飞机气动设计分析报告

飞机气动设计分析报告
飞机气动设计分析报告

飞机气动设计分析

——由图-22M和B-1B浅析现代超音速轰炸机设计

SYXXXXXXXXX

一、超音速轰炸机简介

众所周知,轰炸机是用于从空中对地面或水上目标进行轰炸的飞机,具有载弹量大,飞行距离远的特点。飞机开始投入战争后不久,便出现了专门用于对地面实施轰炸的轰炸机。一二次世界大战期间,轰炸机得到迅速发展和广泛使用,以美国B-17、B-29为代表的全金属四发重型轰炸机的出现是轰炸机发展到新水平的标志,这时的轰炸机载弹量可达8至9吨,航程在5000公里上下。战后,航空进入喷气时代,轰炸机也不例外,在现代喷气式轰炸机问世以来的50多年里,轰炸机的发展已经经历了三个明显的阶段(如图1所示):

图1 喷气式轰炸机发展的三个阶段

第一阶段是上世纪60、70年代出现的亚音速喷气式轰炸机,以苏联图-16(我国轰六的原型)、英国的三V轰炸机(“胜利”、“火神”、“勇士”)、美国B-47和B-52等为代表。这一时期,飞机设计上的主要特点是以喷气动力取代螺旋桨动力,首先解决的是有无问题,在飞机的外形和结构设计上与之前的螺旋桨动力轰炸机并无较大区别。这类轰炸机由于飞行速度较慢,雷达散射截面积较大,在完整的现代防空体系面前不堪一击,突防能力较弱,但到目前为止仍有很大一部分的亚音速轰炸机在各国空军服役。

第二阶段是上世纪70、80年代出现的超音速轰炸机。超音速轰炸机往往采用了变后掠翼设计,解决了超音速轰炸机研制初期如B-58轰炸机遇到的速度与航程间的矛盾,这一阶段的代表是美国B-1B和苏联图-160、图-22M等。超音速战略轰炸机的出现使得战略轰炸机的突防能力大大增强,打击能力也相应提高。

第三阶段是上世纪末出现的隐身轰炸机,使轰炸机的战场生存能力和威慑力得到更大的提高。目前,隐身战略轰炸机只有美国的B-2一种。

可见,超音速轰炸机的出现是为了弥补亚音速轰炸机飞行速度较慢且无隐身能力的缺点,从而实现超音速突防,快速抵达攻击范围或目标上空实施打击。对于典型的战术轰炸任务,超音速轰炸机往往首先在正常飞行高度以亚音速巡航,到达突防区域时以略高于1的马赫数(1.1-1.5)进行低空或超低空飞行,利用地形或如B-1B本身所具有的一定的隐身能力规避雷达跟踪,依靠高速和防空系统反应时间突防,飞抵目标上空时减速至亚音速投弹。因此,超音速轰炸机需要兼具较好的亚音速巡航能力以及超音速飞行性能,同时还应具有一定的低速机动能力。这使得超音速轰炸机出现初期遇到了瓶颈,美国的B-58轰炸机(图2所示)具有超音速飞行的能力但由于其气动设计并未兼顾巡

航性能,航程大大折扣,往往需要在机身下挂载副油箱解决问题,使其有效载荷减少,最终只能作为单枚核弹的载机而不能执行常规轰炸任务。在可变后掠翼出现之后,航程和速度之间的矛盾就有了很好的解决方法,轰炸机可以在亚音速巡航时用较小的后掠角,较大的展弦比获得较大的升阻比增大航程,在超音速突防时用较大的后掠角减小波阻。

不约而同地,几乎所有的超音速轰炸机都采用了可变后掠翼的气动布局。

图2 B-58轰炸机

下面,本文将对图-22M和B-1B两种超音速轰炸机的气动设计进行分析,探求二者气动设计上的异同。

二、图-22M的气动设计分析

2.1.机型简介

图-22M“逆火”轰炸机是苏联图波列夫设计局在图-22“眼罩”基础上进行了极大的改进设计出的超音速变后掠翼中型战略轰炸机,图3中的是最新型的图-22M3。图-22M 和图-22的改进之处主要是采用了可变后掠翼,改用楔形状二元进气口以及更换了发动机,改变了发动机的安装位置。图-22M既可以进行战略核轰炸,又可以进行战术轰炸,设计目的之一便是携带大威力反舰导弹,远距离快速奔袭,攻击美国航空母舰编队。目

前图-22M3是俄罗斯战略轰炸及反舰艇作战核心组成部分之一,我国也曾有意向引进该型飞机。

图3 图-22(左)和图-22M(右)

以下是图-22M的详细参数。

机长42.46米;翼展(后掠角20°)34.30米,(后掠角65°)23.30米;机高11.08米;机翼面积165平方米;最大起飞总重124000千克;燃油重量53560千克;正常武器载荷12000千克;最大载荷24000千克;最大平飞速度(高空)M2.17,(海平面)M0.9;实用升限18000米;实用作战半径2200公里;实用航程7000公里;起飞滑跑距离1920米;着陆滑跑距离1250~1450米,机组成员4人。

下图是图-22M3轰炸机的三视图。

图4 图-22M3轰炸机三视图

2.2.气动设计分析

2.2.1.整体布局

图-22M采用可变后掠翼正常式布局,下单翼,机翼内段固定为翼套,外段可变后掠,翼套下设有挂架两侧各一,可外挂两枚大型反舰导弹。双发两侧进气,进气口为楔形二元进气口,两台发动机并列装于后机身。水平尾翼为倒T型,位于后机身下方,单垂尾,垂尾前缘中段有明显弯折。起落架可收放前三点式,主起落架为多轮小车式,每侧主起落架有串置排列的三对机轮,其中有一对与后两对的间距要大一些,主起落架向内收入机腹内。前起落架为双轮。

2.2.2.机翼

图-22M机翼为悬臂式下单翼,最大的特点便是可变后掠,外翼段后掠角可变,在20°到65°之间有4个角度可供手动选择,分别为20°、30°、50°和65°。其中,20°后掠角模式主要用于飞机起飞和降落;30°后掠角模式用于爬升和亚音速远距离巡航飞行;50°后掠角模式用于超低空突防时使用;而60°后掠角模式则是在超音速巡航时使用。另外,如图5所示,其机翼转轴较靠外,位于最小后掠角时的33%翼展处,内翼段翼套面积较大,后掠角为60°,这种设计虽然减少了机翼掠动时压力中心的位移,但可动段面积较小,却削弱了可变后掠翼的优点。翼套不得不兼顾机翼大后掠角和小后掠角构形之间的外形变化,这样不仅减小了机翼展开时能达到的展弦比,增加了诱导阻力,而且还限制了最大实际后掠角,恶化了低空高速区域的性能。

图5 图-22M的可变后掠机翼

图-22M机翼可动段的前缘有全翼展前缘缝翼,后缘外段有较小的副翼,内段设有分为三段的单缝富勒襟翼。由于图-22M为超音速飞机,机翼相对厚度较小,因此仅有布置单缝襟翼的空间,无法容纳布置双缝襟翼需要的收放机构。靠外侧两段襟翼前面有一组

扰流片,一对面积很大的富勒单缝襟翼装于翼套后缘,偏转角可达60°,翼套前缘光滑并无前缘缝翼。这样设计的大面积增升装置能最大程度地提高图-22M的起降性能,图6所示的是图-22M增升装置所在位置。机翼很薄,外翼壁板挠性很大,在空中小后掠角时有明显的形变,在图6中也可以看到。

图6 图-22M的增升装置

另外,如图7所示,在机翼翼套末端,可动段转轴附近前缘设有一个上下表面均有的小翼刀,用于阻断内侧较大后掠角造成的展向流动向可动段流动在可动段后掠角较小时造成不良影响,使内外段机翼的流动相对独立。类似的设计在苏-22攻击机上也可以找到。

图7 翼套末端的翼刀(白框处)

2.2.

