 7A and 7D,respectively.(Figure 3).Expression of Ta-pAPX in E.coli and assay for Ta-pAPX activity in vitroAfter induction with IPTG of different time (0.5,1,1.5,2h),31kD fusion protein,similar to the MW of barley HvAPX ,was successfully expressed in BL21(DE3)(Figure 4),the amount of expressed protein was enhanced when the time induced by IPTG was prolonged.This suggested that the Ta-pAPX was correctly expressed in E.coli .However,fusion protein was not expressed in the PET vector (without Ta-pAPX )alone.When pET 32(a+)–Ta-pAPX was trans-formed into E.coli,Ta-pAPX activity was detected in bacterial extracts by native-PAGE,whereas extracts from culture that contained the pET vec-tor alone (without Ta-pAPX )showed no APX activity (Figure 5).Expression of Ta-pAPXThe activities of APX were measured in order to investigate the change of expression of APX in-duced by E.graminis .As shown in Figure 6,slightly reduced activity of APX in the induced resistant line was observed at about 12h post-infection.And yet,under the same conditions APX activity significantly increased in susceptible lines (significance level 0.01)(Table 1).In addition,there were different APX activities between the analyzed resistant and susceptible line,the resis-tant line held obviously higher APX activity than susceptible line in a long time.NorthernblottingFigure 4.12%SDS-PAGE analysis of the expression of Ta-pAPX protein after IPTG induced.(Lane 1,0.5h;2,1h;3,1.5h;4,2h;M,Mark;CK,pET.).Figure 5.Enzymatic activity of Ta-pAPX expressed in BL21.Line 1pET-32(a+)-Ta-pAPX ;CKpET-32(a+).Figure 6.Changes of the activities of APX in the detached wheat leaves inoculated by E.graminis for 0,6,12,24,48h respectively.211analysis confirmed the above results(Figure7). Ta-pAPX expression of the inoculated susceptible line increased at about12h post-infection but decreased at about24h.Ta-pAPX expression of resistant line decreased slightly at about12h post-infection and maintained a relatively stable level at the subsequent time.DiscussionSSH technique is applicable to many molecular genetic and positional cloning studies for the identification of differentially expressed genes.In this research,the resistant6VS/6AL translocation line,used as tester in SSH,was inoculated by E. graminis for different time and the susceptible ‘‘Yangmai5’’was not inoculated.Some differen-tially expressed ESTs was obtained after SSH, Among them,a cDNA,which contains an ORF encoding a polypeptide homologous to pAPX from other species,was isolated from wheat.It contains a putative C-terminal transmembrane domain that may be anchored to a specific mem-brane(e.g.the plasma membranes or organelle membranes).Since it was found by Foyer and Halliwell in 1976,ascorbate peroxidase has been studied by many researchers on various aspects.Up to now, at leastfive APX isoforms have been identified in plants.Many studies focus on cytosolic isoforms, and a few on peroxisomal isoforms.Recently, pAPX(or gAPX)was cloned from cotton[13],A. thaliana[14],spinach[15],barley[6]and wheat in our study.Pathogen infection can result in oxidative stress in which more H2O2is generated in the microbody matrix and may readily diffuse into the cytosol. APX,which binds to the outside of the mem-brance,was considered to play an important role in decomposing H2O2to protect cell from oxida-tive damage.It was shown previously that APX accumulated clearly in wheat susceptible line[16]. In our results,expression of Ta-pAPX and activity of APX also increased in susceptible variety Yangmai5.Constitutive expression of pAPX and activity of APX in resistance line was higher than that of susceptible line,which indicated that resistance line maybe preformed sufficiently to eliminate ROI (reactive Oxygen intermediate).It has been re-ported recently that during the interaction of plants and pathogens,the expression of ROI detoxifying enzymes such as APX is suppressed and this sup-pression plays a key role in elevation cellular ROI levels,thereby inducing the initiation of PCD and other defenses during pathogen attack[17].These may explain why expression of Ta-pAPX and activity of APX have no change or even decrease in translocation line after inoculation.It should be investigated further that how much ROI should be hold or eliminated to keep cellular balance.Ta-pAPX was mapped onto the homologous group7,7A and7D,by wheat nulli-tetrasomic analysis and correctly expressed in bacterial cells. Further detailed analyses on the over-expression of the Ta-pAPX in common wheat are in pro-gressing in our laboratory.Table1.APX activity analysis of resistant and susceptible lines after infection of E.graminisHours after infection Resistant line Significance of difference Susceptible line Significance of difference00.9898a0.8600a60.9795a0.9637b120.9758a0.9535b240.9688a0.9488b480.9670a0.9442bFigure7.Northern blot analysis Ta-pAPX and18SrRNA.Line1,2,3Yangmai5was inoculated by E.graminis for0,12,24h;4,5,6,7Translocation lines was inoculated by E.graminis for0,12,24,48h.Hybridization of18SrRNA used as a control isshown in the bottom panel.212AcknowledgementsThis research was supported by grants from the Chinese High Tech Program of China(2001AA 222152),the Chinese High Tech Program of China (2004AA222140),the National Natural Science Foundation of China(30270828),and Program for Changjiang Scholars and Innovative Research Team in University.References1.Asada K(1992)Physiol.Plant.85:235–241.2.Mittler R&Zilinskas B(1994)Plant J.5:397–405.3.Lopez F,Vansuyt G,Case-Delbart F&Fourcroy P(1996)Physiol.Plant.97:13–20.4.Shi WM,Muramoto Y,Ueda A&Takabe T(2001)Gene273:23–27.5.Mittler R,Feng XQ&Cohen M(1998)Plant Cell10:461–473.6.Diachenko L,Lau YC&Campbell AP(1996)Proc.Natl.A93:6025–6030.7.Sambrook J,Fritsch EF&Maniatis T2nd ed.,New York:Cold Spring Harbor Laboratory press.8.Charles R,Caldwell J,Tyrano F&McMahon BM(1998)Planta.204:120–126.9.Mittler R&Zilinskas AB(1993)Anal.Biochem.212:540–546.10.XU LL&YE MB(1989)J.Nanjing Agric.Univ.12:82–83.11.Ausubel FM,Brent R,Kingston RE,Moore DD,SeidinanJG,Smith JA&Struchl K(1995)Short Protocol in Molecular Biology(3rd ed.).John Wiley&Sons,Media, Pennsylvania,USA.12.http://sosui.proteome.bio.tuat.ac.jp/sosuiframe.html.13.Bunkelmann JR&Trelease RN(1996)Plant Physiol.110:589–598.14.Zhong H,Wang J,Nickel U,Randy DA&MG HowardPlant Mol.Biol.34:967–971.15.Ishikawa T,Yoshmura K,Sakai K,Tamoi M,Takeda T&Shigeoka S(1998)Plant Cell Physiol.39:23–34.16.Chen LF,Ye MB,Chen YX&Xu LL(1997)Acta Phy-topathol.Sinica27(2):113–118.17.Ron M,Elza HH,Bjorn LO,Wim VC,Hilde W,Dirk I&Brian EE(1999)A24:14165–14170.213。

相关文档
最新文档