《平面镶嵌》课件.ppt
合集下载
15综合与实践平面图形的镶嵌34张PPT

要用图形不留空隙、不重叠地镶嵌一个 平面区域,需使得拼接点处的所有内角之 和等于360°.
还有其它正多边形能镶嵌吗?
设在一个顶点周围有 k 个正 n 边形的角,则有
K·
(n-2)×180 。
。 = 360
n
(n-2)(k-2)=4
∵ k 为正整数, n 为大于等于 3 的正整数
k=6 k=4 k=3
人生的价值,并不是用时间,而 是用深度去衡量的。
——列夫·托尔斯泰
1.正三角形的平面镶嵌
60° 60° 60°
60° 60°
60°
6个正三角形可以镶嵌。
2.正方形的平面镶嵌
90°
4个正方形可以镶嵌。
3.正六边形的平面镶嵌 3个正六边形可以镶嵌
4.用边长相同的正五边形能否镶嵌?
13
2
∠1+∠2+∠3=?
思考:
为什么边长相等的正五边形不能 镶嵌,而边长相等的正六边形能镶嵌?
1.要用图形不留空隙、不重叠地镶嵌一个平面区域,需 使得拼接点处的所有角之和等于360°。 2.任意形状但全等的三角形都可以进行镶嵌
3.任意形状但全等的四边形也都可以进行镶嵌
4.用一种正多边形可以进行镶嵌的是:正三角形、正 方形、正六边形
5.用两种正多边形可以进行镶嵌的是:正三角形和正 方形、正三角形和正六边形、正方形和正八边形等。
上面我们讨论的一般三角形和四边形都
可以平面镶嵌,因为三角形的内角和是 180°,四边形内角和是360°它们的内角 和是整数倍都是360°,那么其它的一般多 边形能进行镶嵌吗?
例如: 在五边形中,内角和540°,已经超过
360°,即每一个内角拼接在一起时有重 叠部分,不符合平面镶嵌的含义。当边数 越大时,内角和也越大,更不符合要求, 因此边数大于4的一般多边形不可以平面镶 嵌。
《平面镶嵌》ppt课件

4,4,4,4
/
/
6,6,6
/
/
3,3,3
4,4
/
3,3,3,3
6
/
3,3
6,6
/
3
12,12
/
4
8,8
/
5,5
10
/
正多形1 正多形2 正多形3
3
4,4
6
3,3
4
12
3
7
42
3
8
24
3
9
18
3
10
15
4
5
20
4
6
12
课后研讨题: 〔1〕设计一幅平面图形铺满地面的美丽图案,与他的同窗比一 比,看看谁设计得更有新意。
拼7.4 平面镶 嵌.swf拼 看
发现一:
同一种正多边形进展平面镶嵌的图形只需三种:正三角 形、正方形、正六边形
想7.4 平面镶 嵌.swf一 想
假设选择其中的两 种平面图形进展镶嵌, 他又会选择哪两种呢 ?
正三角形
正方形
正六边形
正八边形
拼拼看
拼拼看
拼拼看
拼拼看
正三角形 正方形 正五边形 正六边形
〔2〕我们用两种正多边形能不能同样进展平面镶嵌呢? 假设可以,他能用两种什么样的正多边形进展平面镶嵌?
A.1C种 B.2种 C.3种 D.4种
边长为a的正方形与以下边长为a的正多边形组合起来,
不能镶嵌成平面的是〔 〕B
①正三角形;②正五边形;③正六边形;④正八边形
A. ① ②
B. ② ③
C. ① ③
D. ① ④
如图,足球由正五边形皮块〔黑色〕和正六 边形皮块〔白色〕缝成。假设取下一黑两白 两两相邻的三块皮块,能不能将这三块皮块 连在一同铺平?为什么?