3.机身

图-22M的机身为普通半硬壳结构,进气道前的机身截面为圆形,机头有一个大的椭圆形介电材质雷达罩。进气道为楔形二元进气道,位于机身两侧,进气道之后的机身截面为较为规则的圆角矩形,在翼根前缘位置处上方有三排辅助进气门,中段机身没有超音速飞机上常见的蜂腰形状。两台发动机并列装于后机身。

图-22M不同型号的进气道在设计上有所区别,如下图所示。图中上方为图-22M2型,注意其进气道与下方图-22M3型的区别,前者为类似于我国歼8II上的矩形进气道,后者为类似于F-15上的楔形进气道,最终图-22M3选择了楔形进气道说明对于该机飞行条件下楔形进气道对提高进气效率更有利。在超音速飞行时,空气通过楔形进气道尖锐斜面产生的激波进行预压缩后,超音速来流的一部分动能转变为压力,使空气减速,提高进气效率。

图8 图-22M2与图-22M3的对比,注意进气道的区别

下图所示为图-22M轰炸机各典型站位的机身截面,右侧为机头,左侧为机尾。

图9 图-22M轰炸机各典型站位的机身截面

本文认为图-22M的机身在气动设计上有一定的缺陷:

其一,作为超音速飞机其机身设计并不符合跨声速面积率,截面积变化不光滑,在跨声速时应当会遇到较强的波阻。但这是同时期出现的苏联飞机共有的状况,这应当属于苏联设计师的当时设计能力及设计重点方向的问题。

其二,图-22M的机翼与机身之间毫无过渡(如图10所示),在亚音速时应当会产生较大的干扰阻力。

图10 图-22M的机翼与机身之间毫无过渡

另外,就隐身方面考虑,图-22M的机身也是非常不利的。几乎全部的侧向垂直面与机翼和尾翼翼面形成面积很大的二面角,巨大的矩形进气道产生很强的腔体散射,二者极大地增加了RCS。不过当时苏联人设计图-22时根本没有考虑飞机的隐身能力,仅仅强调超音速飞行能力。

2.2.4.尾翼

从图10中也可看出,图-22M采用倒T型尾翼,平尾位于后机身下方,为了提高超音速飞行时的操纵性,平尾为全动,但由于该机大部分时间仍在亚音速范围飞行,兼顾配平能力,平尾翼型为一负弯度翼型。另外,图-22M的垂尾面积较大,方向舵位于垂尾顶端。垂尾前缘中段有明显弯折,垂尾根部向前延伸至机身中段,弯折处可以在侧滑角较大时产生脱体涡增强方向舵舵效。

2.3.机型总结

图-22M轰炸机是苏联纯粹为设计出一型有威慑力的超音速轰炸机而设计的轰炸机,首先解决的也是有与无的问题。它通过当时在图波列夫设计局里算是首次的采用可变后掠翼布局实现了设计目标。除此之外该机在气动方面并无明显优势或特色,它巨大的雷达散射截面积也使得它在现代战争中越来越难以生存。但苏联人通过图-22M积累的经验成功研制了更具有威慑力也在各方面更为成功的图-160轰炸机,这也是图-22M存在的意义所在。

三、B-1B的气动设计分析

3.1.机型简介

B-1B轰炸机(图11)是美国洛克韦尔国际公司研制于70年代的可变后掠翼超音速战略轰炸机,它的设计源于60年代后期美国“先进有人驾驶战略飞机计划”(AMSA)。1969年开始正式开发,原型机试飞于1974年12月23日。1986年6月开始装备美国空军。美国军方一直认为B-1B是目前世界上威力最强大的战略轰炸机,因为在各国现役的战略轰炸机中,B-1B在巡航速度、航程、有效载荷和爬升性能等各种技术指标都有较大的优势。

图11 B-1B轰炸机

以下是B-1B轰炸机的详细参数。

机长44.81米;机高10.36米;翼展(全展开)41.67米,(全后掠)23.84米;机翼面积181.20平方米;空重87090千克;最大起飞重量216365千克;载弹量(内部)34019千克,(外部)26762千克;最大燃油量88450千克;最大平飞速度(高空)1.25马赫,(海平面)0.95马赫;巡航速度0.7马赫;作战半径5543千米;航程12000千米;机组成员4人。

图12是B-1B轰炸机的三视图。

图12 B-1B轰炸机三视图

3.2.气动设计分析

3.2.1.整体布局

B-1B的气动布局十分先进,采用翼身融合体布局,使大边条后掠下单翼与细长的机身作为一个整体来设计与制造,无以往飞机那样明显的分界线,这样可以减少空气阻力和机身雷达反射横截面积,增加升力及内部容积,可多装燃油增程。同时采用与图-22相同的可变后掠翼布局,装备四台发动机的发动机短舱位于翼套下方。十字尾翼位于光滑尾椎上方。起落架可收放前三点式,主起落架为四轮小车式,主起落架向内收入机腹内。前起落架为双轮,向前收起。

3.2.2.机翼

与图-22M相比,B-1B的可变后掠翼段比例要大一些,这就更能发挥可变后掠翼的优势。可变后掠角的外翼段变化范围为 15°到67.5°,可在15°、25°、55°和67.5°四种后掠角中手动选择,其中,15°用于起飞,25°用于上升及巡航,55°或67°用于低空突防高速冲刺。这四种后掠角以外的机翼位置不允许用于连续机动飞行,因此当飞行员要把机翼后掠角从25°转为55°时,中间必须不停顿并遵守严格的机动限制,作战使用上很不利,这一点与图-22M也是类似的。B-1B的机翼为双翼梁结构,使用传统铝合金制造,机翼结构内部密封作为油箱。机翼后缘根部被切掉以避免最大后掠时与翼

套之间的干涉,而在图-160 上,这部分在机翼最大后掠时向上翻折 90 度作为垂直安定面使用。

与图-22M相比,B-1B的机翼设计要复杂得多,每侧机翼后缘都有6组独立的富勒襟翼,如图13所示。尽管每个襟翼都有单独的液压机构,但相互之间都有机械连接以一同动作。机翼前缘有全展长缝翼,分为7段。机翼上表面就在外侧4片襟翼前方有一组4片扰流板,每片扰流板的长度都与后面的襟翼相同,弦长也近似。B-1B的机翼与F-14类似,没有副翼,扰流板配合差动平尾一起控制飞机的滚转,每侧机翼最内侧的两片扰流板间通过机械连接,可作为减速板使用,外侧两片扰流板在飞行中可由线传飞控系统自动控制。在降落滑跑时所有扰流板可抬起以降低机翼升力。

