FIR数字滤波器的基本原理及设计方法

合集下载

实验7 窗函数法设计FIR数字滤波器

实验7 窗函数法设计FIR数字滤波器

实验7窗函数法设计FIR数字滤波器一、实验目的掌握窗函数法设计F1R数字滤波器的原理和具体方法二、实验设备与环境计算机、Mat1ab软件环境三、实验基础理论1>基本原理窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器Hd(,3),然后用窗函数截取它的单位脉冲响应%(九),得到线性相位和因果的FIR滤波器,这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。

2、设计步骤(1)给定理想滤波器的频率响应Hd("3),在通带上具有单位增益和线性相位,在阻带上具有零响应。

一个带宽为g(3c<Tr)的低通滤波器由下式给定h(e j^=(eW∣ω∣≤ωc虱)一1Oωc<∣ω∣<π其中α为采样延迟,其作用是为了得到因果的系统。

(2)确定这个滤波器的单位脉冲响应为了得到一个h(n)长度为N的因果的线性相位FIR滤波器,我们令N-Ia=-2-(3)用窗函数截取hd(τι)得到所设计FIR数字滤波器h(n)h(n)=h d(n)w(n)3、窗函数的选择常用的窗函数有矩形窗、汉宁窗、海明窗、布莱克曼窗、凯瑟窗等。

Mat1ab提供了一些函数用于产生窗函数,如下表所示:在设计过程中我们需要根据给定的滤波器技术指标,选择滤波器长度N 和窗函数3(n)°表7.2列出了常用的窗函数的一些特性,可供设计时参考。

其中幻是修正的零阶贝塞尔函数,参数B 控制最小阻带衰减,这种窗函数对于相同的N 可以提供不同的过渡带宽。

由于贝塞尔函数比较更杂,这种窗函数的设计方程很难推导,然而幸运的是,有一些经验设计方程可以直接使用。

已知给定的指标叫Msc,Rp 和4,滤波器长度N 和凯瑟窗参数B 可以按如下凯瑟窗设计方程给出过渡带宽:∆ω=ωst -ωp入一7.95 2.285∆ω_(0.1102(4-8.7) ,P=iθ.5842(4-21)04+0.07886(4-21), 四、实验内容1、设计一个数字低通FIR 滤波器,其技术指标如下ωp =0.2τr,RP=0.25dBωst =0.3τr,A s =50dB分别采用矩形窗、汉宁窗、海明窗、布莱克曼窗、凯瑟窗设计该滤波器。

fir原理阐述

fir原理阐述

fir原理阐述FIR原理及其应用一、FIR原理概述FIR(Finite Impulse Response)滤波器是一种常见的数字滤波器,其特点是具有有限的冲激响应。

