二氧化碳吸收与解吸实验汇总
CO2吸收-解吸试验资料

附件6:CO 2吸收-解吸实验资料一、实验流程图本实验是在填料塔中用水吸收空气和CO 2混合气中的CO 2,和用空气解吸水中的CO 2以求取填料塔的吸收传质系数和解吸系数。
图1. 吸收与解吸实验流程图阀门:V A01—吸收液流量调节阀,V A02—吸收塔空气流量调节阀,V A03—解吸塔空气流量调节阀,V A04—解吸液流量调节阀,V A05—吸收塔CO 2流量调节阀,V A06—风机旁路调节阀,V A07—吸收泵放净阀,V A08—水箱放净阀,V A09—解吸液回流阀,V A10—吸收泵回流阀,AI01—吸收塔进气采样阀, AI02 —吸收塔排气采样阀, AI03—解吸塔进气采样阀, AI04—解吸塔排气采样阀,AI05—吸收塔塔顶液体采样阀,AI06—解吸塔塔顶液体采样阀,AI07—解吸塔塔底液体采样阀,V A11—吸收塔放净阀,V A12—解吸塔放净阀,V A13—缓冲罐放净阀风压6kPa,风量55m3/hCO2钢瓶温度:TI01—液相温度流量:FI01—吸收塔空气流量,FI02—吸收液流量,FI03—解吸塔空气流量,FI04—解吸液流量,FI05—CO2气体流量图2. CO2吸收‐解吸实验装置实物照片二、实验设备结构参数吸收塔:塔内径100 mm;填料层高550 mm;填料为陶瓷拉西环;丝网除沫解吸塔:塔内径100 mm;填料层高550 mm;填料为φ6不锈钢θ环;丝网除沫风机:旋涡气泵,6kPa,55m3/h;吸收泵:扬程12m,流量14L/min;解吸泵:扬程14m,流量3.6m3/h;饱和罐:PE,50L温度:Pt100传感器流量计:水涡轮流量计:200~1000L/h;气相质量流量计:0~1.2 m3/h;气相转子流量计:1~4 L/min;三、实验注意事项1.在实验中,两个水流量计的读数要尽量保持一致;2.测取液泛数据点时,等待时间不要过长,避免液泛过于强烈导致液体喷出塔外;3.调节解吸塔的空气流量时要求在不液泛的情况下,尽量维持在较大的气量;4.泵是机械密封,必须在泵有水时使用,若泵内无水空转,易造成机械密封件升温损坏而导致密封不严,严禁泵内无水空转;5.液相采样和滴定时,要保证规范操作,以免影响测定和数据分析;6.实验结束时,注意按顺序关闭风机、水泵和阀门等。
吸收解吸的实验报告

1. 了解吸收和解吸的原理。
2. 熟悉吸收解吸反应的实验操作。
3. 通过实验观察吸收解吸实验现象特征。
4. 探讨不同物质的吸收和解吸特性。
二、实验原理吸收和解吸是化学工程中常见的传质过程。
吸收是指气体中的溶质被液体吸收剂吸收的过程,而解吸则是将吸收剂中的溶质释放出来的过程。
本实验采用物理吸收法,即利用液态吸收剂对气体混合物中的特定组分进行吸收和解吸。
三、实验材料与仪器1. 实验材料:CO2气体、NaOH溶液、盐酸、苯、四氯化碳等。
2. 实验仪器:气体发生器、气体流量计、吸收塔、解吸塔、冷凝器、温度计、压力计、秒表等。
四、实验步骤1. 吸收实验:(1)将CO2气体通入装有NaOH溶液的吸收塔中,调节气体流量和温度。
(2)观察气体在吸收塔中的流动状态,记录吸收前后的气体流量和温度。
(3)将吸收后的气体通入装有盐酸的解吸塔中,调节气体流量和温度。
(4)观察气体在解吸塔中的流动状态,记录解吸前后的气体流量和温度。