《平面图形的镶嵌》教学课件

正三角形、正方形、长方形、正六边形等。
镶嵌的条件
围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角。
学生心得体会分享
学生A
通过学习,我深刻理解了 平面图形镶嵌的原理和方 法,感受到了数学的美妙 和实用性。
学生B
在动手实践中,我发现了 很多有趣的镶嵌组合,对 平面图形的认识也更加深 入了。
学生C
节奏与韵律感营造方法
通过调整图形元素的间距、大小、形态和色彩等视觉属性,形成有规律 的排列组合和变化,营造出富有节奏感和韵律感的视觉效果。
03
节奏与韵律感在设计中的应用
如网页设计、UI设计、插画设计等,利用节奏和韵律感来增强视觉吸引
力和提升用户体验。
色彩搭配和视觉效果优化
色彩搭配原则
在平面图形镶嵌中,色彩搭配应遵循色彩的和谐与对比原则,通过合理的色彩组合来营造 出符合主题和氛围的视觉效果。
引导学生对自己的作品进行客观 评价,发现自己的优点和不足,
为今后的创作提供改进方向。
展示与交流
鼓励学生之间相互评价作品,发现 他人的优点并学习借鉴,同时提出 建设性的意见和建议,促进共同进
步。
互相评价
教师对学生的作品进行点评,肯定 学生的成绩和进步,指出存在的问 题并提出改进意见,引导学生不断 提高创作水平。
《平面图形的镶嵌》教学课件
contents
目录
• 平面图形镶嵌基本概念 • 常见平面图形镶嵌方法 • 美学原理在平面图形镶嵌中应用 • 创意设计实践:个性化平面图形镶嵌 • 评价标准及欣赏能力提升途径 • 课堂总结与拓展延伸
01 平面图形镶嵌基本概念
镶嵌定义及性质
镶嵌定义
用形状、大小完全相同的一种或 几种平面图形进行拼接,彼此之 间不留空隙、不重叠地铺成一片 ,这就是平面图形的镶嵌。
镶嵌的条件
围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角。
学生心得体会分享
学生A
通过学习,我深刻理解了 平面图形镶嵌的原理和方 法,感受到了数学的美妙 和实用性。
学生B
在动手实践中,我发现了 很多有趣的镶嵌组合,对 平面图形的认识也更加深 入了。
学生C
节奏与韵律感营造方法
通过调整图形元素的间距、大小、形态和色彩等视觉属性,形成有规律 的排列组合和变化,营造出富有节奏感和韵律感的视觉效果。
03
节奏与韵律感在设计中的应用
如网页设计、UI设计、插画设计等,利用节奏和韵律感来增强视觉吸引
力和提升用户体验。
色彩搭配和视觉效果优化
色彩搭配原则
在平面图形镶嵌中,色彩搭配应遵循色彩的和谐与对比原则,通过合理的色彩组合来营造 出符合主题和氛围的视觉效果。
引导学生对自己的作品进行客观 评价,发现自己的优点和不足,
为今后的创作提供改进方向。
展示与交流
鼓励学生之间相互评价作品,发现 他人的优点并学习借鉴,同时提出 建设性的意见和建议,促进共同进
步。
互相评价
教师对学生的作品进行点评,肯定 学生的成绩和进步,指出存在的问 题并提出改进意见,引导学生不断 提高创作水平。
《平面图形的镶嵌》教学课件
contents
目录
• 平面图形镶嵌基本概念 • 常见平面图形镶嵌方法 • 美学原理在平面图形镶嵌中应用 • 创意设计实践:个性化平面图形镶嵌 • 评价标准及欣赏能力提升途径 • 课堂总结与拓展延伸
01 平面图形镶嵌基本概念
镶嵌定义及性质
镶嵌定义
用形状、大小完全相同的一种或 几种平面图形进行拼接,彼此之 间不留空隙、不重叠地铺成一片 ,这就是平面图形的镶嵌。
28_《平面图形的镶嵌》课件

还有其他的正多边形可以进行
镶嵌吗?
ppt课件
8
1、 用正三角形平面镶嵌,是如何进 行镶嵌的?
ppt课件
60°
60°
60°
60°
60°
60°
9
2.用正方形平面镶嵌,是如何镶嵌的?
ppt课件
10
3、 正六边形呢?