FIR滤波器的工作原理是将输入信号与滤波器的冲激响应进行卷积运算,从而得到滤波后的输出信号。

FIR滤波器的冲激响应是由一组系数确定的,通过调节这些系数可以实现不同的滤波效果。

二、FIR滤波器的优点1. 稳定性:由于FIR滤波器的冲激响应是有限的,不会引入无限长的冲击响应,因此具有良好的稳定性。

2. 线性相位特性:FIR滤波器的输出相位与输入信号的相位线性相关,不会引入相位失真。

3. 精确控制:通过调节滤波器的系数,可以实现对滤波器的频率响应进行精确控制,满足不同的滤波需求。

三、FIR滤波器的应用1. 语音信号处理:FIR滤波器可以用于语音信号的降噪、去混响等处理,提高语音信号的质量和清晰度。

2. 图像处理:FIR滤波器在图像处理中也有广泛的应用,可以用于图像的平滑、锐化、边缘检测等操作,提高图像的质量和清晰度。

3. 无线通信:FIR滤波器可以用于无线通信系统中的信号调制、解调、信道均衡等处理,提高通信系统的性能和抗干扰能力。

4. 生物医学信号处理:FIR滤波器可以用于生物医学信号的滤波、去噪、特征提取等处理,提高信号的可靠性和准确性。

5. 音频信号处理:FIR滤波器可以用于音频信号的均衡、混响、失真校正等处理,提高音频的质量和还原度。

四、FIR滤波器的设计方法1. 线性相位设计:通过对滤波器的冲激响应进行对称化,可以实现线性相位的FIR滤波器设计。

2. 频率采样法:通过对所需的频率响应进行采样,然后通过逆傅里叶变换得到滤波器的冲激响应,从而实现FIR滤波器的设计。

3. 窗函数法:通过选取不同的窗函数,可以实现对滤波器的频率响应进行调整,从而得到所需的滤波效果。

4. 最小二乘法:通过最小化滤波器的输出与期望输出之间的误差平方和,可以实现FIR滤波器的设计。

fir数字滤波器设计与软件实现数字信号处理实验原理

fir数字滤波器设计与软件实现数字信号处理实验原理

fir数字滤波器设计与软件实现数字信号处理实验原理FIR数字滤波器设计的基本原理是从理想滤波器的频率响应出发,寻找一个系统函数,使其频率响应尽可能逼近滤波器要求的理想频率响应。

为了实现这一目标,通常会采用窗函数法进行设计。

这种方法的基本思想是,将理想滤波器的无限长单位脉冲响应截断为有限长因果序列,并用合适的窗函数进行加权,从而得到FIR滤波器的单位脉冲响应。

在选择窗函数时,需要考虑其频率响应和幅度响应。

常见的窗函数包括矩形窗、三角形窗、汉宁窗、汉明窗、布莱克曼窗和凯泽窗等。

每种窗函数都有其特定的特性,如主瓣宽度、旁瓣衰减等。

根据实际需求,可以选择合适的窗函数以优化滤波器的性能。

在软件实现上,可以使用各种编程语言和信号处理库进行FIR滤波器的设计和实现。

例如,在MATLAB中,可以使用内置的`fir1`函数来设计FIR滤波器。

该函数可以根据指定的滤波器长度N和采样频率Fs,自动选择合适的窗函数并计算滤波器的系数。

然后,可以使用快速卷积函数`fftfilt`对输入信号进行滤波处理。

此外,还可以使用等波纹最佳逼近法来设计FIR数字滤波器。

这种方法的目标是找到一个最接近理想滤波器频率响应的实数序列,使得在所有可能的实
数序列中,该序列的误差平方和最小。

通过优化算法,可以找到这个最优序列,从而得到性能更优的FIR滤波器。

总的来说,FIR数字滤波器设计与软件实现数字信号处理实验原理是基于对理想滤波器频率响应的逼近和优化,通过选择合适的窗函数和算法,实现信号的滤波处理。

基于matlab的fir数字滤波器的设计

基于matlab的fir数字滤波器的设计

一、引言数字滤波器是数字信号处理中至关重要的组成部分,它能够对数字信号进行滤波处理,去除噪音和干扰,提取信号中的有效信息。

其中,fir数字滤波器作为一种常见的数字滤波器类型,具有稳定性强、相位响应线性等特点,在数字信号处理领域得到了广泛的应用。

本文将基于matlab软件,探讨fir数字滤波器的设计原理、方法和实现过程,以期能够全面、系统地了解fir数字滤波器的设计流程。

二、fir数字滤波器的基本原理fir数字滤波器是一种有限长冲激响应(finite impulse response, FIR)的数字滤波器,其基本原理是利用线性相位特性的滤波器来实现对数字信号的筛选和处理。

fir数字滤波器的表达式为:$$y(n) = \sum_{k=0}^{M}h(k)x(n-k)$$其中,y(n)为输出信号,x(n)为输入信号,h(k)为滤波器的系数,M为滤波器的长度。

fir数字滤波器的频率响应特性由其系数h(k)决定,通过设计合适的系数,可以实现对不同频率成分的滤波效果。

三、fir数字滤波器的设计方法fir数字滤波器的设计方法主要包括窗函数法、频率抽样法、最小最大法等。

在matlab中,可以通过信号处理工具箱提供的fir1函数和firls函数等来实现fir数字滤波器的设计。

下面将分别介绍这两种设计方法的基本原理及实现步骤。

1. 窗函数法窗函数法是fir数字滤波器设计中最为常见的方法之一,其基本原理是通过对理想滤波器的频率响应进行窗函数加权来满足设计要求。

在matlab中,可以使用fir1函数实现fir数字滤波器的设计,其调用格式为:h = fir1(N, Wn, type)其中,N为滤波器的阶数,Wn为滤波器的截止频率,type为窗函数的类型。

