2014第5章雷达作用距离
合集下载
雷达原理教学课件—第五章 雷达作用距离

可以得出以下结论:
① 虚警概率(门限)一定时,信噪比越大,发 现概率越大。信噪比对发现概率的影响较大。
② 虚警率越低,则门限电平越高。
第五章 雷达作用距离
雷达系统中采用的是CFAR检测器( 恒虚警检测器) 检测概率和虚警概率(采样)的直观 理解(A/D变换后回波的离散采样)
作业
第五章 雷达作用距离
的噪声是宽带高斯噪声, 其概率密度函数由下
式给出:
p(v)
1
2
exp(
v2
2 2
)
高斯噪声通过窄带中频滤波器(其带宽远小于
其中心频率)后加到包络检波器, 根据随机噪声
的数学分析可知, 包络检波器输出端噪声电压
振幅的概率密度函数(瑞利分布)为
p(r)
r
2
exp(
r2
2 2
)
r0
第五章 雷达作用距离
1、雷达带宽B=50kHz,平均虚警时间为10分钟,则该 雷达的虚警概率是多少?虚警总数又是多少?
解:
雷达的虚警概率为: Pfa
1
BIF Tfa
1 50 103 10 60
3.33 108
雷达的虚警总数为: nf
1
Pfa
3 107
第五章 雷达作用距离
★ 脉冲积累NS o对min =D检o 测性能的改善
虚警 真实目标A、B、C
第五章 雷达作用距离
当按图中所设的门限电平2来进行检测判决时,此时会出现 虚警现象,即
除了目标A、B和C三个真实目标可以被检出外,在D和E 处的噪声电平因为超过门限值,因而也被误认为是目标信号
检测判决准则
第五章 雷达作用距离
雷达系统中主要使用检测概率和虚警概率 这两个物理量。
① 虚警概率(门限)一定时,信噪比越大,发 现概率越大。信噪比对发现概率的影响较大。
② 虚警率越低,则门限电平越高。
第五章 雷达作用距离
雷达系统中采用的是CFAR检测器( 恒虚警检测器) 检测概率和虚警概率(采样)的直观 理解(A/D变换后回波的离散采样)
作业
第五章 雷达作用距离
的噪声是宽带高斯噪声, 其概率密度函数由下
式给出:
p(v)
1
2
exp(
v2
2 2
)
高斯噪声通过窄带中频滤波器(其带宽远小于
其中心频率)后加到包络检波器, 根据随机噪声
的数学分析可知, 包络检波器输出端噪声电压
振幅的概率密度函数(瑞利分布)为
p(r)
r
2
exp(
r2
2 2
)
r0
第五章 雷达作用距离
1、雷达带宽B=50kHz,平均虚警时间为10分钟,则该 雷达的虚警概率是多少?虚警总数又是多少?
解:
雷达的虚警概率为: Pfa
1
BIF Tfa
1 50 103 10 60
3.33 108
雷达的虚警总数为: nf
1
Pfa
3 107
第五章 雷达作用距离
★ 脉冲积累NS o对min =D检o 测性能的改善
虚警 真实目标A、B、C
第五章 雷达作用距离
当按图中所设的门限电平2来进行检测判决时,此时会出现 虚警现象,即
除了目标A、B和C三个真实目标可以被检出外,在D和E 处的噪声电平因为超过门限值,因而也被误认为是目标信号
检测判决准则
第五章 雷达作用距离
雷达系统中主要使用检测概率和虚警概率 这两个物理量。
雷达原理第三版丁鹭飞精品PPT课件