F
E
A
D
B
C
ppt课件
11
你能只用一种正五边形拼成一个地面吗?为什么正五
边形拼不成地面?而用正三角形可以?可以拼成一个地
不重叠的铺成一片,就是平面图形的 镶嵌
ppt课件
6
观察以下图形并思考在镶嵌时 如何做到既无缝隙又不重叠?
每个顶点处几个角的和为360°
.。 360
ppt课件
7
若用一种正多边形进行镶嵌 ,
下列哪些正多边形可以镶嵌? 为什么呢?
①正三角形; ②正方形 ;
③正五边形; ④正六边形;
⑤正八边形; ⑥正十二边形。
设在一个顶点周围有个m正四边形的角、n个正八边形 的角,则有
m·90 +n·135 =360
ppt课件
26
1、平面图形的镶嵌的要求:
无缝隙,不重叠
2、多边形能否镶嵌的条件:
每个顶点处几个角的和为
360°
ppt课件
27
作业!
ppt课件
28
面条件是什么?
因为正五边形的内角 不能组成3 6 0 ° 的角, 而正三角形的内角能
仅用正多边形进行 镶嵌,要嵌成一个平面, 必须要求在公共顶点上
组成3 6 0 ° 的角。
所有内角和为360∘
ppt课件
12
《平面镶嵌图案欣赏》课件

案。
面的形状和大小
不同的面有不同的视觉效果。规则 的几何形状给人以规整、简洁的感 觉,不规则的形状则显得自由、活 泼。
面的排列
通过不同的面排列方式,如重复、 交替等,可以营造出层次感和空间 感。
色彩
色彩
色彩的搭配
是平面镶嵌图案中非常重要的元素, 通过色彩的变化和搭配,可以创造出 丰富的视觉效果和情感氛围。
现代平面镶嵌图案在技术和材料上都有了很大的突破,不仅 在传统的硬质材料上可以进行镶嵌,还可以在纺织品、纸张 等软质材料上进行。同时,计算机技术的应用也为平面镶嵌 图案的设计和制作带来了更多的可能性。
分类与风格
分类
平面镶嵌图案可以根据使用的几何图形、颜色、纹理等因素进行分类。常见的分类方式包括根据几何图形分为三 角形、四边形、六边形等;根据颜色分为单色、多色、抽象等;根据纹理分为木质、石质、金属等。
产品设计
产品设计师可以将平面镶嵌图案 应用于产品外观,提升产品的艺
术价值和审美体验。
平面镶嵌图案可以应用于各种材 质的产品,如家具、灯具、餐具 等,为产品增添特色和个性化。
通过选择与产品功能和风格相协 调的平面镶嵌图案,可以提升产
品的市场吸引力和竞争力。
服装设计
服装设计师可以利用平面镶嵌图案来 丰富服装的视觉效果,提升服装的艺 术价值和时尚感。
通过选择与室内风格相协调的平面镶嵌图案,可以提升整体空间的品质和美感。
平面设计
在平面设计中,平面镶嵌图案 可以作为背景或元素,增强画 面的层次感和视觉冲击力。
设计师可以利用平面镶嵌图案 的重复性和规律性,创造出独 特的视觉效果和品牌形象。
通过选择与主题相符的平面镶 嵌图案,可以提升设计作品的 视觉吸引力和传达效果。
面的形状和大小
不同的面有不同的视觉效果。规则 的几何形状给人以规整、简洁的感 觉,不规则的形状则显得自由、活 泼。
面的排列
通过不同的面排列方式,如重复、 交替等,可以营造出层次感和空间 感。
色彩
色彩
色彩的搭配
是平面镶嵌图案中非常重要的元素, 通过色彩的变化和搭配,可以创造出 丰富的视觉效果和情感氛围。
现代平面镶嵌图案在技术和材料上都有了很大的突破,不仅 在传统的硬质材料上可以进行镶嵌,还可以在纺织品、纸张 等软质材料上进行。同时,计算机技术的应用也为平面镶嵌 图案的设计和制作带来了更多的可能性。
分类与风格
分类
平面镶嵌图案可以根据使用的几何图形、颜色、纹理等因素进行分类。常见的分类方式包括根据几何图形分为三 角形、四边形、六边形等;根据颜色分为单色、多色、抽象等;根据纹理分为木质、石质、金属等。
产品设计
产品设计师可以将平面镶嵌图案 应用于产品外观,提升产品的艺
术价值和审美体验。
平面镶嵌图案可以应用于各种材 质的产品,如家具、灯具、餐具 等,为产品增添特色和个性化。
通过选择与产品功能和风格相协 调的平面镶嵌图案,可以提升产
品的市场吸引力和竞争力。
服装设计
服装设计师可以利用平面镶嵌图案来 丰富服装的视觉效果,提升服装的艺 术价值和时尚感。
通过选择与室内风格相协调的平面镶嵌图案,可以提升整体空间的品质和美感。
平面设计
在平面设计中,平面镶嵌图案 可以作为背景或元素,增强画 面的层次感和视觉冲击力。
设计师可以利用平面镶嵌图案 的重复性和规律性,创造出独 特的视觉效果和品牌形象。
通过选择与主题相符的平面镶 嵌图案,可以提升设计作品的 视觉吸引力和传达效果。
《课题学习平面镶嵌》PPT课件讲义

2.拼接在同一个点的各个角的和恰好等于 360 .