通过调用fir1函数,可以灵活地设计出满足特定要求的fir数字滤波器。

2. 频率抽样法频率抽样法是fir数字滤波器设计中的另一种重要方法,其基本原理是在频域上对理想滤波器的频率响应进行抽样,并拟合出一个最优的滤波器。

FIR滤波器和IIR滤波器原理及实现

FIR滤波器和IIR滤波器原理及实现

FIR滤波器和IIR滤波器原理及实现FIR和IIR滤波器是数字信号处理中常用的滤波器类型,用于从输入信号中提取或抑制特定频率成分。

它们分别基于有限脉冲响应(FIR)和无限脉冲响应(IIR)的原理设计而成。

下面将分别介绍FIR和IIR滤波器的原理及实现方式。

一、FIR滤波器H(z)=b0+b1•z^(-1)+b2•z^(-2)+...+bM•z^(-M)其中,b0、b1、..、bM是FIR滤波器的系数,M为滤波器的阶数。

1.确定滤波器的设计要求,包括通带和阻带的边界频率、通带和阻带的衰减要求等。

2.根据设计要求,选择合适的滤波器设计方法,如FIR滤波器可以通过窗函数设计、频率采样法设计等。

3.根据设计方法计算得到滤波器的系数,即b0、b1、..、bM。

4.将计算得到的系数应用到差分方程中,实现滤波器。

5.将输入信号通过差分方程进行滤波处理,得到输出信号。

二、IIR滤波器IIR滤波器是一种具有无限长度的单位脉冲响应的滤波器,它具有反馈回路,可以实现对信号频率的持续平滑。

IIR滤波器的离散时间系统函数可以表示为:H(z)=[b0+b1•z^(-1)+b2•z^(-2)+...+bM•z^(-M)]/[1+a1•z^(-1)+a2•z^(-2)+...+aN•z^(-N)]其中,b0、b1、..、bM和a1、a2、..、aN分别为IIR滤波器的前向和反馈系数,M和N分别为前向和反馈滤波器的阶数。

