韩军工程光学课后习题答案之第3章
作业参考答案

四、计算
1、P.17 第6题( U 2 = 2o58′ L2 = 191.9mm ) ′ ′ 平面后17.43 mm处,像高-0.7143 mm。) mm。) 2、P.17 第7题(平面后 处 像高在一张报纸上放一平凸透镜,透镜的厚度为9mm。当平面朝上时, 3、在一张报纸上放一平凸透镜,透镜的厚度为9mm。当平面朝上时,报纸 上字的虚象在平面下6mm处 凸面朝上时,字被放大一倍, 上字的虚象在平面下6mm处,凸面朝上时,字被放大一倍,求该透镜的 折射率及球面曲率半径。( 折射率及球面曲率半径。( n=1.5 , r= -6 mm ) 一个玻璃球直径为400mm 玻璃折射率为1.5 球中有两个小气泡, 400mm, 1.5, 4、一个玻璃球直径为400mm,玻璃折射率为1.5,球中有两个小气泡,一个 在球心,一个在二分之一半径处。沿两气泡连线方向, 在球心,一个在二分之一半径处。沿两气泡连线方向,在球的两边观察 这两个气泡,它们之间的距离为多少? 这两个气泡,它们之间的距离为多少? 从左边观察: 从右边观察: (从左边观察: l AB = 120mm 从右边观察: l AB = 200mm ) ∆ ∆
五、设计与思考
汽车后视镜通常为球面反射镜, 汽车后视镜通常为球面反射镜,请描述这类反射镜 的特点。驾驶时, 的特点。驾驶时,往往驾驶员更希望水平方向范围 更宽,既关注公路轴线附近细节, 更宽,既关注公路轴线附近细节,也需了解远离轴 线的情况,请根据这种需求设计更适用的后视镜。 线的情况,请根据这种需求设计更适用的后视镜。 采用变曲率柱面反射镜) (采用变曲率柱面反射镜)
h1 f '= tgU k ' hk lF ' = tgU k '
l H ' = l F '− f '
工程光学第三章课后习题及答案郁道银

第三章习题及答案
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2 人身高,和前后距离无关。
2.设平行光管物镜L 的焦距f ' =1000mm,顶杆与光轴的距离a=10 mm,如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直像相对于F 产生了y=2 mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
解:
3.一光学系统由一透镜和平面镜组成,如图3-1所示,平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600 mm 有一物体AB,经透镜和平面镜后,所成虚像A"B"至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
图3-1习题3图
解:平面镜成β=1 的像,且分别在镜子两侧,物像虚实相反。
4.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm
的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。
解:
此为平板平移后的像。
5.棱镜折射角,C 光的最小偏向角,试求棱镜光学材料的折射率。
解:
6.白光经过顶角
的色散棱镜,n=1.51 的色光处于最小偏向角,试求其
最小偏向角值及n=1.52 的色光相对于n=1.51 的色光间的交角。
解:。
光学课后习题解答

第一章 光的干涉1、波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.解:(1)由公式λd r y 0=∆ 得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp3.把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=m m122I I = 22122A A =12A A =7. 试求能产生红光(λ=700nm)的二级反射干涉条纹的肥皂膜厚度.已知肥皂膜折射率为1.33,且平行光与发向成30°角入射.解:根据题意222(210)2710nmd n j d λ-=+∴===8. 透镜表面通常镀一层如MgF 2(n=1.38)一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射.为了使透镜在可见光谱的中心波长(550nm )处产生极小的反射,则镀层必须有多厚? 解:可以认为光是沿垂直方向入射的。
光学思考题和习题解答第三章

