主成分分析matlab源程序代码

合集下载

主成分分析 MATLAB代码

主成分分析 MATLAB代码
T=L(:,1)+L(:,2)+L(:,3)+L(:,4); %计算T统计量
%特征向量图(效果等价于主成分载荷图)
figure(4); %创造第二个图形窗口
e1=-E(:,1);e2=-E(:,2); %提取特征向量并转换符号
Co2=Co1+A(:,2).^2; %提取2个主成分的公因子方差
Co3=Co2+A(:,3).^2; %提取3个主成分的公因子方差
Co4=Co3+A(:,4).^2; %提取4个主成分的公因子方差
Rz=cov(F); %计算协方差矩阵
Rz=corrcoef(F); %计算相关系数矩阵
Rz=corrcoef(Z); %计算相关系数矩阵
%计算非标准化数据协方差矩阵的三种方法
Covz=Z'*Z/(n-1); %计算协方差矩阵
Covz=cov(Z); %计算协方差矩阵
%计算主成分得分相关系数的四种方法
Rz=F'*F/(n-1); %计算相关系数矩阵
grid on %添加网格
%几个用于检验的语句
%计算再生相关系数矩阵
Rp=H*H'; %计算再生相关矩阵
Re=R-Rp; %计算相关矩阵的残差矩阵
%综合得分
S=Z(:,1)+Z(:,2)+Z(:,3)+Z(:,4) %非标准化得分四列加和
S1=F(:,1)*eigv(1)^0.5+F(:,2)*eigv(2)^0.5+F(:,3)*eigv(3)^0.5+F(:,4)*eigv(4)^0.5
%计算T平方统计量(2)
eigv=diag(G); %提取角矩阵的对角线元素

30个智能算法matlab代码

30个智能算法matlab代码

30个智能算法matlab代码以下是30个使用MATLAB编写的智能算法的示例代码: 1. 线性回归算法:matlab.x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];coefficients = polyfit(x, y, 1);predicted_y = polyval(coefficients, x);2. 逻辑回归算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];model = fitglm(x, y, 'Distribution', 'binomial'); predicted_y = predict(model, x);3. 支持向量机算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [1, 1, -1, -1, -1];model = fitcsvm(x', y');predicted_y = predict(model, x');4. 决策树算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitctree(x', y');predicted_y = predict(model, x');5. 随机森林算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = TreeBagger(50, x', y');predicted_y = predict(model, x');6. K均值聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];idx = kmeans(data, 2);7. DBSCAN聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];epsilon = 2;minPts = 2;[idx, corePoints] = dbscan(data, epsilon, minPts);8. 神经网络算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];net = feedforwardnet(10);net = train(net, x', y');predicted_y = net(x');9. 遗传算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = gaoptimset('PlotFcns', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);10. 粒子群优化算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = particleswarm(fitnessFunction, nvars, lb, ub, options);11. 蚁群算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = antColonyOptimization(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);12. 粒子群-蚁群混合算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = particleAntHybrid(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);13. 遗传算法-粒子群混合算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;gaOptions = gaoptimset('PlotFcns', @gaplotbestf);psOptions = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = gaParticleHybrid(fitnessFunction, nvars, lb, ub, gaOptions, psOptions);14. K近邻算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcknn(x', y');predicted_y = predict(model, x');15. 朴素贝叶斯算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcnb(x', y');predicted_y = predict(model, x');16. AdaBoost算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [0, 0, 1, 1, 1];model = fitensemble(x', y', 'AdaBoostM1', 100, 'Tree'); predicted_y = predict(model, x');17. 高斯混合模型算法:matlab.x = [1, 2, 3, 4, 5]';y = [0, 0, 1, 1, 1]';data = [x, y];model = fitgmdist(data, 2);idx = cluster(model, data);18. 主成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = pca(x');transformed_x = x' coefficients;19. 独立成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = fastica(x');transformed_x = x' coefficients;20. 模糊C均值聚类算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; options = [2, 100, 1e-5, 0];[centers, U] = fcm(x', 2, options);21. 遗传规划算法:matlab.fitnessFunction = @(x) x^2 4x + 4; nvars = 1;lb = 0;ub = 5;options = optimoptions('ga', 'PlotFcn', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);22. 线性规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];lb = [0; 0];ub = [];[x, fval] = linprog(f, A, b, [], [], lb, ub);23. 整数规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];intcon = [1, 2];[x, fval] = intlinprog(f, intcon, A, b);24. 图像分割算法:matlab.image = imread('image.jpg');grayImage = rgb2gray(image);binaryImage = imbinarize(grayImage);segmented = medfilt2(binaryImage);25. 文本分类算法:matlab.documents = ["This is a document.", "Another document.", "Yet another document."];labels = categorical(["Class 1", "Class 2", "Class 1"]);model = trainTextClassifier(documents, labels);newDocuments = ["A new document.", "Another new document."];predictedLabels = classifyText(model, newDocuments);26. 图像识别算法:matlab.image = imread('image.jpg');features = extractFeatures(image);model = trainImageClassifier(features, labels);newImage = imread('new_image.jpg');newFeatures = extractFeatures(newImage);predictedLabel = classifyImage(model, newFeatures);27. 时间序列预测算法:matlab.data = [1, 2, 3, 4, 5];model = arima(2, 1, 1);model = estimate(model, data);forecastedData = forecast(model, 5);28. 关联规则挖掘算法:matlab.data = readtable('data.csv');rules = associationRules(data, 'Support', 0.1);29. 增强学习算法:matlab.environment = rlPredefinedEnv('Pendulum');agent = rlDDPGAgent(environment);train(agent);30. 马尔可夫决策过程算法:matlab.states = [1, 2, 3];actions = [1, 2];transitionMatrix = [0.8, 0.1, 0.1; 0.2, 0.6, 0.2; 0.3, 0.3, 0.4];rewardMatrix = [1, 0, -1; -1, 1, 0; 0, -1, 1];policy = mdpPolicyIteration(transitionMatrix, rewardMatrix);以上是30个使用MATLAB编写的智能算法的示例代码,每个算法都可以根据具体的问题和数据进行相应的调整和优化。