实现IIR滤波器的步骤如下:1.确定滤波器的设计要求,选择合适的滤波器类型(低通、高通、带通、带阻等)。

2.根据设计要求,选择合适的设计方法(脉冲响应不变法、双线性变换法等)。

3.根据设计方法计算得到滤波器的系数,即b0、b1、..、bM和a1、a2、..、aN。

4.将计算得到的系数应用到差分方程中,实现IIR滤波器。

5.将输入信号通过差分方程进行滤波处理,得到输出信号。

IIR滤波器的优点是可以实现较窄的通带和截止频率,具有良好的频率响应特性,但由于反馈回路的存在,容易出现稳定性问题,设计和实现相对较为复杂。

FIR滤波器的原理及设计

FIR滤波器的原理及设计

FIR滤波器的原理及设计1.选择理想的滤波特性:根据实际需求,选择滤波器的频率响应特性。

常见的滤波特性包括低通滤波、高通滤波、带通滤波和带阻滤波等。

这些特性可以通过选择不同的频率响应曲线来实现。

2.确定滤波器的长度:确定滤波器的长度是指确定冲激响应函数h(n)的长度。

一般情况下,滤波器的长度与所需的滤波特性密切相关。

如果需要更陡的滤波特性,滤波器的长度应该相对较长。

3.求解滤波器的系数:滤波器的系数通过优化方法求解得到。

最常用的方法是窗函数法和最小二乘法。

-窗函数法:将理想的频率响应特性和滤波器的长度进行离散傅里叶变换,得到频率响应的频谱图。

然后,利用窗函数将频谱图控制在滤波器的长度范围内,并进行反离散傅里叶变换得到滤波器系数。

-最小二乘法:将理想的频率响应特性与滤波器的输出响应特性进行最小二乘拟合,通过最小化滤波器的输出与理想输出之间的误差,得到滤波器的系数。

优化方法的选择主要取决于滤波器的设计要求和性能指标。

例如,窗函数法简单易用,适用于一般的滤波要求;最小二乘法则可以得到更精确的滤波器响应。

FIR滤波器设计的一个常见问题是权衡滤波器的性能和计算复杂度。

较长的滤波器可以实现更陡的滤波特性,但也会增加计算复杂度。

因此,在设计FIR滤波器时需要综合考虑滤波特性、滤波器长度和计算复杂度等因素,以达到最佳性能和实用性的平衡。

总之,FIR滤波器是一种基于冲激响应函数的数字滤波器。

它的设计原理主要包括选择滤波特性和确定滤波器的长度,然后通过窗函数法或最小二乘法求解滤波器的系数。

FIR滤波器具有线性相位、稳定性和灵活性等优点,在数字信号处理中有着广泛的应用。

FIR滤波器设计与实现

FIR滤波器设计与实现

FIR滤波器设计与实现一、FIR滤波器的设计原理y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+...+bM*x(n-M)其中,b0、b1、..、bM是滤波器的系数,M是滤波器的阶数。

在设计FIR滤波器时,需要确定滤波器的截止频率、滤波器类型(低通、高通、带通、带阻)以及滤波器的阶数。

通常情况下,滤波器的阶数越高,滤波器的性能越好,但计算复杂度也越高。

1.确定滤波器的截止频率和滤波器类型。

根据信号的频谱特性和滤波器的要求,确定滤波器的截止频率和滤波器类型。

2.确定滤波器的阶数。

根据滤波器的设计要求和计算资源的限制,确定滤波器的阶数。

3.计算滤波器的系数。

通过设计方法(如窗函数法、频率采样法、最优化法等),计算滤波器的系数。

4.实现滤波器。

根据计算得到的滤波器系数,使用差分方程或直接形式等方法实现FIR滤波器。

二、FIR滤波器的实现方法1.差分方程形式差分方程形式是FIR滤波器的一种常见实现方法,它基于差分方程对输入信号进行逐点计算。

根据滤波器的差分方程,可以使用循环结构对输入信号进行滤波。

2.直接形式直接形式是另一种常见的FIR滤波器实现方法,它基于滤波器的系数和输入信号的历史值对输出信号进行逐点计算。

直接形式的计算过程可表示为:y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+...+bM*x(n-M)其中,b0、b1、..、bM是滤波器的系数,x(n)、x(n-1)、..、x(n-M)是输入信号的历史值。