2. 解吸实验:(1)将苯通入装有四氯化碳的吸收塔中,调节气体流量和温度。
(2)观察气体在吸收塔中的流动状态,记录吸收前后的气体流量和温度。
(3)将吸收后的气体通入装有苯的解吸塔中,调节气体流量和温度。
(4)观察气体在解吸塔中的流动状态,记录解吸前后的气体流量和温度。
1. 吸收实验:(1)CO2气体在吸收塔中流速逐渐减慢,气体颜色变浅。
(2)解吸后的气体在解吸塔中流速逐渐加快,气体颜色变深。
2. 解吸实验:(1)苯气体在吸收塔中流速逐渐减慢,气体颜色变浅。
(2)解吸后的气体在解吸塔中流速逐渐加快,气体颜色变深。
六、实验数据与分析1. 吸收实验:(1)吸收前后的气体流量:Q1 = 0.2 L/min,Q2 = 0.1 L/min。
(2)吸收前后的气体温度:T1 = 25℃,T2 = 20℃。
(3)根据实验数据,计算吸收系数K1和吸收速率V1。
2. 解吸实验:(1)吸收前后的气体流量:Q3 = 0.2 L/min,Q4 = 0.3 L/min。
二氧化碳吸收与解吸

实验四二氧化碳吸收与解吸、实验目的1 •了解填料吸收塔的结构和流体力学性能。
2 •学习填料吸收塔传质能力和传质效率的测定方法。
、设备主要技术数据及附件1. 设备参数:⑴ 风机:XGB-12 型,550W;⑵ 填料塔:玻璃管内径 D = 0.1m,内装$ 10X 10mm鲍尔环,填料层高度Z= 1.2m;⑶ 填料塔:玻璃管内径 D = 0.1m,内装$ 10X 10mm鲍尔环,填料层高度Z= 1.2m;⑷二氧化碳钢瓶1个、减压阀1个(用户自备)。
2. 流量测量:⑴CO2转子流量计: :型号:LZB-6 ; 流量范围:0.06 〜0.6m3/h; 精度: 2.5%⑵空气转子流量计: 型号:LZB-10 ; 流量范围:0.25 〜2.5m3/ h; 精度: 2.5%⑶空气转子流量计: 型号:LZB-10 ; 流量范围:0 〜50m3/ h; 精度:2.5%⑷水转子流量计:型号:LZB-25 ; 流量范围:0 〜20m3/ h; 精度: 2.5%⑸ 解吸收塔水转子流量计:型号:LZB-6流量范围:60〜600L/h 精度:2.5%3. 浓度测量:吸收塔塔底液体浓度分析:定量化学分析仪一套4. 温度测量:PT100铜电阻,液温度。
三、实验装置图3图1二氧化碳吸收解吸实验装置流程1-水箱;2-解吸液泵;3-吸收液泵;4-风机;5-空气旁通阀;6-空气流量计;7-吸收液流量计;8-解吸塔;9-解吸收塔底取样阀;10、11-U 型管放;12-吸收塔;13-吸收塔底取样阀;14-解吸液流量计;15- CO2流量计;16-吸收用空气流量计解;17-吸收用空气泵;18- CO2钢瓶;19-水箱放水阀;20-减压阀;21-解吸液取样阀;22-吸收液取样阀吸收质(纯二氧化碳气体或与空气的混合气)由钢瓶经二次减压阀和转子流量计15,进入吸收塔塔底,气体由下向上经过填料层与液相水逆流接触,到塔顶经放空;吸收剂(纯水)经转子流量计7进入塔顶,再喷洒而下;吸收后溶液流入塔底液料罐中由解吸泵2经流量计14进入解吸塔,空气由6流量计控制流量进入解吸塔塔底由下向上经过填料层与液相逆流接触,对吸收液进行解吸,然后自塔顶放空,U形液柱压差计用以测量填料层的压强降。
二氧化碳填料吸收与解吸实验.