主成分分析及MATLAB应用 代码

主成分分析及MATLAB应用 代码

主成分分析类型:一种处理高维数据的方法。

降维思想:在实际问题的研究中,往往会涉及众多有关的变量。

但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。

一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。

因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。

一、总体主成分1.1 定义设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。

记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为()[(())(())],T ij p p E X E X X E X σ⨯∑==--它是一个 p 阶非负定矩阵。

设1111112212221122221122Tp p Tp pT pp p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X⎧==+++⎪==+++⎪⎨⎪⎪==+++⎩ (1) 则有()(),1,2,...,,(,)(,),1,2,...,.T T i i i i TT T i j ijij Var Y Var l X l l i p Cov Y Y Cov l X l X l l j p ==∑===∑= (2)第 i 个主成分: 一般地,在约束条件1T i i l l =及(,)0,1,2,..., 1.T i k i k Cov Y Y l l k i =∑==-下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的T i i Y l X =称为 X 1,X 2,…,X p 的第 i 个主成分。

1.2 总体主成分的计算设 ∑是12(,,...,)T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特征向量分别为120p λλλ≥≥≥≥及12,,...,,p e e e则 X 的第 i 个主成分为1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3)此时(),1,2,...,,(,)0,.Ti i i i Ti k i k Var Y e e i p Cov Y Y e e i k λ⎧=∑==⎪⎨=∑=≠⎪⎩ 1.3 总体主成分的性质1.3.1 主成分的协方差矩阵及总方差记 12(,,...,)T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ=由此得主成分的总方差为111()()()()(),p ppTTiii i i i Var Y tr P P tr PP tr Var X λ=====∑=∑=∑=∑∑∑即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差1()pii Var X =∑分解成 p 个互不相关变量 Y 1,Y 2,…,Y p 的方差之和,即1()pii Var Y =∑而 ()k k Var Y λ=。