直接形式的优点是计算过程简单,缺点是计算量比较大,特别是当滤波器的阶数较高时。

除了差分方程形式和直接形式外,还有其他一些高级实现方法如离散余弦变换(DCT)和快速卷积等,它们能够进一步提高FIR滤波器的计算效率和性能。

总结:本文介绍了FIR滤波器的设计原理和实现方法。

FIR滤波器采用离散时间信号的卷积运算,通过确定截止频率、滤波器类型和阶数,计算滤波器系数,并使用差分方程或直接形式等方法实现滤波器。

fir 滤波器的原理

fir 滤波器的原理

fir 滤波器的原理FIR滤波器的原理引言:数字信号处理中,滤波器是一种常用的信号处理技术,用于去除或改变信号中的某些频率成分。

其中,FIR滤波器(Finite Impulse Response Filter)是一种常见的数字滤波器,其原理基于有限脉冲响应的特性。

本文将详细介绍FIR滤波器的原理以及其在信号处理中的应用。

一、FIR滤波器的基本原理FIR滤波器是一种线性时不变系统,其基本原理是通过对输入信号与滤波器的冲激响应进行卷积运算,得到输出信号。

FIR滤波器的冲激响应是一组有限长度的数字序列,因此称之为有限脉冲响应滤波器。

FIR滤波器的冲激响应可以通过设计滤波器的参数来确定,其中最常用的方法是窗函数法和频率采样法。

窗函数法通过选择合适的窗函数以及截断长度来设计滤波器,而频率采样法则通过在频域上选择一组滤波器的频率响应点来设计滤波器。

二、FIR滤波器的特点1. 线性相位特性:FIR滤波器具有线性相位特性,即不同频率成分的相位延迟相同,不会引起信号畸变。

2. 稳定性:FIR滤波器是一种有限脉冲响应滤波器,因此其冲激响应是有限长度的,不会引起反馈问题,从而保证了系统的稳定性。

3. 可调性:FIR滤波器的频率响应可以通过调整滤波器的参数来实现,因此具有较高的灵活性。

4. 精确控制:由于FIR滤波器的冲激响应是有限长度的,因此可以精确控制滤波器的频率响应,满足不同应用的需求。

三、FIR滤波器的应用FIR滤波器在数字信号处理中有广泛的应用,以下列举几个常见的应用领域:1. 语音信号处理:FIR滤波器可以用于语音信号去噪、语音增强等应用,对语音信号的频率成分进行调整,提高语音信号的质量。

2. 图像处理:FIR滤波器可以用于图像去噪、图像锐化等应用,对图像信号的高频成分进行增强或衰减,提高图像的清晰度。

3. 通信系统:FIR滤波器可以用于调制解调、信号匹配等应用,对信号的频率响应进行调整,实现信号的传输和接收。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 FIR 数字滤波器的基本原理及设计方法有限长单位脉冲响应数字滤波器(FIRDF ,Finite Impulse Response Digital Filter )的最大优点是可以实现线性相位滤波。

而IIRDF 主要对幅频特性进行逼近,相频特性会存在不同程度非线性。

我们知道,无失真传输与滤波处理的条件是,在信号的有效频谱范围内系统幅频响应为常数,相频响应具有线性相位。

在数字通信和图像处理与传输等应用场合都要求滤波器具有线性相位特性。

另外FIRDF 是全零点滤波器,硬件和软件实现结构简单,不用考虑稳定性问题。

所以,FIRDF 是一种很重要的滤波器,在数字信号处理领域得到广泛应用。

当幅频特性指标相同时,FIRDF 的阶数比IIRDF 高的多,但是同时考虑幅频特性指标和线性相位要求时,IIRDF 要附加复杂的相位校正网络,而且难以实现严格线性相位特性。

所以,在要求线性相位滤波的应用场合,一般都用FIRDF 。

FIRDF 的设计方法主要有两类:第一类是基于逼近理想滤波器特性的方法,包括窗函数法,频率采样法和等波纹最佳逼近法。

第二类是最优设计法,我们主要讨论第一类设计法,侧重与滤波器的设计方法和相应的MATLAB 工具箱函数的介绍。

FIR 数字滤波器的设计方法有窗函数法、频率采样法和基于firls 函数和remez 函数的最优化方法。

MATLAB 语言中的数字信号处理工具箱,提供了一些滤波器的函数,使FIR 滤波器的运算更加方便和快捷。

在MATLAB 中提供的滤波函数有fir1(),此函数以经典的方法实现加窗线性相位FIR 数字滤波器设计,可以设计出低通、高通、带通和带阻滤波器;fir2函数设计的FIR 滤波器,其滤波的频率特性由矢量f 和m 决定,f 和m 分别为滤波器的期望幅频响应的频率相量和幅值相量。

Firls()和remez()的基本格式用于设计I 型和II 型线性相位FIR 滤波器,I 型和II 型的区别是偶函数还是奇函数。

freqz()用于求数字滤波器的频率响应。

并且提供了各种窗函数的函数,比如,hamming()是海明窗函数,hanning()是汉宁窗函数,kaiser()是凯泽窗函数,使在设计的过程中,不用自己重新设计窗函数。

1.1 窗函数法设计FIR 数字滤波器设我们所要设计的FIR 滤波器的传输函数是d H (e j ),d h (n)是与其对应的单位脉冲响应,因此∑∞-∞=-=n nj dj d e n heH ωω)()( (1-1) 1()()2j j n d d h n H e e d πωωπωπ-=⎰ (1-2)如果我们能够在)(ωj d e H 已知的情况下,求出)(n h d ,经过Z 变换可得到滤波器的系统函数。