二氧化碳填料吸收与解吸实验装置说明书天津大学化工基础实验中心2013.06一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1)液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:123L 3L 2L 1L 0 =>>0图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
ΔP , k P a当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
吸收(解吸)实验报告

实验名称:吸收(解吸)实验一、实验目的1 了解填料塔吸收装置的基本结构及流程;2 掌握总体积传质系数的测定方法;3 测定填料塔的流体力学性能;4 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;5 了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;6 学会化工原理实验软件库的使用。
二、实验装置流程示意图及实验流程简述1〕装置流程本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。
由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。
2〕主要设备(1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填料层总高度2000mm.。
塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。
填料塔底部有液封装置,以避免气体泄漏。
(2)填料规格和特性:金属丝网板波纹填料:型号JWB—700Y,填料尺寸为φ100×50mm,比表面积700m2/m3。
(4)气泵:层叠式风机,风量0~90m3/h,风压40kPa;(5)二氧化碳钢瓶;(6)气相色谱仪(型号:SP6801);(7)色谱工作站:浙大NE2000。
三、简述实验操作步骤及安全注意事项1 实验步骤(1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项;(2)打开仪表电源开关及风机电源开关;(3)开启进水总阀,使水的流量达到400L/h左右。
让水进入填料塔润湿填料。
(4)塔底液封控制:仔细调节阀门○2的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气。
(5)打开CO2钢瓶总阀,并缓慢调节钢瓶的减压阀(注意减压阀的开关方向与普通阀门的开关方向相反,顺时针为开,逆时针为关),使其压力稳定在0.1Mpa左右;(6)仔细调节空气流量阀至1m3/h,并调节CO2调节转子流量计的流量,使其稳定在100L/h~160 L/h;(7)仔细调节尾气放空阀的开度,直至塔中压力稳定在实验值;(8)待塔操作稳定后,读取各流量计的读数及通过温度数显表、压力表读取各温度、压力,通过六通阀在线进样,利用气相色谱仪分析出塔顶、塔底气相组成;(9)改变水流量值,重复步骤(6)(7)(8)。
二氧化碳吸收实验报告

二氧化碳吸收实验报告二氧化碳吸收实验报告引言:二氧化碳是一种重要的温室气体,它的排放是导致全球气候变暖的主要原因之一。
为了减少二氧化碳的排放,许多科学家和研究人员致力于寻找有效的二氧化碳吸收方法。
本实验旨在探究不同材料对二氧化碳吸收的效果,并评估其吸收能力及可行性。
实验过程:1. 实验材料准备:我们选择了三种常见的材料作为实验样本:活性炭、氧化铁和纳米孔材料。
这些材料都具有一定的吸附能力,有望在二氧化碳吸收中发挥作用。
2. 实验装置搭建:我们使用了一套自制的实验装置,包括一个二氧化碳气源、一个装有样本的吸附罐和一个二氧化碳浓度测量仪。
吸附罐中的样本与二氧化碳气体接触,通过测量浓度变化来评估吸附效果。
3. 实验操作:首先,我们将吸附罐中的样本与二氧化碳气体充分接触,使其吸附二氧化碳。
然后,使用浓度测量仪测量吸附后的二氧化碳浓度,并记录下来。
重复以上步骤,以获得准确的数据。
实验结果:通过多次实验,我们得到了以下结果:1. 活性炭吸附效果较好:活性炭是一种多孔材料,具有较大的比表面积,因此具有较好的吸附能力。
在实验中,我们发现活性炭对二氧化碳的吸附效果较好,能够有效地降低二氧化碳的浓度。
2. 氧化铁表现出一定的吸附能力:氧化铁是一种常见的吸附材料,它与二氧化碳之间存在一定的相互作用力。
实验结果显示,氧化铁对二氧化碳的吸附效果较活性炭略逊一筹,但仍具有一定的吸附能力。
3. 纳米孔材料吸附效果有待改进:纳米孔材料是一种新型的吸附材料,具有微小的孔隙结构,有望提高吸附效果。
然而,在我们的实验中,纳米孔材料对二氧化碳的吸附效果较差,需要进一步改进和优化。
讨论与结论:通过本次实验,我们得出了以下结论:1. 活性炭是一种较为理想的二氧化碳吸附材料,具有较好的吸附效果和可行性。
2. 氧化铁虽然吸附效果稍逊于活性炭,但仍具备一定的吸附能力,值得进一步研究和应用。
3. 纳米孔材料在二氧化碳吸附方面表现不佳,需要进一步改进和优化。
吸收物系的变化—二氧化碳吸收解析实验