图13 B-1B 后缘复杂的6组富勒襟翼与4组扰流板系统

3.2.3.机身

B-1B机身的最大特点便是光滑的翼身融合体构形。一般的飞机如前面提到的图-22M 是明显得由机翼与机身两个部件接合而成的。在机翼与机身的交接处,机身的侧面与机翼表面构成直角或接近于直角,这样的组合,由于浸润面积大,阻力也较大。为了减少翼身组合体的阻力,很多飞机在机翼与机身的交接处增装了整流带,使二者间圆滑过渡。在气动设计上,整流带一般是不承受载荷的,但在飞行时,它很难不受气动力的影响,因此,往往会发生变形等结构问题。随着时间的发展,研究人员根据翼身整流带的优缺点,提出了翼身融合体的概念,即把飞行器的机翼和机身合成一体来设计制造,二者之间没有明显的界限。翼身融合体的优点是结构重量轻、内部容积大、气动阻力小、机身能产生额外升力,可使飞机的飞行性能有较大改善。从隐身上考虑,由于消除了机翼与机身交接处的二面角,翼身融合体也有助于减小飞机的雷达散射截面积,改善隐身性能,B-1B的雷达散射截面积仅为1平方米。

另外B-1B的发动机吊挂于机翼下,并不像图-22M放置在机身内,因此B-1B机身内有相对更大的空间容纳弹舱,并使机身外形更加流线化。

下图所示是B-1B的机身各截面截面图,可以清楚地看到其翼身融合体构形。

图14 B-1B的机身各截面截面图

另外,B-1B在机头座舱前方两侧下方各有一片导向翼面(如图15所示),这两片翼面是结构模态控制系统的一部分,用于抵消在低空飞行时湍流引起的振荡,B-1B的前机身较为细长,容易形成非对称涡造成振荡力和力矩。B-1B可以通过重心附近的一系列加速度计和机鼻附近的横向和纵向加速度计向飞控系统提供数据,操纵导向翼面和方向舵实时偏转来抵消湍流的影响。

图15 B-1B机头两侧的导向翼面

3.2.

4.尾翼

B-1B尾翼采用十字形尾翼,平尾位置较高,目的是远离发动机射流。垂尾是一个单独的盒式结构,通过固定在尾椎上。方向舵分为三片,两片位于平尾上部,一片位于平尾下部(如图16所示),位于平尾下部的方向舵主要用于提高低空飞行品质。平尾为全动平尾,也采用了铝合金盒式结构,直接安装在钢轴上,在实施俯仰及滚转控制时,左右两片平尾可独立运动。在实施俯仰控制时,左右两片平尾最大可偏转 10°;实施滚转控制时,最大可偏转±20°。平尾和垂尾表面为复合材料,大梁由高强度钛合金制造。

图16 B-1B的十字全动平尾及三片方向舵的位置

3.3.机型总结

B-1B的气动设计相当成功,其翼身融合体设计在提高升阻比,增大全机有效载荷的同时达到了减小雷达散射截面积的目的。配合隐身涂料, B-1B的战场突袭能力相当高。

另外,B-1B得益于优秀的飞控计算机和机头导向小翼之类的特殊操纵面,还具备较好的低空性能,使其在低空利用地形飞行时更易操控。B-1B的可变后掠机翼的可动段面积比例要高于图-22M,更充分地发挥了可变后掠翼的优势。

四、总结

本文分析了图-22M和B-1B两种超音速轰炸机的气动设计特点,对超音速轰炸机的气动设计可以得出以下结论:

1、目前而言对于超音速轰炸机最合适的气动布局是可变后掠翼布局。可变后掠翼布局通过改变机翼的后掠角使轰炸机在小后掠角下完成起飞着陆以及低速巡航,具有较好的低速性能,而在大后掠角下进行超音速飞行和高速巡航,具有最佳的燃油效率,大大提高了超音速轰炸机的作战半径。

2、对于超音速轰炸机在机身设计上应尽量采用类似于B-1B的翼身融合体设计,翼身融合体给气动和隐身上带来的优势是巨大的。事实上图-22M之后苏联独立研制的超音速战略轰炸机图-160正是改用了翼身融合体设计。

3、超音速轰炸机的平尾一般是全动平尾才能满足超音速飞行要求,图-160甚至将垂尾的上半段作为全动的方向舵来使用。

超音速轰炸机的高速突防能力仍是它目前最有威慑力的原因之一,优秀的气动设计能使这一威慑力发挥到极致,希望我国也能有自行研制的先进超音速轰炸机。

飞机的气动布局和机翼几何参数

与机翼的几何参数 往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 白乘飞机,不知如何写佳作。是否同意写成如下: 帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 飞翔,必须做到: 的气动外形 的结构 的动力 定的速度 的操纵机构 系统 同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L V¥(升力与重力平衡) D//V¥(推力与阻力平衡) (俯仰力矩保持守恒)

必须具备的条件: 飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 的气动外形、受力大小和飞行姿态。 保持和改变飞行状态的能力。 布局 型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。 机的气动布局? 飞机主要部件的尺寸、形状、数量、及其相互位置。 件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 连接的相互位置分为:

有无上反角分为: 分为: 的相对纵向位置分为: 花八门、多种多样,有平直的,有三角的,有后掠的,也有前掠的等等。然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使良好的气动外形,是指升力大、阻力小、稳定操纵性好。

B747型飞机夹具样板设计方法研究

B747型飞机夹具样板设计方法研究 摘要:文章主要论述了B747型飞机夹具样板设计的两种方式,即传统的依据PCM图的设计方式与应用数字化三维数据集的设计方式。对于这两种设计方法的设计过程进行了详细的阐述,并对这两种设计方法的优点与缺陷进行了对比与分析。 关键词:夹具样板;三维数据集;PCM图 中图分类号:V267 文献标识码:A 文章编号:1006-8937(2016)15-0001-02 1 夹具样板的基本特征和主要用途 1.1 基本特征 凡用于制造安装和检验标准样件或装配工艺装备、检验夹具的样板统称为夹具样板。按工装设计部门所提供的夹具样板图及其技术要求制造。 1.2 主要用途 ①制造安装标准样件; ②安装装配夹具,检验夹具和装配型架等。 2 B747型飞机夹具样板的设计 B747型飞机夹具样板的设计依据一般分为两种,即PCM 图和三维数据集。在实际设计过程中,要根据不同情况采用

不同的设计依据。 2.1 依据PCM图的设计方法 由于B747型飞机的机型较老,项目持续时间较长,因 此该机型与其他新机型相比缺少数字化设计制造依据,例如三维数模、电子图纸等。但是该机型拥有大量外方提供的PCM图,均为以1:1比例绘制而成的胶版,这些PCM图可作为设计制造的依据,这也是B747型飞机最大的特点之一。在设计B747型飞机夹具样板时首先要考虑的,同时也是最 常用的设计依据就是PCM图。 首先,根据工装设计部门提供的夹具样板图找出该块夹具样板所涉及到的零件图号、站位(如:框、长桁)以及标记线(如:WL、LBL)和孔位(如:K孔、工具孔)等元素,如图1所示,然后根据零件图号查找该图号的图纸,此时可根据夹具样板图中提供的站位和长桁的信息在图纸上查找 相应位置的视图或剖视图,查到后检查在所需的视图或剖视图中是否包含了夹具样板图中涉及到的所有元素,如所需零件边缘、标记线、孔位等,若内容齐全则可按照该PCM图制造此夹具样板。 有些夹具样板中还含有一些尺寸标注,如图1中的“200”,这种情况表示该夹具样板除按照PCM图制造外还要按标注 的尺寸制造,上图中标记零件外缘的一侧为样板的工作边,按尺寸加工的一侧为非工作边。