光学思考题和习题解答第三章第三章思考题部分暂时略去4、⼲涉条纹产⽣在⼀定的空间内,称为定域深度;因此⽤⽬镜看到地是属于定域深度范围的⼲涉条纹。
5、(1)等厚⼲涉条纹的定义就是指薄膜表⾯沿等厚线分布的⼲涉条纹,光程差等于i nh L cos 2=?,可见只有当光线近似垂直⼊射时,光程差只与厚度有关,从⽽⼲涉强度也近似地仅与⾼度有关,这时的⼲涉条纹是沿等厚线分布的等厚条纹。
但实际上光程差还与倾⾓有关,从⽽等光程的轨迹与⾼度和折射⾓都有关,条纹必然偏离等厚线。
因此⼀般说来,薄膜表⾯的⼲涉条纹并不是等厚条纹。
等厚条纹只是⼀种在特定实验条件下出现的现象。
6、对于单⾊点光源⽽⾔,由于相⼲长度⽐较长,1、2或者3、4两个界⾯的反射光是可以⼲涉形成⼲涉条纹的。
实际上,通常的光源是⾯光源,不同点光源产⽣的⼲涉条纹错位从⽽影响衬⽐度,若两个界⾯的厚度⼤,错位⽐较明显,因⽽衬⽐度差;有两个界⾯的厚度⼩,错位才⼩,因⽽衬⽐度才⽐较⼤。
7、根据空间相⼲性的要求,为提⾼条纹的衬⽐度,应限制光源的宽度。
点光源照明时,衬⽐度最⾼。
但⽤⾁眼直接观察薄膜表⾯的⼲涉条纹时,由于眼睛瞳孔对光束截⾯的限制,只能接收来⾃扩展光源上⼀部分点光源的反射线,从⽽限制了光源的有效宽度。
因此,决定视场中条纹衬⽐度的不是扩展光源的实际宽度,⽽是被瞳孔所限制的有效宽度。
只有进⼊瞳孔的反射光的⼲涉条纹才能被眼睛看到。
透过真孔⽐较容易看到⼲涉条纹,原因在于真孔进⼀步限制扩展光源的有效宽度,从⽽提⾼了观察区域的衬⽐度。
8、窗玻璃表⾯是扩展光源产⽣的⼲涉条纹的⾮相⼲叠加。
由于不同点光源产⽣的⼲涉条纹产⽣错位,折射⾓不同的两个点光源在上下表⾯同⼀点产⽣光程差,两个光程差的差异等于i i nh L d sin 2)(=?δ,这个差异与厚度有关,厚度越⼤,⼲涉条纹错位造成的条纹衬⽐度下降越严重;⼤到⼀定程度时,⼲涉条纹看不见。
11、出现⼤约三个亮纹,相邻亮纹的⾼度差为半个波长,故厚度差约为22λ?。
工程光学第三版课后答案

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。
解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。
3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。
4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。
8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
光学教程第3章_参考答案

13.1 证明反射定律符合费马原理。
证明:证明:设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,它们的折射率为它们的折射率为n 1和n 2。
光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。
为了确定实际光线的路径,通过A,B 两点作平面垂直于界面,'OO 是它们的交线,则实际光线在界面上的反射点C 就可由费马原理来确定,如下图所示。
(1)反证法:如果有一点'C 位于线外,则对应于'C ,必可在'OO 线上找到它的垂足''C .由于''AC 'AC >,''BC 'BC >,故光线B AC'总是大于光程B ''AC 而非极小值,这就违背了费马原理,故入射面和反射面在同一平面内得证。
面内得证。
(2)在图中建立坐XOY 坐标系,则指定点A,B 的坐标分别为(x1,y1)和(x2,y2),未知点C 的坐标为(x ,0)。
C 点是在'A 、'B 之间的,光程必小于C 点在''B A 以外的相应光程,以外的相应光程,即即21vx x <<,于是光程ACB 为 yx x n y x x n CB n AC n ACB n 2211221221111)()(+-++-=+=根据费马原理,它应取极小值,即0)(1=ACB n dx d0)sin (sin )()()()()()(21112222211212111=-=¢-¢=+---+--=i i n CB B C AC C A n y x x x x n y x x x x n ACB n dx d 所以当11'i i =,取的是极值,符合费马原理。
,取的是极值,符合费马原理。
3.2 根据费马原理可以导出在近轴条件下,从物点发出并会聚倒像点的所有光线的光程都相等。
《工程光学》物理光学参考答案3