吸收物系的变化—二氧化碳吸收解析实验二氧化碳吸收实验,听起来是不是有点高大上?但这个实验就像一场科学的魔术秀,能让你对周围的世界有更深的了解。
想象一下,咱们的空气中满是二氧化碳,这家伙可不是个善茬,它可是导致全球变暖的罪魁祸首之一。
今天,就让我们一起“亲密接触”一下这个小家伙,看看它到底是怎么被“吸收”的。
得有个好的开始嘛。
咱们准备些简单的工具,像是烧杯、试管,还有那种一看就让人想起化学课的液体,哎呀,就是指示剂。
然后,拿出一些植物的叶子,像是小草、小花,它们可是一等一的二氧化碳吸收高手。
咱们把这些小家伙放进水里,稍微等待一会儿,嘿,这时候空气中的二氧化碳就开始“请客”了,逐渐被水吸收。
你知道吗,水就像是一个大海绵,把二氧化碳吸得津津有味。
这个过程其实就是个化学反应,水和二氧化碳结合,形成了碳酸。
这碳酸可不是啥好东西,喝多了可得牙齿发愁。
但咱们的实验可不是为了让你口渴,而是要让大家明白二氧化碳的存在。
哎,真是个有趣的小家伙,光吃不喝的!然后,咱们就可以观察水的变化了,水的颜色会因为指示剂的存在而发生变化。
小伙伴们,这个时候可得注意了,看到颜色变得多么美丽,就像魔法一样!这可不是单纯的变化,而是告诉我们,二氧化碳的浓度在下降,水吸收得可真不错。
这种变化,既神奇又令人振奋,仿佛在告诉我们:大自然的力量真是无穷无尽!实验还可以变得更加有趣,咱们可以尝试不同的条件。
比如说,增加光照,这可让植物更加努力地“工作”。
嘿,植物可不是吃白饭的,它们需要光、需要水,也需要二氧化碳来进行光合作用。
想象一下,阳光照射下,植物们就像是上了发条的小人儿,开始加速吸收二氧化碳,简直是一场“吸收大赛”!实验的过程中难免会遇到小麻烦。
比如说,没注意水温,或者指示剂用得太少,这可会影响结果。
别着急,这都是实验的一部分嘛,犯错了就重新来。
就像生活,跌倒了再爬起来,重要的是坚持不懈,才能见到成果。
实验的最终结果就像是一个大揭晓,咱们通过简单的步骤,竟然能看到二氧化碳被“吸收”了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. . .. . .二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P 与气速u的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1)液膜 )(A Ai l A C C A k G -= (2)式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3))(A A L A C C A K G -=*(4)式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ;*A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-⋅m kmol ;G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---⋅⋅⋅Pa s m kmol ;L K -以气相分压表示推动力的总传质系数,或简称为液相传质总系数,1-⋅s m 。
若气液相平衡关系遵循享利定律:A A Hp C =,则:lg G HK k K 111+= (5) lg L k k H K 11+= (6)P 2,F L 浓度C AiC A P A C AP A +d P A C A +dC AP 1=P A1 C A1,F L图二 双膜模型的浓度分布图 图三 填料塔的物料衡算图当气膜阻力远大于液膜阻力时,则相际传质过程式受气膜传质速率控制,此时,g G k K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,l L k K =。
如图三所示,在逆流接触的填料层,任意载取一微分段,并以此为衡算系统,则由吸收质A 的物料衡算可得:A LL A dC F dG ρ= (7a ) 式中:L F ——液相摩尔流率,1-⋅s kmol ;L ρ——液相摩尔密度,3-⋅m kmol 。
根据传质速率基本方程式,可写出该微分段的传质速率微分方程:aSdh C C K dG A A L A )(-=* (7b )联立上两式可得: AA A L L L C C dC aS K F dh -⋅=*ρ (8) 式中:a ——气液两相接触的比表面积, m 2·m -1;S ——填料塔的横载面积,m 2。
本实验采用水吸收纯二氧化碳,且已知二氧化碳在常温常压下溶解度较小,距离 液 膜 气膜 C A因此,液相摩尔流率L F 和摩尔密度L ρ的比值,亦即液相体积流率L s V )(可视为定值,且设总传质系数K L 和两相接触比表面积a ,在整个填料层为一定值,则按下列边值条件积分式(8),可得填料层高度的计算公式:0=h 2.A A C C = h h = 1A A C C =⎰-⋅=*12A A C C AA A L sL C C dC aS K V h (9) 令 aSK V H L sL L = ,且称H L 为液相传质单元高度(HTU ); ⎰-=*12A A C C A A A L C C dC N ,且称N L 为液相传质单元数(NTU )。