飞机总体设计大作业教学提纲

飞机总体设计大作业

飞机总体设计大作业 作业名称 J-22 战斗机的设计 项目组员靳国涛马献伟张凯郑正路所在班级 01010406班

目录 第一章任务设计书................................................3 第二章 J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2.3.1 零升阻力的估算.......................................12 2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章 J-22飞机部件设计...........................................20

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行就是从模仿鸟类飞行开始的。但就是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许就是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力与升力面分开考虑,而发明了固定翼飞机。 飞机就是二十世纪人类史最伟大的科学成就。就是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会与国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,她立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。就是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行就是依靠与空气的相对运动,而产生作用在飞机上的力与力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V¥ (升力与重力平衡) F=D D//V¥ (推力与阻力平衡) M=0 (俯仰力矩保持守恒)

飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行就是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也就是取源于空气。 (2)必须存在一定的飞行速度(飞机与空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小与飞行姿态。 (4)必须存在保持与改变飞行状态的能力。 1、飞机的气动布局 不同类型的飞机、不同的速度、不同的飞行任务,飞机的气动布局就是不同的。 何为飞机的气动布局? 广义而言:指飞机主要部件的尺寸、形状、数量、及其相互位置。 飞机的主要部件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 按机翼与机身连接的相互位置分为: 按机翼弦平面有无上反角分为:

飞机的常见气动布局

飞机的常见气动布局 亲爱的同学们 大家好: 今天,我想和大家讲一讲,飞机的常见气动布局。大家知道的都有哪些呢? 目前我们所知的可行的飞机的空气动力布局方式有:常规、鸭式、三翼面、变后掠、无尾、飞翼、前掠翼。这些布局方式各有特色各有长短,我将为大家逐个讲解。 首先是常规,常规布局也就是主翼在前,水平尾翼在后,有一个或两个垂尾的气动布局方式。使用这种气动布局设计的具有代表性的战斗机有,美国——洛克希德马丁公司:F22猛禽。俄罗斯——苏霍伊设计局:苏27侧卫。但其实,我们常见的客货机几乎全是这种设计的。常规布局的优点是技术成熟,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡。只是由于均衡所以也没有特别出色的地方。 然后是鸭式。因为当初这种气动布局的飞机飞起来像鸭子,故此得名。说到鸭式布局,我们就不得不说世界上第一架飞机——莱特兄弟的飞行者一号。它所使用的布局其实就是鸭式布局。鸭式布局也是主翼在后面,前面加个小机翼叫做鸭翼。简单地来看,鸭式布局就是将常规布局中的水平位移移到了主翼前方,但鸭翼与平尾并不是一个概念。虽然鸭

翼也承担着控制俯仰的责任,但除此之外,鸭翼还会产生涡流。这些涡流吹过主翼会带来强大的增升效果,也就是说,鸭翼能提供额外的升力。如此,鸭式布局的飞机的短距起降性能更强,因为它们在低速度状况下也能获得较高的升力。鸭式布局的飞机在高速飞行中有着更高的稳定性,机动性也要比常规布局飞机更加出色。有时鸭式布局飞机还会在机身的后下方增加两片叫做腹鳍的翼面,以增加大迎角情态下的飞行稳定性,这是因为在大迎角情态下,常规布局的飞机的垂尾还会接触到由主翼和平尾的间隙间吹过的气流,而鸭式布局的飞机的主翼往往会阻断流往垂尾的气流,如此垂尾便不能很好地控制飞机的水平方向稳定,而在机身下方增加的腹鳍则能解决这个问题。这也是鸭式布局飞机的一个不同之处。鸭式布局设计的代表战机有:中国成飞歼20,欧洲双风:阵风、台风。而鸭式布局正是我国擅长,欧洲钟情的飞机气动布局方式。这里补充一个鸭翼与平尾的不同之处:鸭翼与主翼的耦合一般是不允许二者处于同一平面的:鸭翼的位置要高于主翼。如此鸭翼才会体现它的特性。而常规布局的飞机的平尾和主翼是可以,或者说一般都是处在同一平面的。可这样一来,我们知道,使用鸭式布局的我国歼20属于第四代隐身战机。而鸭翼的这种耦合方式会对飞机的外形隐身带来很大的负面影响。所以我们的歼20身上鸭翼与主翼的耦合方式变为了鸭翼上反和主翼下反。这样做确实压抑了鸭

先进气动布局设计技术

中文名称:先进气动布局技术 英文名称:Advanced aerodynamic configuration technology 相关技术:总体设计;机翼设计;综合设计 分类:飞机总体设计;气动布局;空气动力学; 定义与概念:为实现先进的气动性能和战术技术指标要求,对飞机气动设计中主要参数进行的综合性选择和规范。 气动布局的研究对象是主要气动参数(如升力、阻力、力矩系数和其它气动导数)以及主要气动参数与飞机外形参数的关系。研究的内容包括:飞机各主要部件的外形和相对配置,各种外形和配置下飞机的气动特性;此外,由于很多气动技术对飞机部件外形和配置的选择有很大影响,所以较重大的气动技术是气动布局研究的重要内容和基础。 气动布局的研究范围很广,大到飞机总体布局的类型和参数,小到机翼剖面外形、前后缘襟翼这类气动技术,都对飞机气动布局的选择和确定以及最终的飞机性能有根大影响。国外概况:冷战时期,前苏联的先进气动布局技术与美国并驾齐驱,如Su-27依靠优良的气动布局设计,使其气动性能超过了美国的第三代战斗机。但冷战后,俄罗斯由于经济上的原因,新技术的发展十分缓慢,第四代战斗机迟迟出不来,明显已落后于美国。而美国气动力技术的发展却未见减缓,仍然保持着冷战时的高速发展态势,不但第四代战斗机F-22和JSF 都已研制出来,而且已开始着手发展下一代战斗机的气动力和先进气动布局技术。因此,目前美国在气动布局技术方面处于领先地位。西欧则稍稍落后于美俄,保持着较高水平,又以其体现多用途的战斗机气动布局而独具特色,如EF-2000和法国的"阵风"。 美国空军认为,虽然近年来在提高战斗机机动能力的先进气动布局方面作了一些工作,隐身气动设计和隐身能力也得到很大提高,但他们确实忽视了先进气动布局的研究和发展。在轰炸机方面,B-2的飞翼布局是40年代和50年代提出的概念的现代翻版。随着现代计算流体力学的进展和流动控制技术的提高,先进气动布局研究有可能获得新生。今后先进气动布局研究主要沿着如下两个方向: 第一,对过去提出的方案进行系统化研究。对亚音速飞机,这些方案包括带支撑机翼、翼身融合体、环翼、多机身飞机等。对超音速飞机,通过有利干扰降低阻力的布局已经提出但尚未进行系统的研究。这些方案过去都曾提出但没能研究下去,原因包括:设计工具和数据库不合适,稳定性和控制问题(现在可以成功地与现代结构和控制技术一起考虑),缺乏总体发展和实际验证。 第二,全新的布局概念研究,尤其是同时利用流动控制技术和现代结构和控制概念的布局研究。这些概念可能包括:带嵌入式层流控制吸气系统的复合材料机翼蒙皮;用于控制旋涡和边界层的机敏蒙皮;将层流控制、推进和结构设计综合在一起的翼型;其它等等。由于计算流体力学提供了探索和预测有利非线性干扰效应的能力,并且有了旋涡、粘流效应和分离的控制技术,全新气动布局概念的潜力是可以发挥的。 未来先进气动布局研究必须沿着多学科的路线进行。新布局的早期方案研究必须考虑推进一体化以及结构和控制方案。设计一体化技术的发展将使新方案的快速分析成为可能。 涉及先进气动布局的研究计划将为飞机性能的提高开创新的可能性,也许能开发出新的应用。不仅如此,这样的研究计划对诸如流动控制、设计方法和多学科综合这样的基础领域的研究来说,还将起到指南的作用,从而使先进气动布局的所有支撑技术能够同时成熟。从这一点来看,先进气动布局将重新发挥其作为气动技术推动力的作用。 美国90年代中期进行了"新世界展望"(New World Vistas)和"2025年的空军"(AF 2025)等对未来军事技术的预测研究,其研究结果最近已经过综合,并开始在美国空军的"航空器科学技术"(Air Vehicles S&T)的范围内进行技术开发。1997年,美国空军启动"未来飞机