活动2 正多边形的平面镶嵌
如果只用一种正多边形,哪些正多边形可以进行平 面镶嵌? 正三角形、正方形、正六边形
1.用正三角形镶嵌
60° 60°
60°
60° 60°
60°
(2) 正方形的平面镶嵌
90°
90° 90° 90° 90°
(3)用正六边形进行镶嵌
图案(Ⅱ)
60° 60°
每个顶点处正六边形1个,正三角形4个.
形 的 平 面 镶 嵌
正 八 边 形 与 正 方
正十二边形与正三 角形的平面镶嵌
正十二边形与正方形、 正五边形的平面镶嵌
练习题
1.能够用一种正多边形铺满地面的是___B_。
A 正五边形 B 正六边形
C 正七边形 D 正八边形
2.如果用正三角形进行镶嵌,那么在每个顶 点的周围有__6__个正三角形。
课题学习平面镶嵌
(Suitable for teaching courseware and reports)
下面的地板砖是用什么图形铺成的?为什么用这 样图形能铺成无缝隙的地板呢?
在这些图案拼成的地面或墙面上,相邻 的地砖或瓷砖平整地贴合在一起,整个地面 或墙面没有一点空隙.
把一些不重叠摆放的多边形把平面的一 部分完全覆盖,这类问题称为多边形覆盖平 面(或平面镶嵌).
活动1
问题:要想进行平面镶嵌,多边形的内角必 须具备什么条件 ?
90°
90° 90° 90° 90°
围绕一点拼在一起的几个多边形的内角加在 一起恰好组成一个周角时,就能拼接.
60° 60°
60°
60° 60°
60°
围绕一点拼在一起的几个多边形的内角加在 一起恰好组成一个周角时,就能拼接.
活动2 正多边形的平面镶嵌
如果只用一种正多边形,哪些正多边形可以进行平 面镶嵌? 正三角形、正方形、正六边形
1.用正三角形镶嵌
60° 60°
60°
60° 60°
60°
(2) 正方形的平面镶嵌
90°
90° 90° 90° 90°
(3)用正六边形进行镶嵌
图案(Ⅱ)
60° 60°
每个顶点处正六边形1个,正三角形4个.
形 的 平 面 镶 嵌
正 八 边 形 与 正 方
正十二边形与正三 角形的平面镶嵌
正十二边形与正方形、 正五边形的平面镶嵌
练习题
1.能够用一种正多边形铺满地面的是___B_。
A 正五边形 B 正六边形
C 正七边形 D 正八边形
2.如果用正三角形进行镶嵌,那么在每个顶 点的周围有__6__个正三角形。
课题学习平面镶嵌
(Suitable for teaching courseware and reports)
下面的地板砖是用什么图形铺成的?为什么用这 样图形能铺成无缝隙的地板呢?
在这些图案拼成的地面或墙面上,相邻 的地砖或瓷砖平整地贴合在一起,整个地面 或墙面没有一点空隙.