通常情况下理想数字滤波器的单位脉冲相应)(n h d 是无限长的,且是非因果序列。

获得有限脉冲响应滤波器的一种可能方法是对)(n h d 截取一段)(n h 来近似代替)(n h d ,可是这样会改变原来的滤波器指标,出现吉布斯效应误差。

窗函数法就是用被称为窗函数的有限加权序列w(n)来修正式(1)的傅里叶基数以求得要求的有限脉冲响应序列)(n h ,即)()()(n w n h n h d = (1-3)w(n)是有限长序列,当n<0或n>N-1时,w(n)=0。

这种方法的重点在于选择某种合适的窗函数。

要求窗函数主瓣宽度尽可能窄,以获得最小的过渡带;旁瓣相对值尽可能小,以使得通带波纹小,并且阻带衰减大。

下面介绍几种常用的窗函数: 1.矩形窗(Rectangle Window )()()R N w n R n = (3-4)其频率函数为:12sin(/2)()sin(/2)N j j R N W e e ωωωω--= (3-5)2.三角形窗(Bartlett Window)21,0(1)12()212,(1)112Br nn N N w n n N n N N ⎧≤≤-⎪⎪-=⎨⎪--<≤-⎪-⎩(3-6)其频率函数为:21()22sin(/4)()sin(/2)N j j Br N W e e N ωωωωω--+⎡⎤=⎢⎥⎣⎦(3-7) 3.汉宁(Hanning )窗,又称升余弦窗12()1cos()()21Hn N n w n R n N π⎡⎤=-⎢⎥-⎣⎦(3-8) 利用傅里叶变换得到频率函数为:121222()0.5()0.25()()11()N j j R R R N j Hn W e W W W eN N W eωωωππωωωω----⎧⎫⎡⎤=+-+-⎨⎬⎢⎥--⎣⎦⎩⎭= (3-9)当1N时,1N N -≈,所以窗函数的幅度函数为22()0.5()0.25()()Hn R R R W W W W N N ππωωωω⎡⎤=+-++⎢⎥⎣⎦ (3-10)4.汉明(Hamming )窗,又称改进的升余弦窗2()0.540.46cos()()1Hm N n w n R n N π⎡⎤=-⎢⎥-⎣⎦ (3-11)其幅度函数为:22()0.54()0.23()()11Hm R R R W W W W N N ππωωωω⎡⎤=+-++⎢⎥--⎣⎦ (3-12)5.布莱克曼(Blankman )窗,又称二阶升余弦窗24()0.420.5cos()0.08cos()()11Bl N n n w n R n N N ππ⎡⎤=-+⎢⎥--⎣⎦ (3-13)其幅度函数为:22()0.42()0.25()()11440.04()()11Bl R R R R R W W W W N N W W N N ππωωωωππωω⎡⎤=+-++⎢⎥--⎣⎦⎡⎤+-++⎢⎥--⎣⎦ (3-14)6.凯泽(Kaiser )窗0()01k w n n N =≤≤- (3-15)其中:β是一个可自由选择的参数,I 0( x)是第一类修正零阶贝塞尔函数[10]. 上述窗函数的基本参数如下表窗函数法设计滤波器的步骤:1)根据技术要求确定待求滤波器的单位取样响应)(n h d 。

2)根据对过渡带和阻带衰减的要求,选择窗函数的形式,并估计窗口长度N 。

3)计算滤波器的单位取样响应h(n):)()()(n n h n h d ω= (3-16)式中,)(n ω是前面所选择好的窗函数。

4)检验技术指标是否满足要求。

根据下式计算:∑-=-=1)()(N n nj j e n h e H ωω(3-17)如果)(ωj e H 不满足要求,根据具体情况重复步骤(2)(3)(4)步,直到满足要求为止。

本文以一个FIR 滤波器的设计为例说明如何使用MATLAB 设计数字滤波器 设计实例:用窗函数法设计线性相位FIR 低通数字滤波器,要求通带截止频率Wp=0.4*π,阻带截止频率Ws=0.5*π, 通带衰减不大于3db ,阻带衰减不小于40db 。