飞机总体设计课程设计报告

国内使用的喷气式公务机设计 班级: 0111107 学号: 011110728 姓名:于茂林

一、公务机设计要求 类型 国内使用的喷气式公务机。 有效载重 旅客6-12名,行李20kg/人。 飞行性能: 巡航速度: 0.6 - 0.8 M 最大航程: 3500-4500km 起飞场长:小于1400-1600m 着陆场长:小于1200-1500m 进场速度:小于230km/h 据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。 根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。 由此,从中选出一些较主流机型作为参考 二、确定飞机总体布局 1、参考机型 庞巴迪航空:里尔45xr、里尔60xr 巴西航空:飞鸿300、 塞斯纳航空:奖状cj3 机型座位数巡航速度M 起飞场长m 着陆场长m 航程km 最大起飞重量kg 里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择: 正常式 前三点起落架 T型平尾 / 高置平尾 + 单垂尾 尾吊双发涡轮喷气发动机 / 翼吊双发喷气发动机 / 尾吊双发喷气发动机 小后掠角梯形翼+下单翼 / 小后掠角T型翼+中单翼 / 直机翼+上单翼 3、最终定型及改进 1)正常式、T型平尾、单垂尾 ①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化 ②“失速”警告(安全因素) ③外形美观(市场因素) ④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大 2)小后掠角梯形翼(带翼梢小翼)、下单翼 ①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。 ②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。 ③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。 3)尾吊双发涡轮喷气发动机,稍微偏上 ①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。 ②机翼升力系数大 ③单发停车时,由于发动机离机身近,配平操纵较容易; ④起落架较短,可以减轻起落架重量。 ⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。 4)前三点起落架,主起落架安装在机翼上 ①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。 ②具有起飞着陆时滑跑的稳定性。 ③飞行员座舱视界的要求较容易满足。 ④可使用较强烈的刹车,缩短滑跑距离。

飞机气动布局简介.

飞机气动布局简介 想必很多人对飞机很感兴趣,因为飞机大多是很漂亮的,流线型的机身,舒展的机翼,实现了人类在蓝天翱翔的梦想。其实飞机外型的美观虽然是人类主动的设计创作,而实质却是受制于空气阻力的被动结果,从某种意义上讲,这种符合人类审美标准的流畅线条其实是空气动力原理的杰作。 大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。下面我们就逐一介绍一下各种气动布局,当了解到气动布局这个概念后再回过头来看这些飞机,就会发现自己不会再看花眼了,其实全世界的飞机品种再多,也无非就以下这几种气动布局而已。 各种空气动力布局的主要差别就在于机翼位置上的差别,首先介绍一个最常见的布局——常规布局。这种布局的特点是有主机翼和水平尾翼,大的主机翼在前,小机翼也就是水平尾翼在后,有一个或者两个垂直尾翼。世界上绝大多数飞机属于这种气动布局,特别是客运、货运大型飞机,几乎全是这种布局,例如波音系列、欧洲的空中客车系列,我国的运七、运八、ARJ21,美国的C130等。我国的军用飞机中除了歼10猛龙战斗机以外,都是常规气动布局。 常规布局最大的优点是技术成熟,这是航空发展史上最早广泛使用的布局,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡,所以目前无论是民用飞机还是军用飞机绝大多数使用这种气动布局。 常规气动布局机型——我国的ARJ21祥凤支线客机

现代飞机常见气动外形特点及发展

摘要 我们看到任何一架飞机,首先注意到的就是气动布局。飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。关系到飞机的飞行特征及性能。故将飞机外部总体形态布局与位置安排称作气动布局。简单地说,气动布局就是指飞机的各翼面,如主翼、尾翼等是如何放置的,气动布局主要决定飞机的机动性,至于发动机、座舱以及武器等放在哪里的问题,则笼统地称为飞机的总体布局。 飞机的设计任务不同,机动性要求也不一样,这必然导致气动布局形态各异。现代作战飞机的气动外形有很多种,平直机翼布局、后掠翼布局、变后掠翼布局、无尾翼布局、鸭式布局、三翼面布局、前掠翼布局等。而以巡航姿态为主的运输机等大型飞机,其气动布局就相对比较单一,主要以常规布局为主 关键词:翼型;尾翼;气动外形;空气动力

目录 引言 (1) 一、现代飞机常见气动外形 (2) (一)作战飞机气动外形 (2) (二)非作战飞机气动外形 (7) 二、国内飞机常见气动外形 (7) (一)作战飞机气动外形 (7) (二)非作战飞机气动外形 (9) 三、飞机气动外形发展 (11) (一)作战飞机气动外形的发展 (11) (二)非作战飞机气动外形的发展 (11) 四、我国大飞机气动布局设计的发展建议 (15) 致谢 (17) 参考文献 (18)

引言 自从莱特兄弟发明第一架飞机以来,航空科技一直伴随着科技革命的推进迅速发展,由于该行业属于技术密集型,因此也使得航空科技一直云集着该时代最先进的科技成果,和众多的行业精英。因此航空技术往往代表着一个时代的科技水平,也促进和引领着科技进步。而一个时代的航空科技水平则主要体现在该时期的航空器上,飞机作为数量最多、最为常见的航空器,当然代表着一个时代航空科技的水平。而一个时代飞机的技术水准,则直观的体现在飞机的气动外形上。从飞机的气动外形我们就可以看出:这个时代航空科技的总体水平,这个时代的设计理念,甚至这个时代的军事政治战略格局等等。因此,研究飞机的气动外形及其发展,对于我们学习航空科技进而了解世界科技、历史、军事、政治等方面知识有着深远的意义。