把一些不重叠摆放的多边形把平面的一 部分完全覆盖,这类问题称为多边形覆盖平 面(或平面镶嵌).
活动1
问题:要想进行平面镶嵌,多边形的内角必 须具备什么条件 ?
90°
90° 90° 90° 90°
围绕一点拼在一起的几个多边形的内角加在 一起恰好组成一个周角时,就能拼接.
60° 60°
60°
60° 60°
60°
围绕一点拼在一起的几个多边形的内角加在 一起恰好组成一个周角时,就能拼接.
人教版八年级上册 第十一章 数学活动 平面镶嵌 课件(共23张PPT)
小试牛刀 思考:用下列正多边形能镶嵌吗?
正九边形?
正十二 边形?
小颖家正在为新 探究活动二:用 房子装修,在他的房 两种正多边形进 间里,他想在正三角 行镶嵌需要满足 形、正方形、正五边 什么条件? 形、正六边形和正八 边形中选两种镶嵌成 地板,他有哪些选择?
正多边形
拼图
________ _
和
俄罗斯方块
拼图
平面镶嵌
从数学角度看,用一些 不重叠摆放的多边形把平面 的一部分完全覆盖,通常把 这类问题叫做多边形覆盖平 面(或平面镶嵌)的问题.
正多边形的镶嵌
在每个图案中,正多边形必须具备下列条件:
(1)边长_相__等__,(2)顶点__共__用__,
探究活动一:在边长 相等的正三角形、正方形、 正五边形、正六边形中取 一种正多边形镶嵌,哪几 种可以进行平面镶嵌?
思考:用形状、大小相同的ຫໍສະໝຸດ 角形能 否进行平面镶嵌?四边形呢?
任意三角形
任意四边形
收获与启示
1、镶嵌的要求:
完全覆盖,不重叠
2、多边形镶嵌的条件
在拼接点几个角的和为360°
3、关注身边的数学
作业:
(1)收集生活中用平面图形铺 满地面的实例,看谁收集得多。
(2)设计一副用平面图形铺满 地面的美丽图案,看看谁的设计 更有新意,更漂亮。
正三角形与正方形镶嵌
设在一个顶点周围有 x个正三角形的角, y个正方形的角, 则有
60x +90y =360
∵ x,y 为正整数
∴
x=3 y=2
即3个正三角形和2个正方形
可以进行镶嵌.
小试牛刀
正三角形和 正十二边形 能否镶嵌?
结论:
正多边形镶嵌的规律: 拼接在同一个点的各个内 角的度数和恰好等于360°.
平面镶嵌课件ppt
1
3
3
1
2
所以,用几个形状、大小相同的任
意三角形能镶嵌成平面图案。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
4
3
1
2
因为∠1+∠2+∠3+∠4=360°,
所以用几个形状、大小相同的任意四边形能 镶嵌成平面图案.
欣赏时空
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
美 丽 的 密 铺 图 案
欣赏时空
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
欣赏时空
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
仅用一种正多边形铺地面,哪 些正多边形能单独铺满地面?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
正方形
正三角形
正六边形
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
用边长相同的正五边形 能否铺满地面?
平面镶嵌 ppt课件
课题导入
多边形内角和定理是什么?
(n-2)×180°(n为不小于3的整数)
多边形外角和定理是什么?
任意多边形的外角和都为3600
正多边形的每个内角的度数怎么求?
正n边形的每一个内角都等于(n2) 1800或 180o 360o
n ppt课件
n1
ppt课件
2
目标引领:
1、了解平面镶嵌的含义,掌握哪些平面图形 可以平面镶嵌及镶嵌的理由 2、通过探索平面图形的镶嵌,知道任意一个 三角形、四边形或者正六边形可以镶嵌,并进行 简单的镶嵌设计
ppt课件
15
2.四边形呢?
如图,四边形ABCD中,因为 ∠A+∠B+∠C+∠D =360°, 所以用四边形也可以作平面镶嵌.