主成分分析及matlab程序

主成分分析及matlab程序
从数学角度来看,主成分分析是一种降维 处理技术。
举例:
某人要做一件上衣要测量很多尺寸,如身长、 袖长、胸围、腰围、肩宽、肩厚等十几项指标, 但某服装厂要生产一批新型服装绝不可能把尺寸 的型号分得过多 ,而是从多种指标中综合成几 个少数的综合指标,做为分类的型号,利用主成 分分析将十几项指标综合成3项指标,一项是反 映长度的指标,一项是反映胖瘦的指标,一项是 反映特体的指标。
2195.7 1408 422.61 4797 1011.8 119.0
5381.72 2699 1639.8 8250 656.5 114.0
1606.15 1314 382.59 5105 556.0 118.4
364.17 1814 198.35 5340 232.1 113.5
3534.00 1261 822.54 4645 902.3 118.5
111.6 1396.35
116.4 554.97
111.3 64.33
117.0 1431.81
117.2 324.72
118.1 716.65
114.9
5.57
117.0 600.98
116.5 468.79
116.3 105.80
115.3 114.40
116.7 428.76
1.将原始数据标准化。 2.建立指标之间的相关系数阵R如下:
正交化特征向量(通常用Jacobi法求特征向量):
a11
a12
1
=
a21
,
2
=
a22
,
a
p1
a
p
2
a1p
,
p
=
a2
p
,
a

MATLAB主成分分析法

MATLAB主成分分析法

MATLAB主成分分析法统计与数学模型分析实验中心《MATLAB数据分析方法》实验报告(4)排名的结果是否合理?为什么?程序:clc,clearA=load('hiyan4_1.t某t');[m,n]=ize(A);%根据指标的属性将原始数据统一趋势化,其中资产负债率为成本型,转换成,效益型。

A1=(A(:,1)-min(A(:,1)))./(ma某(A(:,1))-min(A(:,1)));A2=(A(:,2)-min(A(:,2)))./(ma某(A(:,2))-min(A(:,2)));A3=(ma某(A(:,3))-A(:,3))./(ma某(A(:,3))-min(A(:,3)));A4=(A(:,4)-min(A(:,4)))./(ma某(A(:,4))-min(A(:,4)));A5=(A(:,5)-min(A(:,5)))./(ma某(A(:,5))-min(A(:,5)));A6=(A(:,6)-min(A(:,6)))./(ma某(A(:,6))-min(A(:,6)));A=[A1,A2,A3,A4,A5,A6];%利用相关系数矩阵进行主成分分析R=corrcoef(A);%在指标中无明显的共线关系[v,d]=eig(R);%计算特征值与特征向量%输出结果显示,最大特征值对应的不是正向量,所以不能用第一主成分进行排名%利用协方差矩阵进行主成分分析R1=cov(A);[v1,d1]=eig(R1);%输出结果显示,最大特征值对应的不是正向量,所以不能用第一主成分进行排名%利用R矩阵进行主成分分析fori=1:nforj=1:nR2(i,j)=2某dot(A(:,i),A(:,j))./[um(A(:,i).^2)+um(A(:,j).^2)];endend[v2,d2]= eig(R2);w=um(d2)/um(um(d2));%输出结果显示,最大特征值对应的是正向量,且其贡献率为71.68%,所以能用第一主成分进行排名F=[A-one(m,1)某mean(A)]某d(:,6);%计算主成分第一主成分得分[F1,I1]=ort(F,'decend');%给出各市名次的序号[F2,I2]=ort(I1);%给出各市排名plot(1:m,F,'某');%主成分得分图结果分析:(1)统一趋势化见程序中矩阵A(2)利用协方差和相关系数,最大特征值对应的不是正向量,所以均不能用第一主成分进行排名(3)构造的实对称矩阵,最大特征值对应的是正向量,且其贡献率为71.68%,所以能用第一主成分进行排名,排名结果为:实验结果分析北京天津河北山西内蒙古辽宁吉林黑龙江上海江苏166112717153014135浙江安徽福建江西山东河南湖北湖南广东广西4237191020211292海南重庆四川贵州云南西藏陕西甘肃青海宁夏129182583124262822新疆3(4)排名结果不合理,因为从第一主成分得分图可以看出,指标的属性并没有明显的区别:10.5-0.5-1-1.5-25101520253035建议利用总贡献率达到90%以上后运用加权得分的结果,再进行排名得出结果。