超音速客机概念设计项目组工作报告

超音速客机的概念设计——团队工作报告 专业名称航空学院—飞行器设计与工程 团队成员龚雪淳潘环龚德志李亮 指导教师张科施杨华保李斌宋科范宇 完成时间 2008年6月15日

摘要 本项目是进行一款新型的超音速客机的概念设计,项目团队成员由来自西北工业大学航空学院2004级飞行器设计与工程专业的四名本科生及四名指导教师和一名研究生组成。 该项目完成了一款载客量200人,巡航马赫数2.0,航程10000~12000公里的超音速客机概念设计。项目团队成员分别是龚雪淳(团队组长)、潘环、龚德志、李亮,项目指导教师分别是杨华保、张科施、李斌、宋科、范宇。 21世纪,人类对航空器的研究将更加关注,航空技术将成为世界各个国家经济发展的一个最重要的标志!5年前,“协和”客机最后一次让乘客感受突破音障的激动瞬间,由于事故频发,这种高科技产物被迫退出历史舞台。然而,人类追逐超音速旅行的梦想并没有像流星一样,一闪即逝。现在,包括美国、英国、法国、日本、中国、俄罗斯等在内的多个具有航空研发能力的国家都在积极投入大量经费,来研制自己的超音速客机方案,以求在未来的航空领域中占有一席之地,一场没有硝烟的战争已经打响。 通过该项目的团队合作研究,提高了我们的创新能力和分析问题、解决问题的能力,培养了我们严谨认真的工作态度和团队协作的精神,让我们懂得了团队的重要性,懂得了如何与人沟通,协作。同时,项目的实施也让我们提前适应了将来的工作模式和工作氛围,认识上更进一层。

目录 摘要 (1) 第一章项目简介 (3) 1.1 项目选题背景 (3) 1.2 项目团队成员及指导老师情况 (5) 1.3 项目创新点与特色 (6) 1.4 项目成员工作协调情况介绍 (7) 第二章项目研究成果 (8) 2.1 总体研究成果 (8) 2.2 气动研究成果 (12) 2.3 结构研究成果 (14) 2.4 人机环境与关键技术研究 (18) 2.5 项目成果评价 (20) 总结与体会 (21) 附录Ⅰ项目团队例会记录单 (25) 附录Ⅱ设计参数更改记录单 (34)

民用飞机气动设计原理

民用飞机气动设计原理民用飞机可以随时转为军用。海湾战争期间,美国曾动员民用飞机用于军事运输。预警机、加油机等军事用途飞机也往往由民用飞机改型而成。下面是为大家分享民用飞机气动设计原理知识,欢迎大家阅读浏览。 宽体飞机相对于窄体飞机,超临界机翼气动设计的难点主要体现在哪里?(Dan) 超临界翼型设计的本质是弱激波翼型的设计。超临界翼型相较于普通翼型,其头部比较丰满,降低了前缘的负压峰值使气流较晚达到声速。即提高了临界马赫数。同时超临界翼型上表面中部比较平坦,有效控制了上翼面气流的进一步加速,降低了激波的强度和影响范围,并且推迟了上表面的激波诱导边界层的分离。因此超临界翼型有着更高的临界马赫数和更高的阻力发散马赫数。 超临界翼型与传统翼型对比 对于窄体飞机,其巡航马赫数范围在0.78-0.80 之间,通常巡航时间占全航程比例不高,因此翼型设计需要多考虑起降、爬升等非巡航性能。而宽体飞机的巡航马赫数则通常在0.85-0.90 之间,并常用于长航程飞机,应此翼型设计需要多考虑巡航性能。更高的巡航马赫数使得机翼表面有很大的超声区,使得通过翼型设计来削弱、推迟激波的设计难度大大加大。 控制律载荷一体化技术能改善飞机什么性能?有何效 益?(Zhijie) 放宽静稳定性使飞机阻力减小,减轻飞机的质量,增加有用升

力,使飞机的机动能力提高; 边界控制技术减轻了驾驶员的工作负担并保证飞机安全; 阵风载荷减缓技术减小阵风干扰下可能引起的过载,从而达到减轻机翼弯曲力矩和结构疲劳的目的,并提高乘坐舒适性; 机动载荷控制改变飞机机动飞行时机翼的载荷分布,降低翼根处的弯曲力矩,从而减轻机翼的结构重量和机动时的疲劳载荷,最终可以提高商载能力和增加飞行航程; 颤振模态控制技术通过改变翼面的非定常的气动力分部,从而降低或改善机翼的气动弹性耦合效应,最终达到提高颤振速度的目的。 A320 阵风载荷减缓控制系统说说风洞试验中,风洞的问题和缩比模型的问题、试验结果的一致性问题(Shaoyun) 风洞试验是指在风洞中安装试验模型,研究气体流动及其与模型的相互作用,以了解实际飞行器的空气动力学特性的一种空气动力试验方法。 F22 飞机风洞模型风洞的基本参数一是风洞几何参数,包括风洞截面积、风洞试验段长度等,二是风洞的试验风速,一般地,0~0.3M 范围为低速风洞,0.3M~1M为高速风洞,大于1M为超音速风洞。 由于模型缩比等原因,风洞试验模型不能完全保留真实飞行器的气动特性。风洞试验通过采用相似准则来尽可能地使试验特性同真 实特性一致,通常根据试验的目的不同会选择不同的相似准则,但一般都会满足的重要准则包括: 几何相似性,模型几何特征同真实飞行器尽可能等比例的放大或缩小; M 数相似,风洞试验M数和飞行器实际使用M数保持一致;

飞机设计软件

正确使用软件能加快设计进度,提高设计质量。以下列出了几个可用于飞机设计教学的软件。这些教学软件大多可在南京航空航天大学飞机系获得,或通过网上下载。 初步确定客机主要参数的界限线绘制程序 为了有助于设计人员在初始设计阶段能快速地确定客机主要参数,开发了界限线图绘制计算机程序。该程序功能是:按照给定的性能要求,绘制出满足这些要求约束下的推重比和翼载的界限,形成界限线图;并标注出可行域。该程序有助于设计人员快速确定客机的推重比和翼载。界限线图绘制程序。 翼型气动特性分析与设计软件 ?Airfoil 该程序是余雄庆在原多段翼型分析程序M C AR FA基础上开发的,适用于亚声速翼型气动特性的分析。MC A RF A是根据位流理论与附面层理论相结合的方法,用Fortran语言编写的。Airfoil简化了原MC A F E输入文件的格式,并用M at l a b对计算结果进行后处理,可直观显示翼型外形和压力分布。可下载Airfoil的EX E文件、用于演示计算结果的Ma t la b 文件及使用说明书(英文)。 ?Pablo ( P otential flow around A irfoil with B oundary L ayer coupled O ne-way )该软件是由瑞典皇家理工学院Rizzi教授和他的学生Christian Wauquiez 开发的。他们应用面元法(Panel Method)和附面层理论,用Ma t la b语言编写了这个翼型分析软件。P a b lo具有良好的用户界面,使用方便,适用于亚声速翼型气动特性的分析。可免费下载P a b lo软件M at l ab 的源代码。 ?Airfoil Optimizer