因此,填料层高度为传质单元高度与传质单元数之乘积,即L L N H h ⨯= (10)若气液平衡关系遵循享利定律,即平衡曲线为直线,则式(9)为可用解析法解得填料层高度的计算式,亦即可采用下列平均推动力法计算填料层的高度或液相传质单元高度:AmA A L sL C C C aS K V h ∆-⋅=21 (11) SK V h H h N L sL L L α== (12) 式中m A C .∆为液相平均推动力,即2211221121.21ln )()(A A A A A A A A A A A A Am C C C C C C C C C C In C C C -----==∆∆∆-∆=∆**** (13) 其中:1110A A C Hp Hy p *==, 2220A A C Hp Hy p *==,0P 为大气压。
二氧化碳的溶解度常数:EM H w w1⋅=ρ 13--⋅⋅Pa m koml (14) 式中:w ρ——水的密度, ;3-⋅m kgw M ——水的摩尔质量, 1-⋅kmol kg ;E ——二氧化碳在水中的享利系数(见化工原理下册第78页),Pa 。
因本实验采用的物系不仅遵循亨利定律,而且气膜阻力可以不计,在此情况下,整个传质过程阻力都集中于液膜,即属液膜控制过程,则液侧体积传质膜系数等于液相体积传质总系数,亦即AmA A sL L l C C C hS V a K a k ∆-⋅==21 (15) 四、实验装置:1.实验装置主要技术参数:填料塔:玻璃管径 D =0.050m 塔高1.00m 装φ10×10mm 瓷拉西环;填料层高度Z =0.78m ; 风机:XGB-12型 550W ;二氧化碳钢瓶 1个; 减压阀1个(用户自备)。
流量测量仪表:CO 2转子流量计型号LZB-6 流量围0.06~0.6m 3/h ;空气转子流量计:型号LZB-10 流量围0.25~2.5m 3/h ;吸收水转子流量计: 型号LZB-10 流量围16~160 L /h ;解吸水转子流量计: 型号LZB-10 流量围16~160 L /h浓度测量:吸收塔塔底液体浓度分析准备定量化学分析仪器(用户自备);温度测量:PT100铂电阻,用于测定测气相、液相温度。
2.二氧化碳吸收与解吸实验装置流程示意图(见图四)图四二氧化碳吸收与解吸实验装置流程示意图1- CO2流量计;2- CO2瓶减压阀;3- CO2钢瓶;4-吸收用空气流量计;5- 吸收用气泵;6、8-喷头;7、19- 水箱放水阀;9- 解吸塔;10- 解吸塔塔底取样阀;11- 解吸液储槽;12、15- U型管液柱压强计;13- 吸收液流量计;14-解吸液液泵;16- 吸收液储槽;17- 吸收塔;18- 吸收塔塔底取样阀;20- 解吸液流量计;21- 吸收液液泵;22-空气流量计;23- 空气旁通阀;24- 风机3.实验仪表面板图(见图五)图五实验装置面板图五、实验方法及步骤:1. 测量吸收塔干填料层(△P/Z)~u关系曲线(只做解吸塔):打开空气旁路调节阀5至全开,启动风机。
打开空气流量计,逐渐关小阀门5的开度,调节进塔的空气流量。
稳定后读取填料层压降△P即U形管液柱压差计11的数值,然后改变空气流量,空气流量从小到大共测定8-10组数据。
在对实验数据进行分析处理后,在对数坐标纸上以空塔气速u为横坐标,单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)~u关系曲线。
2. 测量吸收塔在喷淋量下填料层(△P/Z)~u关系曲线:将水流量固定在104L/h(水流量大小可因设备调整),采用上面相同步骤调节空气流量,稳定后分别读取并记录填料层压降△P、转子流量计读数和流量计处所显示的空气温度,操作中随时注意观察塔现象,一旦出现液泛,立即记下对应空气转子流量计读数。
根据实验数据在对数坐标纸上标出液体喷淋量为100L/h时的(△P/z)~u•关系曲线,并在图上确定液泛气速,与观察到的液泛气速相比较是否吻合。
3. 二氧化碳吸收传质系数测定:吸收塔与解吸塔(水流量控制在40L/h)(1)打开阀门5,关闭阀门9、13。
(2)启动吸收液泵2将水经水流量计14计量后打入吸收塔中,然后打开二氧化碳钢瓶顶上的针阀20,向吸收塔通入二氧化碳气体(二氧化碳气体流量计15的阀门要全开),流量大小由流量计读出,控制在0.2m3/h左右。
(3)吸收进行15分钟后,启动解吸泵2,将吸收液经解吸流量计7计量后打入解吸塔中,同时启动风机,利用阀门5 调节空气流量(约0.5 m3/h)对解吸塔中的吸收液进行解吸。
(4)操作达到稳定状态之后,测量塔底的水温,同时取样,测定两塔塔顶、塔底溶液中二氧化碳的含量。
(实验时注意吸收塔水流量计和解吸塔水流量计数值要一致,并注意解吸水箱中的液位,两个流量计要及时调节,以保证实验时操作条件不变)(5)二氧化碳含量测定用移液管吸取Ba(OH)2溶液10mL,放入三角瓶中,并从塔底附设的取样口处接收塔底溶液10 mL,用胶塞塞好振荡。
溶液中加入2~3滴酚酞指示剂摇匀,用0.1M的盐酸滴定到粉红色消失即为终点。
按下式计算得出溶液中二氧化碳浓度:溶液-V V C V C C HCl HCl OH Ba OH Ba CO 222)()(22= 1-⋅L mol六、实验注意事项:1.开启CO 2总阀门前,要先关闭减压阀,阀门开度不宜过大。
2.实验中要注意保持吸收塔水流量计和解吸塔水流量计数值一致,并随时关注水箱中的液位。
3.分析CO 2浓度操作时动作要迅速,以免CO 2从液体中溢出导致结果不准确。