主成分分析Matlab源码分析

主成分分析Matlab源码分析

主成分分析源程序代码分析function[pc, score, latent, tsquare] = princomp(x);% PRINCOMP Principal Component Analysis (centered and scaled data).% [PC, SCORE, LATENT, TSQUARE] = PRINCOMP(X) takes a data matri x X and% returns the principal components in PC, the so-called Z-scores in SCORE S,% the eigenvalues of the covariance matrix of X in LATENT, and Hotelling 's% T-squared statistic for each data point in TSQUARE.% Reference: J. Edward Jackson, A User's Guide to Principal Components % John Wiley & Sons, Inc. 1991 pp. 1-25.% B. Jones 3-17-94% Copyright 1993-2002 The MathWorks, Inc.% $Revision: 2.9 $ $Date: 2002/01/17 21:31:45 $[m,n] = size(x); % 得到矩阵的规模,m行,n列r = min(m-1,n); % max possible rank of x% 该矩阵最大的秩不能超过列数,% 也不能超过行数减1avg = mean(x); % 求每一列的均值,付给一个n维行向量centerx = (x - avg(ones(m,1),:));% x的每个元素减去该列的均值,% 使样本点集合重心与坐标原点重合[U,latent,pc] = svd(centerx./sqrt(m-1),0);% “经济型”的奇异值分解score = centerx*pc; % 得分矩阵即为原始矩阵乘主成分矩阵if nargout < 3, return; endlatent = diag(latent).^2; % 将奇异值矩阵转化为一个向量if (r<N)latent = [latent(1:r); zeros(n-r,1)];score(:,r+1:end) = 0;endif nargout < 4, return; endtmp = sqrt(diag(1./latent(1:r)))*score(:,1:r)';tsquare = sum(tmp.*tmp)';主成分分析[Matlab版]function main()%*************主成份分析************%读入文件数据X=load('data.txt');%==========方法1:求标准化后的协差矩阵,再求特征根和特征向量=================%标准化处理[p,n]=size(X);for j=1:nmju(j)=mean(X(:,j));sigma(j)=sqrt(cov(X(:,j)));endfor i=1:pfor j=1:nY(i,j)=(X(i,j)-mju(j))/sigma(j);endendsigmaY=cov(Y);%求X标准化的协差矩阵的特征根和特征向量[T,lambda]=eig(sigmaY);disp('特征根(由小到大):');disp(lambda);disp('特征向量:');disp(T);%方差贡献率;累计方差贡献率Xsum=sum(sum(lambda,2),1);for i=1:nfai(i)=lambda(i,i)/Xsum;endfor i=1:npsai(i)= sum(sum(lambda(1:i,1:i),2),1)/Xsum;enddisp('方差贡献率:');disp(fai);disp('累计方差贡献率:');disp(psai);%综合评价....略%+============方法2:求X的相关系数矩阵,再求特征根和特征向量================%X的标准化的协方差矩阵就是X的相关系数矩阵R=corrcoef(X);%求X相关系数矩阵的特征根和特征向量[TR,lambdaR]=eig(R);disp('特征根(由小到大):');disp(lambdaR);disp('特征向量:');disp(TR);。