A280-飞机总体设计-matlab-SRR-DT12-新型高超声速飞行器

飞机总体设计 新一代高超声速无人机——“赤隼” 第一阶段SRR总结报告 学院名称:航空科学与工程学院 专业名称:飞行器设计与工程 组号:DT12 组长:殷海鹏 2013 年 4月 1日

目录 一、任务陈述 (4) 二、市场需求 (4) 三、相关竞争实施方案 (5) 1. 天基信息系统 (5) 2. 空基侦查系统 (5) 四、运行理念 (6) 1. 潜在运用对象 (6) 2. 载荷能力 (6) 3. 典型任务剖面 (6) (1)任务剖面1(侦查过程中发现重要作战目标) (6) (2)任务剖面2(侦查过程中未发现重要作战目标) (6) 五、系统设计需求 (6) 1. 设计要求 (6) (1)X-43A (7) (2)X-51A (7) (3)HTV-2 (7) (4)HTV-3X (8) 六、新技术与新概念 (8) 1. 激光雷达 (8) 2. 气动布局 (8) 3.热防护 (8) 七、初始参数 (9) 方案一 (9) 方案二 (10) 八、人员分工 (10) 九、本阶段总结及下阶段任务计划 (11) 十、参考资料 (12)

图表目录 图1 天基信息系统 (5) 图2 空基侦察系统 (5) 图 3 X-43A (7) 图 4 X-51A (7) 图 5 HTV-2 (7) 图 6 方案一概念草图 (9) 图7 方案二概念草图 (10) 表 1 方案一初始参数 (9) 表 2 方案二初始参数 (10) 表 3 小组人员分工表 (10)

一、任务陈述 在新世纪的战争中,高超声速飞行器的优势主要体现在以下三个方面:首先是可以迅速打击数千或上万公里外的各类军事目标,大大地拓展了战场的空间。其次,突防能力更加强大,防空系统的拦截概率因反应时间太短而大幅度下降,具有较高的突防成功率。第三,超高速的飞行可以使得雷达难以探测,是一种新型的隐身方案。在新的战争形态中,信息战变得越发重要,侦查机是获取信息的重要来源,同时针对重要目标,在侦查同时具有一定攻击能力会使侦查起到意想不到的效果。从目前中国的空军机种来看,急需一款高超声速无人侦查机,此机最好还能有一定的攻击力,在侦查到重要目标时给予高效打击,对增强我国国防力量有重要作用。 二、市场需求 臭鼬工厂曾预测飞行器的下一场革命将来自于‘速度’,其速度优势会让各国现役防空导弹统统变成废铜烂铁。高超声速飞行器具有广阔的应用前景和巨大的军事价值。纵观21世纪的战场需求,高超声速飞行器已是不可缺少的攻击型和防御型兵器,世界各国都在加速这方面的研究工作,美国当前Ma为8-10的飞行器正在试验,而在2025年计划装备Ma为12-15的飞行器。澳、俄、法、德、日等很多国家对于高超声速飞行器的相关技术、功能、应用价值展开了积极的探讨与研究,并制定了一系列技术发展计划。从市场规模的角度来看,此类飞行器各国都有投入,但由于技术原因,规模较小而成功率偏低,在这种情况下,能率先设计生产出超高声速无人机的国家必能在错综复杂的国际环境下争取到先机,对于现在的世界态势和中国的防御性国防策略来说,我国对超高声速无人机有着极其重要的需求,比如马航失事后,如果能出动10Ma的侦察机进行快速侦查,必可得到最新最真实的情报,在新的战争理念中,被发现就是被消灭,侦察机与其他飞机相比必将会有着更高的军事地位。

_大型飞机气动设计中的CFD技术

由于CFD 在节省研制费用、缩短研制周期、实现研制数字化自动化、提高研制质量等方面的优势,越来越多的人认为未来飞行器性能的确定,将依赖于在“虚拟风洞”数据基础上产生的“虚拟飞行”,这将是飞行器研制的主要发展方向。 近30多年来计算机和CFD 计算方法的迅速发展,CFD 取得了很大的成就。今天,以数值求解Euler 方程和RANS 方程为代表的CFD 技术已经广泛应用到航空、航天、船舶、武器装备等领域,取得了令人瞩目的成就,日益展现出它蓬勃的活力和发展的潜力 [1]。在航空航天等领域,CFD 革命性地改变了传统的空气动力学研究和设计方法,推动了这些领域的技术进步。由于CFD 在节省研制费用、缩短研制周期、实现研制数字化自动多数型号单位成为主要的气动设计 手段,风洞试验成为后期的确认性工作;(2)一般情况下,CFD 精度可以满足工程要求,型号部门大都购买了商业CFD 软件,但使用者的水平需要进一步提高;(3)商业CFD 软件具有功能全面、使用方便、技术服务好等优点,但这些商业软件的性能低,如计算精度、计算效率、可靠性均较差。西方大国的先进CFD 软件是禁止向我国出口的,如CFL3D、USM3D 等NASA 发展的著名CFD 软件; (4)计算周期大大缩短,常规CFD 任务可以在一周至数周内完成,复杂任务可以在数周至数月内完成。 基于CFD 在我国航空航天领域应用的现状,本文主要论述大型飞机气动设计中的CFD 技术。 大型飞机是指起飞总重超过 阎 超 液体力学教授,博士生导师,主要从事CFD 领域的研究工作。 大型飞机气动设计中的 CFD技术 北京航空航天大学国家计算流体力学实验室 阎 超 甘文彪 CFD Technology for Aerodynamic Design of Large Commercial Aircraft 化、提高研制质量等方面的优势,越来越多的人认为未来飞行器性能的确定,将依赖于在“虚拟风洞”(CFD)数据基础上产生的“虚拟飞行”,这将是飞行器研制的主要发展方向。美国NASA 在20世纪90年代的20项关键技术中CFD 技术被列为第8项, 属最优先发展的技术领域。 今天的CFD 已经成为飞机、导弹、飞船等航空航天飞行器研制中一种主要的气动分析和设计工具。CFD 以其快速、经济、高效、适用面广、约束少、数据详尽、容易实现数字化和自动化设计等特有的优势改变了传统的气动设计方法,成为航空航天飞行器研制中无可替代的有力工具。在我国,CFD 研究及其应用也得到了迅速的发展。目前,CFD 在我国航空航天领域的现状是: (1)CFD 已经得到普遍的认可,成为型号设计部门的常规手段,在大

飞机装配定位方法及其应用案例解析

一、飞机装配定位方法及其应用案例 飞机装配过程一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机。 机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用。 在装配过程中首要问题是要按图纸及设计要求确定零件,组合件之间的相对位置,即进行装配定位。。定位方法是完成在装配过程中定位零件、组合件的手段,包括基准件定位法、画线定位法、装配孔定位法和装配型架定位法四种常用的定位方法: 1、用基准零件定位 待装配的零件、组合件以基准零件、组合件或者先装的零件、组合件来确定装配位置。这种装配定位方法简便易行,装配开放,协调性好,在一般机械产品中大量使用。基准零件一般是先定位或安装好的零件,零件要有足够的刚度及较高的准确度,在装配时一般没有修配或补充加工等工作。在飞机制造中,液压、气动附件以及具有如(图1-1)所示,连接框和长行用的角片可以预先装在长行上,然后按角片确定框的纵向位置,或者在骨架装配时按框和长珩定位角片。这种基准件定位法要求基准件位置准确、刚性强,多用于小零件和小组合件的定位,方法简单、方便。