设雷达发射功率为Pt, 雷达天线的增益为Gt, 则在自由空间
工作时, 距雷达天线R远的目标处的功率密度S1为
S1
PtGt
4R2
(5.1.1)
目标受到发射电磁波的照射, 因其散射特性而将产生散射回波。
散射功率的大小显然和目标所在点的发射功率密度S1以及目标 的特性有关。用目标的散射截面积σ(其量纲是面积)来表征其散
Pr
Si min
PtAr2 42Rm4 ax
PtG 22 (4 )3 Rm4 ax
(5.1.7)
第 5 章 雷达作用距离
或
1
Rmax
PtAr2
42
Si
min
4
1
Rmax
PtG 22 (4 )3 Si min
4
(5.1.8) (5.1.9)
式(5.1.8)、(5.1.9)是雷达距离方程的两种基本形式, 它表明了作 用距离Rmax和雷达参数以及目标特性间的关系。
第 5 章 雷达作用距离
5.2 最小可检测信号
5.2.1 典型的雷达接收机和信号处理框图如图5.2所示, 一般把检波
器以前(中频放大器输出)的部分视为线性的, 中频滤波器的特性 近似匹配滤波器, 从而使中放输出端的信号噪声比达到最大。
第 5 章 雷达作用距离
Si min
kT0BnF
n
S N o min=Do
Pr
Ar S2
PtGtA (4R2 )2
(5.1.4)
第 5 章 雷达作用距离
由天线理论知道, 天线增益和有效面积之间有以下关系:
G
4A 2
式中λ为所用波长, 则接收回波功率可写成如下形式:
Pr
PtGtGr2 (4 )3 R4
雷达原理课件第5章雷达作用距离

⎢⎣ 4πλ 2 S i min
⎤4 ⎥ ⎥⎦
(5.1.8)
程的两种形式。两式中 Rmax与λ1/2分别成反比 和正比。这是因为由于
当天线面积不变、波长
λ增加时天线增益下
降,导致作用距离减
1
Rmax
=
⎡ ⎢ ⎣
Pt G 2λ2σ (4π )3 Si min
⎤4 ⎥ ⎦
小;而当天线增益不 (5.1.9) 变,波长增大时要求的
天线面积亦相应增大, 有效面积增加,其结果
是作用距离加大。
§5.2 最小可检测信号
z 最 小 可 检 测 信 号 Simin=kT0BnFn(S/N)0min, 其 中:
z Fn为接收机的噪声系数; z Bn为噪声带宽; z T0为标准室温,一般取290K; z (S/N)0min为最小输出信噪比
1:存在目标时判为有目标,这是一 种正确判断,称为发现,其概率称为发现 概率
2:存在目标时判为无目标,这是错 误判断,称为漏报,其概率称为漏报概率
3:不存在目标时判为无目标,称为 正确不发现,其概率称为正确不发现概率
4:不存在目标时判为有目标,称为 虚警,这也是错误判断,其概率称为虚警 概率
§5.3 脉冲积累 对检测性能的改善
第五章
雷达作用距离
z 第一节 雷达方程 z 第二节 最小可检测信号 z 第三节 脉冲积累对检测性能的改善 z 第四节 目标截面积及其起伏特性 z 第五节 系统损耗 z 第六节 传播过程中各种因素的影响 z 第七节 雷达方程的几种形式
§5.1 雷达方程
1
这就是雷达距离方
R max
=
⎡ ⎢
Ptσ Ar2
z 引起损耗的因素包括:波导传输损耗、接 收机失配损耗、天线波束形状损耗、 操纵 员损耗、设备工作不完善损耗。
雷达侦察作用距离与截获概率

Gr 2
m in10 0.1L
1/ 2
3. 侦察的距离优势
侦察视距
A
B
C
Hr
Ha
R
RSR 4.1( H a H r )
侦察作用距离:
Rr
Pt Gt Gr 2 (4 ) 2 Pr min
1/ 2
雷达作用距离:
优势:
Ra
Pt
(4
Gt2 2
3)检波前增益不足
此时无射频放大器或者射频放大器增益不足。 因子 Afv 很大,灵敏度计算可以近似为:
当fGVR2 FR2 fR 2fV 时,
PTSS
114dBm FR
10 lg3.1f
R2.5
Af v
G
2 R
FR2
当 fR 2fV时
PTSS
PTSS
114dBm
FR
10 lg3.1f
R2.5
2f R fV
fV2
1.5f
2 R
Af v
G
2 R
FR2
上式中fR 和 fV以MHz为单位,FR以dB为单位。
2) fR 2fV
此时射频带宽比视频带宽大,为宽带接收机的情 况。采用平方率检波器时,信号切线灵敏度为
第5章 雷达侦察作用距离与截获概率
5.1 侦察系统的灵敏度 5.2 侦察作用距离 5.3 侦察截获概率与截获时间
5.1 侦察系统的灵敏度
1. 灵敏度定义 1) 切线信号灵敏度 在某个输入脉冲功率电平作用下,接收机输出端脉冲与 噪声叠加后信号的底部与接收机内部的基线噪声的顶部 在一条线上相切,称此时的输入信号功率为切线信号灵 敏度PTSS。如图示当
雷达原理--第5章