物理光学作业参考答案[13-1] 波长nm 500=λ的单色光垂直入射到边长3cm 的方孔,在光轴(它通过孔中心并垂直孔平面)附近离孔z 处观察衍射,试求出夫琅和费衍射区的大致范围。
解:夫琅和费衍射条件为:π<<+zy x k2)(max2121 即: m nm y x z 900109.0500)1015()1015()(122626max2121=⨯=⨯+⨯=+>>λ[13-3]平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20)s i n (s i n )]sin (sin sin[⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=i a i a I I θλθλπ 式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图)。
证明:(1缝上任意点Q 的位矢: 单逢上光场的复振幅为:因此,观察面上的夫琅和费衍射场为: (其中: ))cos ,0,(sin i i k k =)0,,(11y x r = 1sin 1)(~x i ik rk i Ae Ae x E ⋅⋅== )sin (sin )]sin (sin sin[)(~1)(~)2(1122)sin (sin )2(11sin 22sin )2(11221)2(11211211112111121i a i a ae z A dx e e z i A dx e e e z i A dx e x E e z i x E z x z ik a a x i ik z x z ik x ik a a x i ik z x z ik x z x ik a az x z ik --====+---+⋅--⋅+--+⎰⎰⎰θλπθλπλλλλθθθsin 1≈z x所以,观察面上的光强分布为:式中:(2)第一暗点位置:[13-4]在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。
光学第二三章部分答案

2-1 在杨氏实验中,用波长为632。
8nm 的氦氖激光束垂直照射到间距为1.00mm 的两个小孔上,小孔至屏幕的垂直距离为100cm. 试求在下列两种情况下屏幕上干涉条纹的间距: (1)整个装置放在空气中;(2)整个装置放在n=1。
33的水中。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为21()sin xn r r nd nd Dδθ=-==所以相邻干涉条纹的间距为D x d nλ∆=⋅(1) 在空气中时,n =1。
于是条纹间距为10431.0632810 6.3210(m)1.010D x d λ---∆==⨯⨯=⨯⨯ (2) 在水中时,n =1。
33.条纹间距为10431.0632810 4.7510(m)1.010 1.33D x d n λ---⨯⨯∆=⋅==⨯⨯⨯2-2 在杨氏干涉装置中,双缝至屏幕的垂直距离为2.00m 。
测得第10级干涉亮纹至中央亮纹之间的距离为 3.44cm ,双缝间距为0.342mm, 试求光源的单色光波长。
解:在杨氏干涉装置中,两束相干光的光程差为:sin xd d D δθ==根据出现亮条纹的条件0λδk ±=,对第10级亮条纹,k 取10,于是有:010λ=Dxd带入数据得:0231021044.310342.0λ=⨯⨯⨯--由此解出:nm 24.5880=λ2-4因为:λθj Dxd d ==sin 所以:λ∆=∆j D xd)(102.24m djD x -⨯=∆=∆λ2-5 用很薄的云母片(n =1.58)覆盖在双缝干涉实验装置的一条缝上,观察到干涉条纹移动了9个条纹的距离,光源的波长为550.0 nm ,试求该云母片的厚度。
解:设云母片厚度为h ,覆盖在双缝中的1r 光路上,此时两束相干光的光程差为:21()(1)xr r h nh dn h k Dδλ''=--+=--= 当没有覆盖云母片,两束相干光的光程差为:21xr r d k Dδλ=-==因为条纹移动了9个,则:9k k '-=由①、②两式得:(1)9n h λ-=由此可得云母片的厚度为:9699550.0108.5310(m)1 1.581h n λ--⨯⨯===⨯--2-13nm 8.6420=λ2-14 将两块平板玻璃叠合在一起,一端互相接触。