2、用画线定位 即待装配的零件按画在零件上的线条确定装配位置,如(图1-2)所示,角材位置按腹板上划线定位。这种定位方法准确度较低,一般用于刚性较大,无协调要求和位置准确度要求不高的零件定位;还有此方法工作效率不高,容易产生差错,所以在飞机研制阶段为了减少工艺装配数量,采用这种方法定位零件,在成批生产中作为一种辅助的定位方法 3、用装配孔定位 即是把相互连接的零件、组合件分别按一定的协调手段,具体过程如下:装配以前,在各个零件的部分铆钉位置上(一般是每隔400mm左右钻一个装配孔,孔径比铆钉孔径小)预先按各自的钻孔样板分别钻出装配孔,装配时个零件之间的相对位置按这些装配孔设置。如图1-3所示。其中,孔称为装配孔。 装配孔的数量取决于零件的尺寸和刚度,一般不少于两个。在尺寸大、刚性弱的零件上取的装配孔数量应适当增加。这种定位方法在铆接装配中应用比较广泛。它适用于平面型和单曲面壁板型组合件装配。按装配孔定位的特点:(1)定位迅速、方便; (2)减少或简化装配型架;

飞机总体设计大作业

飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速:0.7Ma 最大飞行高度:10000m 航程:2300km 待机时间:45分钟 爬升率:0~10000m<25分钟 起飞距离:1600m 接地速度<220km/h 一、相近飞机资料收集:

二、飞机构型设计 正常式布局:技术成熟,所积累资料丰富 T型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数0.7,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波阻 下单翼:气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置:前三点可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 重量的预估 1.根据设计要求: –航程:Range=2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m;声速:a=576.4kts=296.5m/s

2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) –升阻比L/D =14 3.根据Breguet 航程方程: ??? ????? ??=D L M C a Range W W final initial )ln( 代入数据: Range = 1242nm ; a = 581 Knots (巡航高度35000ft) C = 0.5lb/hr/l b (涵道比为5) L/D = 14 M = 0.7 计算得: 115.1=final initial W W 103 .0to cruise fuel final to cruise of end to cruise fuel =-=-=W W W W W W W 4.燃油系数的计算

气动翼碟型飞机设计

气动翼碟型飞机设计(目录) 1.外观图 2.说明摘要 3.飞机截面图 4.气动翼结构分布及升力和相对速度 4.1结构 4.2分布 4.3升力及相对速度 4.3.1相对速度 4.3.2综合升力 5.发动机球面三环喷嘴(半球面万向喷嘴)自动控制系统5.1球面三环与液压杆系俯视图 5.2液压杆系控制说明 5.3液压杆喷嘴控制点操作态位置图 5.4液压杆喷嘴控制点定位轨迹 6.机舱分布图 7.旋转体飞行方向与重心偏移规律特性坐标图 7.1旋转体重心偏移规律坐标图(前视) 7.2旋转体重心偏移规律坐标图(后视) 7.3喷嘴推力坐标图 8.驾驶控制系统 8.1方向及重心偏移角α 8.2自控系控制图示 8.2.1重心偏移角α 8.2.2 F喷与翼底水平线夹角β 9.飞机重心平衡 9.1发动机及重心平衡车位置示图 9.2客货装载重心平衡自控(见8.2) 10.转向系统 10.1左转向 10.2右转向控制示图 11坐椅重力自动回位装置 12.弧线气动翼及纺锤形飞机外观图

(气动翼碟型飞机设计内容) 1.外观图 2.说明摘要 该款飞机设计为12片气动底翼,飞行时翼及外罩旋转,飞行时内部机舱及底中心喷嘴不作旋转面平移。由于气动翼旋转相对速度很大产生的升力较大,且上升时喷嘴可向下喷,综合升力更强。 球面三环喷嘴(半球面万向喷嘴)自动控制系统能实现机底水平线以下半球面任意方向的喷气动力调节,且易自动化控制。 机舱底设离合与旋转翼连接处可制动,实现实现机舱在空中悬停作圆周转向运动,调头更容易。可垂直升降免跑道着陆。 飞机外部为旋转体移动能减少空气阻力和产生反重力作用,可降低能耗。 3.飞机截面图 4.气动翼结构分布及升力和相对速度 4.1结构

飞机的气动布局与机翼的几何参数资料讲解

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 飞机是二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V ¥(升力与重力平衡) F=D D//V ¥(推力与阻力平衡) M=0 (俯仰力矩保持守恒) 飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。 (2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小和飞行姿态。

北航大飞机班-大型客机气动设计

大飞机班 大型客机气动设计 结课论文 2013/12/27

1,大型客机概述 1.1大型客机概念 大型客机项目是一个国家工业、科技水平和综合实力的集中体现,对增强中国的综合国力、科技实力和国际竞争力,使中国早日实现现代化具有极为重要的意义。大飞机一般是指起飞总重超过100吨的运输类飞机,包括军用大型运输机和民用大型运输机,也包括一次航程达到3000公里的军用或乘坐达到100座以上的民用客机。从地域上讲,我国把150座以上的客机称为大客机,而国际航运体系习惯上把300座位以上的客机称作“大型客机”,这主要由各国的航空工业技术水平决定的。具体载客量要看机型和舱内布局。最大的客机A380如果全经济布局的话可以载800多个人。 1.2大型客机研制 较军机而言,民机有许多不同之处。主要来讲,民机研制流程可以从时间角度划分为前期论证、型号研发、产品支援及客户服务三大阶段:1)前期论证阶段:这一阶段的主要工作任务是形成产品设想和立项,一个标志性里程碑是:长周期及通用技术准备工作正式启动。 2)型号研发之可行性论证阶段:这一阶段的主要工作任务是定义满足市场需求的产品方位和层次。初步设计和详细设计阶段:这一阶段的主要工作任务是定义满足市场需求的具体产品。产品研制阶段:这一阶段的主要工作任务是形成满足市场需求的合法的产品和服务。 3)产品支援及客户服务阶段。 1.3国产大飞机研制意义 中国虽然在民用飞机制造方面拥有一定经验,但与发达国家相比还存在较大差距,难以满足我国经济社会发展和快速增长的民用航空市场的需求。未来20年,是中国民用航空工业发展的重要战略机遇期。中国实施大型客机项目具有以下六大重要意义: 1)大型客机项目是一个国家工业、科技水平和综合实力的集中体现,对增强中国的综合国力、科技实力和国际竞争力,使中国早日实现现代化具有极为重要的意义。 2)航空工业产业链长、辐射面宽、连带效应强,在国民经济发展和科学技术进步中发挥着重要作用。大型客机是现代制造业的一颗明珠,是现代高新科技

相关文档
最新文档