1/ 4
4、跟踪雷达方程
1/ 4
Rmax
M=1
M=5
M=10
M=20
M=50
M=100
M=200
M=1000
§5.4 系统损耗
雷达方程:
Rmax = [ ( 4π )3 KT B F D C L ]
0 n n 0 B
Pt Gt G r σλ 2
1 4
其中,L表示雷达个部分损耗引入的损失 系数,L大于1,用正分贝数来表示。 引起损耗的因素包括:波导传输损耗、接 收机失配损耗、天线波束形状损耗、 操纵 员损耗、设备工作不完善损耗。
1:存在目标时判为有目标,这是一 种正确判断,称为发现,其概率称为发现 概率 2:存在目标时判为无目标,这是错 误判断,称为漏报,其概率称为漏报概率 3:不存在目标时判为无目标,称为 正确不发现,其概率称为正确不发现概率 4:不存在目标时判为有目标,称为 虚警,这也是错误判断,其概率称为虚警 概率
§5.3 脉冲积累 对检测性能的改善
二 地面或水面反射 对作用距离的影响
地面或水面的反射是雷达电波在非自由 空间传播时的一个最主要影响。
作业一 某雷达系统,已知: Pt=100Kw,τ=2μS,fr=400Hz,fc=10GHz,φA=1.2m, θ0.5=2°,收发共用天线,天线扫描速度νt=6转/分钟, Simin=-107dBm , 噪 声 系 数 Fn=1.5 , 接 收 机 失 配 损 失 Cb=0.56dB,雷达总的损耗L=3.5+1.6+2=7.1dB,求: 〈1〉理想无耗最大作用距离; 〈2〉当雷达仰角为5°时,最多可能的脉冲积累数; 〈3〉考虑失配损失和损耗时,雷达的最大作用距离; 〈4〉当电波衰减系数δ=0.01dB/km时的雷达最大作用距离 ,并估计现在大约是什么样的气象条件? 〈5〉当Pf=10e-3时,检测概率Pd=? 〈6〉计算M=20个脉冲相参积累后的检测性能; 〈7〉当Pf=10e-8,Pd=0.999,M=20,距离可增大到多少;
4、跟踪雷达方程
1/ 4
Rmax
M=1
M=5
M=10
M=20
M=50
M=100
M=200
M=1000
§5.4 系统损耗
雷达方程:
Rmax = [ ( 4π )3 KT B F D C L ]
0 n n 0 B
Pt Gt G r σλ 2
1 4
其中,L表示雷达个部分损耗引入的损失 系数,L大于1,用正分贝数来表示。 引起损耗的因素包括:波导传输损耗、接 收机失配损耗、天线波束形状损耗、 操纵 员损耗、设备工作不完善损耗。
1:存在目标时判为有目标,这是一 种正确判断,称为发现,其概率称为发现 概率 2:存在目标时判为无目标,这是错 误判断,称为漏报,其概率称为漏报概率 3:不存在目标时判为无目标,称为 正确不发现,其概率称为正确不发现概率 4:不存在目标时判为有目标,称为 虚警,这也是错误判断,其概率称为虚警 概率
§5.3 脉冲积累 对检测性能的改善
二 地面或水面反射 对作用距离的影响
地面或水面的反射是雷达电波在非自由 空间传播时的一个最主要影响。
作业一 某雷达系统,已知: Pt=100Kw,τ=2μS,fr=400Hz,fc=10GHz,φA=1.2m, θ0.5=2°,收发共用天线,天线扫描速度νt=6转/分钟, Simin=-107dBm , 噪 声 系 数 Fn=1.5 , 接 收 机 失 配 损 失 Cb=0.56dB,雷达总的损耗L=3.5+1.6+2=7.1dB,求: 〈1〉理想无耗最大作用距离; 〈2〉当雷达仰角为5°时,最多可能的脉冲积累数; 〈3〉考虑失配损失和损耗时,雷达的最大作用距离; 〈4〉当电波衰减系数δ=0.01dB/km时的雷达最大作用距离 ,并估计现在大约是什么样的气象条件? 〈5〉当Pf=10e-3时,检测概率Pd=? 〈6〉计算M=20个脉冲相参积累后的检测性能; 〈7〉当Pf=10e-8,Pd=0.999,M=20,距离可增大到多少;
2014第5章雷达作用距离