D C
A
B
ppt课件
16
ppt课件
17
发现: 用一种形状、大小完全相同
的三角形,四边形也能进行平面 镶嵌.
ppt课件
18
引导探究
1.商店出售下列形状的地砖:①正方形;② 长方形;③正五边形;④正六边形.若只选 择其中某一种地砖镶嵌地面,可供选择的 地砖共有( )
成地板的面积是( )
40cm
ppt课件
39
强化补清
作业56页内容
ppt课件
40
资料:用正多边形进行平面镶嵌只有以下这17
组解。有书记载说明这17组解是1924年一个叫波 尔亚的人给出的。实际上早在此之前,西班牙阿 尔汉布拉宫的装饰已经一个不少地制出了这些图
样,真是令人叹为观止。
ppt课件
41
思考题
2m+5n=12
∵m、n为正整数
m=1 ∴解为 n=2
多边形内角和定理是什么?
(n-2)×180°(n为不小于3的整数)
多边形外角和定理是什么?
任意多边形的外角和都为3600
正多边形的每个内角的度数怎么求?
正n边形的每一个内角都等于(n2) 1800或 180o 360o
n ppt课件
n1
ppt课件
2
目标引领:
1、了解平面镶嵌的含义,掌握哪些平面图形 可以平面镶嵌及镶嵌的理由 2、通过探索平面图形的镶嵌,知道任意一个 三角形、四边形或者正六边形可以镶嵌,并进行 简单的镶嵌设计
ppt课件
15
2.四边形呢?
如图,四边形ABCD中,因为 ∠A+∠B+∠C+∠D =360°, 所以用四边形也可以作平面镶嵌.
D C
A
B
ppt课件
16
ppt课件
17
发现: 用一种形状、大小完全相同
的三角形,四边形也能进行平面 镶嵌.
ppt课件
18
引导探究
1.商店出售下列形状的地砖:①正方形;② 长方形;③正五边形;④正六边形.若只选 择其中某一种地砖镶嵌地面,可供选择的 地砖共有( )
成地板的面积是( )
40cm
ppt课件
39
强化补清
作业56页内容
ppt课件
40
资料:用正多边形进行平面镶嵌只有以下这17
组解。有书记载说明这17组解是1924年一个叫波 尔亚的人给出的。实际上早在此之前,西班牙阿 尔汉布拉宫的装饰已经一个不少地制出了这些图
样,真是令人叹为观止。
ppt课件
41
思考题
2m+5n=12
∵m、n为正整数
m=1 ∴解为 n=2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正多边形可以密铺的条件:
每个内角都能被360o 整除。
1、下列多边形一定不能进行平面镶嵌的是( D ) A、三角形 B、正方形 C、任意四边形 D、正八边形
2、用正方形一种图形进行平面镶嵌时,在它的一个顶点周围的 正方形的个数是( B )
A、 3
B 、4
C、5
D 、6
3、如果只用一种正多边形作平面镶嵌,而且在每一个正多边形的 每一个顶点周围都有6个正多边形,则该正多边形的边数为( A )
A、3
B、4
C、5
D、6
探究活动(四)
----创意空间
用同一种平面图形如果 不能密铺,用两种或者两 种以上平面图形能不能 密铺呢?
设在一个顶点周围有m个正三角形,n个正
方形的角,
60m
90n
360
m 3 n 2
注意:同一个组合会有 不同的镶嵌效果
则记作(3,3,3,4,4)
设在一个顶点周围有m个正三角形,n个正 六边形的角.
仅用正多边形进行镶嵌,要嵌成一个平面,必须要求 在公共顶点上所有内角和为360度。令正多边形的边数为n, 个数为m,则有
(n2)180m360 n
m 6 m 4
∴解得
n
3
n
4
m 3
n
6
结论1: 可以用同一种正多边形密铺的图形只有
正三角形,正四边形,正六边形.
结论2:
用一种形状、大小完全相同的三角形,四边形 也能进行平面镶嵌
鱼形平面分割
一幅满足平面旋转、平移的鱼形图案。
第 70 号平面规则分割
美丽的蝴蝶图案,应用三原色绘制而成的。
第 21 号平面规则分割
本作品运用了平移、旋转,小人的头部, 膝盖,脚分别是三个旋转中心。
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/11/72020/11/7Saturday, November 07, 2020
• 10、人的志向通常和他们的能力成正比例。2020/11/72020/11/72020/11/711/7/2020 8:26:37 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/11/72020/11/72020/11/7Nov-207-Nov-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/11/72020/11/72020/11/7Saturday, November 07, 2020 • 13、志不立,天下无可成之事。2020/11/72020/11/72020/11/72020/11/711/7/2020
请观察,这些图形在拼接时有什么特点?