主成分分析matlab代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%一如既往的x:m*n,n是样本个数,m是维度%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%错误之处望指正,虽然结果与pca函数一样吧function y=myPca(x)%%%%%%%%%%%%%%%%%%%%%求取x的协方差sigma=myCov(x)[V,D]=eig(sigma);%%%%%%%%%%%%%%%%%%%%%特征值排序和找出特征值向量duiJiao=diag(D);[xuLie,pos]=sort(duiJiao,'descend');cumsum(xuLie)/sum(xuLie);temp=cumsum(xuLie)/sum(xuLie);for i=1:length(xuLie)if temp(i)>0.85 %%%%%%%%近似一下,嘿嘿!index=i;ts=temp(i);break;endendnewXuLie=xuLie(1:index)newTezheng=V(:,pos(1:index))%%%%%%%%%%%%%%%%%%%%%求方差%%%%%%%%%%%%%%%%%%%%%下面我要开始对主成分得分了score=[];[m,n]=size(V);for i=1:nfor j=1:length(newXuLie)for k=1:mtemp(k)=newTezheng(k,j)*x(k,i);endtemp2(j)=sum(temp);endscore(:,i)=temp2;endcentered=centerMean(score); %%%%%%%%%%%%%%%%%%%%%%没有近似的temp3=V(:,pos(1:length(duiJiao))); score2=[];for i=1:nfor j=1:length(xuLie)for k=1:mtemp(k)=temp3(k,j)*x(k,i);endtemp2(j)=sum(temp);endscore2(:,i)=temp2;endcentered2=centerMean(score2);mda=newXuLie;y.score=score';y.scoreMean=centered';y.coeff=newTezheng;y.ts=ts;mdaO=xuLie;y.scoreO=score2';y.scoreOM=centered2';y.coeffO=V(:,pos(1:length(duiJiao)));%%%%%%%%%%%%%%%%%%%%%%子函数,求协方差function s=myCov(x)[p,n]=size(x);s=zeros(p,p);for i=1:pfor j=1:pfor k=1:nmeanij=mean(x,2);meani=meanij(i);meanj=meanij(j);xki=x(i,k);xkj=x(j,k);temp(k)=(xki-meani)*(xkj-meanj); ends(i,j)=sum(temp)/(n-1);endend %%%%%%%%%%%%%%%%%%%%%%%子函数,均值化function y=centerMean(x)[m,n]=size(x);A=ones(1,n);B=mean(x,2);y=x-kron(A,B);。

主元分析Matlab源程序

x(i,:) = (1-b)*x(i-1,:) + b*x(i,:);
end
%%对数据进行标准化
m = mean(x);
s = std(x);
n = size(x,1);
x = (x - repmat(m,n,1))./repmat(s,n,1);
%%建立主元模型
n = 1000;
x1 = 8 + 0.1*randn(n,1);
x2 = 11 + 0.2*randn(n,1);
x3 = 17 + 0.3*randn(n,1);
x4 = -1.3*x1 + 0.2*x2 + 0.8*x3;
x5 = -0.8*x1 + 0.8*x2 + 0.9*x3;
Q(i) = x(i,:)*(eye(8) - p(:,1:a)*p(:,1:a)')*x(i,:)';
end
%%绘图
figure,
subplot(2,1,1),
plot(1:n,T2,'k -'),
xlabel('采样数'),
ylabel('T^2'),
hold on,
legend('统计量','阈值'),
%%贡献图
%1.确定造成失控状态的得分
T = x(170,:)*p(:,1:a);
r = [];
for i=1:a
if T(i)^2/latent(i) > T2c/a
r = cat(2,r,i);
end
%3.计算每个变量的总贡献

主成分分析报告matlab程序

主成分分析报告matlab程序主成分分析报告 Matlab 程序在数据分析和处理的领域中,主成分分析(Principal Component Analysis,PCA)是一种常用且强大的工具。

它能够将多个相关变量转换为一组较少的不相关变量,即主成分,同时尽可能多地保留原始数据的信息。

在 Matlab 中,我们可以通过编写程序来实现主成分分析,这为我们的数据处理和理解提供了极大的便利。

主成分分析的基本思想是找到数据中的主要方向或模式。

这些主要方向是通过对数据的协方差矩阵进行特征值分解得到的。

最大的特征值对应的特征向量就是第一主成分的方向,第二大的特征值对应的特征向量就是第二主成分的方向,以此类推。

在 Matlab 中,我们首先需要导入数据。

假设我们的数据存储在一个名为`data` 的矩阵中,每一行代表一个观测值,每一列代表一个变量。

```matlabdata = load('your_data_filetxt');%替换为您的数据文件路径```接下来,我们需要对数据进行中心化处理,即每个变量减去其均值。

```matlabcentered_data = data repmat(mean(data), size(data, 1), 1);```然后,计算协方差矩阵。

```matlabcov_matrix = cov(centered_data);```接下来进行特征值分解。