程序如下: Wp=0.4*pi; Ws=0.5*pi; Wdel=Ws-Wp; N=ceil(8*pi/Wdel);Wn=(0.4+0.5)*pi/2; window=hanning(N+1); b=fir1(N,Wn/pi,window); freqz(b,1,512)程序执行后得幅频和相频如下图所示:-4000-3000-2000-10000Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )0.10.20.30.40.50.60.70.80.91-150-100-50050Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )图1.11.2 频率采样法设计FIR 数字滤波器1.对理想滤波器的系统函数H d (z)进行频率采样以得到系统的理想频响H d (e jw )的等间隔采样值H(k)。

H(k)实际上是所要求的滤波器的单位采样响应(h(n))的离散傅里叶变换(DFT ),如下试:21112sin()212()()()()sin()2N N N j jwjwNk k Nw H e H k w k eH k ew k N N N ππφπ-----===-=-∑∑ (3-18) 211()()N jkn Nk h n H k eNπ-==∑ (3-19)为了减小H (k )的通带边缘由于抽样点的变化而引起的起伏振荡,可以增加过渡点,加宽过渡带以减小通带的起伏。

每一个抽样值产生一个与sin(2Nw )/sin(2w)成正比,并位移(2πk )/N 的频率响应,而H (k )与内插函数的线性组合就是FIR 滤波器的频率响应,增加一点过渡可以使阻带衰减提高到-44~54dB,二点过渡衰减-65~75,三点过渡衰减-85~95dB.如果不能使过渡带太宽,同时要求增大阻带衰减,可以增加取样点数N ,但这样会增加计算量、延时和误差。

频率取样型FIR 滤波器设计步骤: (1)给定理想滤波器频率响应H d (e jw )。

(2)根据过渡带宽和阻带衰减确定过渡点数和h(n)的长度N 。

2/()()|jk N d z e H k H z π== (3-20)(3)由IFFT 计算IDFT 得到:211()()N jkn Nk H n H k eNπ-==∑ (3-21)设计实例:率采样法设计一个带通滤波器,满足:低阻带边缘:w 1s =0.2*π;低通带边缘:w 1p =0.35*π;高通带边缘:w 2p =0.65*π;高阻带边缘:w 2s =0.8*π。

设计过渡带中的频率样本值为t1和t2,取t1=0.109021,t2=0.59417456。

设计程序如下: M=40; al=(M-1)/2; l=0:M-1; t1=0.109021; t2=0.59417456;Hrs=[zeros(1,5),t1,t2,ones(1,7),t2,t1,zeros(1,9),t1,t2,ones(1,7),t2,t1,zeros(1,4)]; k1=0:floor((M-1)/2); k2=floor((M-1)/2)+1:M-1;angh=[-al*(2*pi)/M*k1,al*(2*pi)/M*(M-k2)]; H=Hrs.*exp(j*angh); h=real(ifft(H,M)); freqz(h,1,512,1000)实验得幅频相频特性如下图所示:Frequency (Hz)P h a s e (d e g r e e s )050100150200250300350400450500Frequency (Hz)M a g n i t u d e (d B )图1.21.3等波纹最优化方法设计FIR 数字滤波器在数字信号处理中, 利用数字滤波器可改变信号中所含频率分量的相对比例或滤除某些频率分量, 使其达到所需要的效果. 其中数字FIR 滤波器由于具有精确的线性相位, 且系统稳定, 所以广泛应用于通信、 数字图象处理、 语音信号处理、 自适应处理、 雷达/ 声纳系统等方面. 目前, FIR 滤波器[ 1, 2]的设计主要有窗函数设计法和频率采样设计法. 但是, 这 2 种方法都不易精确控制通带边界频率Wp 与阻带边界频率Ws ,所以, 在实际应用中具有一定的局限性.而以最大误差最小化准则支持的切比雪夫逼近法是一种优异的设计方法, 易于精确控制Wp 与Ws.与窗函数和频率采样法比较,由于这种设计法使最大误差均匀化,所以设计的滤波器性能价格比最高。

相关文档
最新文档