如果你是设计师, 让你设计几种地板 图案,你如何设计
呢?
学一学 平面图形的密铺(平面图形的镶嵌):
用形状和大小完全相同的一种或几种 平面图形进行拼接,彼此之间不留空 隙、不重叠地铺成一片,这就是平面 图形的密铺,又称平面图形的镶嵌.
密铺的两个条件:
通过探究我发现:
1.任意全等的三角形都__可__以__密铺, 2.在每个拼接点处有_六__个角,而这__六_个
角的和恰好是这个三角形的内角和的 _两__倍,也就是它们的和为__3_6_0,o
探究活动(二)
用同一种四边形可以密吗?
ห้องสมุดไป่ตู้
正方形的平面镶嵌
90°
结论: 形状、大小相同的任意四边形 能镶嵌成平面图形
m4 m2 60m120n360n1 ,n2
(3,3, 3, 3,6)
(3,3,6,6)
图案(Ⅰ)
图案(Ⅱ)
60° 60°
每个顶点处正六边形1个,正三角形4个.
资料1:用正多边形进行平面镶嵌只有以下这17 组解。有书记载说明这17组解是1924年一个叫 波尔亚的人给出的。实际上早在此之前,西班牙 阿尔汉布拉宫的装饰已经一个不少地制出了这些 图样,真是令人叹为观止。
• 要用正多边形镶嵌成一个平面的关键是看:这 种正多边形的一个内角的倍数是否是360°, 在正多边形里,正三角形的每个内角都是60°, 正四边形的每个内角都是90°,正六边形的每 个内角都是120°,这三种多边形的一个内角 的倍数都是360°,而其他的正多边形的每个 内角的倍数都不是360°,所以说:在正多边 形里只有正三角形、正四边形、正六边形可以 密铺,而其他的正多边形不可密铺.
1、全等的一种或几种平面图形; 2、无空隙、不重叠铺成一片。
探究
哪些图形可以密铺, 哪些图形不可以密铺?
探究活动(一)
用形状、大小完全相同的 三角形能否密铺?
正三角形的平面镶嵌
60° 60° 60° 60° 60°
60°
接点处的六个 角和为360°
结论: 形状、大小完全相同的任意
三角形能镶嵌成平面图形。
★通过探究我发现:
1.任意全等的四边形_可__以__密铺. 2.在每个拼接点处有_四__个角,而这_四__
个角的和恰好是这个四边形的四个内 角之_和__,也就是它们的和为__3_6_.0
º
结论 1
能密铺的图形在一个拼接 点处的特点: 1.各角之和等于360º, 2.相等的边互相重合。
探究活动(三)
1.正五边形能密铺吗?说说理由。 2.正六边形能密铺吗?说说理由。 3.还能找到能密铺的其他图形吗?
做一做
正五边形可以密铺吗?
1 3
2
正六边形可以密铺吗?
正六边形的平面镶嵌
正三角形
能否 平面 镶嵌
能
正方形
能
正五边形 正六边形
不能 能
图形
一个顶点周 围正多边形 的个数
6
4
3
还能找到能密铺的其他正多边形吗?
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
用正五边形和什么多边形能密铺?
你知道吗?
密铺图形奇妙而美丽,古往今来,不少艺术 家都在这方面进行过研究,其中最富有趣味的是 荷兰艺术家埃舍尔,他到西班牙旅行参观时,对 一种名为阿罕伯拉宫的建筑有很深刻的印象,并 得到启发,创造了各种并不局限于几何图形的密 铺图案。这些图案包括鱼、青蛙、狗、人、蜥蜴, 甚至是他凭空想象的物体。他创造的艺术作品, 结合了数学与艺术,给人留下深刻印象,更让人 对数学产生另一种看法。