```matlabV, D = eig(cov_matrix);````V` 是特征向量矩阵,`D` 是对角矩阵,其对角元素是特征值。

我们对特征值进行从大到小的排序,并相应地对特征向量进行重新排列。

```matlablambda, index = sort(diag(D),'descend');sorted_V = V(:, index);```此时,`sorted_V` 的每一列就是一个主成分的方向。

为了计算每个观测值在主成分上的得分,我们可以使用以下代码:```matlabprincipal_components = centered_data sorted_V;```我们还可以计算每个主成分解释的方差比例。

Matlab中的多变量数据分析方法介绍

Matlab中的多变量数据分析方法介绍引言:数据分析是现代科学和工程领域中的重要组成部分。

在大数据时代,我们经常需要处理和分析的是多个变量之间的复杂关系。

Matlab作为一个功能强大的数值计算环境,提供了许多用于多变量数据分析的工具和函数。

本文将介绍一些常用的Matlab多变量数据分析方法,并结合实际案例进行说明。

一、主成分分析(Principal Component Analysis)主成分分析是一种经典的多变量数据分析方法,它可以将高维数据集映射到一个更低维的空间中,同时保持数据的主要特征。

在Matlab中,可以使用pca函数来进行主成分分析。

下面我们以一组山地气象数据为例,进行主成分分析:```matlabload data.mat[coeff,score,latent,tsquared] = pca(data);```上述代码中,`data`是一个包含多个变量的矩阵,`coeff`表示主成分分析后的系数矩阵,`score`表示投影后的数据集,`latent`是每个主成分的方差贡献率,`tsquared`表示样本点的Hotelling T^2统计量。

二、聚类分析(Cluster Analysis)聚类分析是一种将样本分组为具有相似特征的群组的方法。

在Matlab中,可以使用`clusterdata`函数进行聚类分析。

下面我们以一个鸢尾花的数据集为例,对花的属性进行聚类分析:```matlabload fisheririsclust = clusterdata(meas, 'linkage', 'ward', 'maxclust', 3);```上述代码中,`meas`是一个包含多个花的属性的矩阵,`clust`表示每个样本所属的聚类簇。

三、因子分析(Factor Analysis)因子分析是一种用于发现潜在因子并研究它们之间关系的统计方法。

在Matlab 中,可以使用`factoran`函数进行因子分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

263.862 1.61144 2.75468 0.266575
268.764 2.07218 2.61756 0.182597
261.196 1.59769 2.35037 0.182114
248.708 2.09609 2.85279 0.257724
253.365 1.69457 2.9492 0.189702
268.434 1.56819 2.78113 0.13252
258.741 2.14653 2.69111 0.136469
244.192 2.02156 2.22607 0.298066
219.738 1.61224 1.88599 0.166298
244.702 1.91477 2.25945 0.187569
245.286 2.12499 2.35282 0.161602
251.96 1.83714 2.53519 0.240271
251.164 1.74167 2.62961 0.211887
251.824 2.00133 2.62665 0.211991
257.68 2.14878 2.65686 0.203846]
stdr=std(dataset); %求个变量的标准差
[n,m]=size(dataset); %定义矩阵行列数
sddata=dataset./stdr(ones(n,1),:); %将原始数据采集标准化
sddata %输出标准化数据
[p,princ,eigenvalue,t2]=princomp(sddata);%调用前三个主成分系数
p3=p(:,1:3); %提取前三个主成分得分系数,通过看行可以看出对应的原始数据的列,每个列在每个主成分的得分
p3 %输出前三个主成分得分系数
sc=princ(:,1:3); %提取前三个主成分得分值
sc %输出前三个主成分得分值
e=eigenvalue(1:3)'; %提取前三个特征根并转置
M=e(ones(m,1),:).^0.5; %输出前三个特征根并转置
compmat=p3.*M; %利用特征根构造变换矩阵
per=100*eigenvalue/sum(eigenvalue); %求出成分载荷矩阵的前三列
per
%求出各主成分的贡献率
cumsum(per); %列出各主成分的累积贡献率
figure(1)
pareto(per); %将贡献率绘成直方图
t2
figure(2)
%输出各省与平局距离
plot(eigenvalue,'r+'); %绘制方差贡献散点图
hold on
%保持图形
plot(eigenvalue,'g-'); %绘制方差贡献山麓图
%关闭图形
plot(princ(:,1),princ(:,2),'+'); %绘制2维成份散点图
%gname
%,(rowname) %标示个别散点代表的省data市[st2,index]=sort(t2);
%st2=flipud(st2);
%index=flipud(index);
%extreme=index(1);。

相关文档
最新文档