识别系数M
1
S Simin FkT0 Bn o N o min
Rmax
2 2 PG 2 2 4 4 PG t t 3 3 (4 ) Si min (4 ) kT0 Bn Fn ( S N )o min
1
5
灵敏度
,
即,在远场条件(平面波照射的条件)下,目标处每 单位入射功率密度在接收机处的单位立体角内产生的 反射功率乘以4π。 导电良好、各向同性的金属球,其σ为几何投影面积。 外形复杂的实际目标,不同照射方向有不同的σ值。
解: Pr
(4 )3 R0 2
2 2 PG t
4
2 2 PG t t (4 )3 R04
11
恒虚警
虚警概率一定时,发现概率Pd才随信噪比的增加 而增加,因此检测系统要求虚警保持一个恒定的 值;但随着噪声电压的变化,其包络振幅的概率 密度可能会发生变化,导致一定门限值的虚警概 率Pfa发生变化,从而使得在给定信噪比下得不到 所需的发现概率。所以,噪声电平变化时,系统 门限电平应相应变化以获得恒虚警。
2 2
1 4
1 4
E S S S r N N 0 Bn N 0 N 0
检测因子
噪声功率谱密度
E S r N o min N 0 o min
Rmax
2 2 4 4 PG Pt A2 t 3 2 (4 ) kT0 Bn Fn D0 4 kT0 Bn Fn D0
1
1
E S D0 r N o min N 0 o min
检测目标信号所需的最小输出信噪比
能量形式的雷达方程
Et G Pt A Rmax 3 2 (4 ) kT0 Fn D0 4 kT0 Bn Fn D0
1
S Simin FkT0 Bn o N o min
Rmax
2 2 PG 2 2 4 4 PG t t 3 3 (4 ) Si min (4 ) kT0 Bn Fn ( S N )o min
1
5
灵敏度
,
即,在远场条件(平面波照射的条件)下,目标处每 单位入射功率密度在接收机处的单位立体角内产生的 反射功率乘以4π。 导电良好、各向同性的金属球,其σ为几何投影面积。 外形复杂的实际目标,不同照射方向有不同的σ值。
解: Pr
(4 )3 R0 2
2 2 PG t
4
2 2 PG t t (4 )3 R04
11
恒虚警
虚警概率一定时,发现概率Pd才随信噪比的增加 而增加,因此检测系统要求虚警保持一个恒定的 值;但随着噪声电压的变化,其包络振幅的概率 密度可能会发生变化,导致一定门限值的虚警概 率Pfa发生变化,从而使得在给定信噪比下得不到 所需的发现概率。所以,噪声电平变化时,系统 门限电平应相应变化以获得恒虚警。
2 2
1 4
1 4
E S S S r N N 0 Bn N 0 N 0
检测因子
噪声功率谱密度
E S r N o min N 0 o min
Rmax
2 2 4 4 PG Pt A2 t 3 2 (4 ) kT0 Bn Fn D0 4 kT0 Bn Fn D0
1
1
E S D0 r N o min N 0 o min
检测目标信号所需的最小输出信噪比
能量形式的雷达方程
Et G Pt A Rmax 3 2 (4 ) kT0 Fn D0 4 kT0 Bn Fn D0
第5章 雷达侦察作用距离与截获概率

第5章 雷达侦察作用距离与截获概率
其次,表现在接收机的体制上,雷达几乎都采用超外 差接收机,检波前具有很高的增益,检波器和视放的噪声 特性对输出噪声的影响可以忽略;而侦察接收机可能采 用超外差接收机、晶体视频接收机等多种形式,有时在 检波前没有很高的增益,检波器和视放的噪声特性对输 出噪声有一定的影响。因此,必须推演侦察接收机的切 线信号灵敏度。以下仅以晶体视频接收机为例进行定 量分析,再将结果推广到其它接收机。
第5章 雷达侦察作用距离与截获概率
1.∆fV≤∆fR≤2∆fV ∆fV 位于∆fR/2和∆fR 之间,视放将通过射频信号与噪 声互差拍的全部视频噪声和射频噪声自差拍的部分视 频噪声,其输出视频噪声功率PV为
P =∫ V
∆ /V
0
W02 fV2 F (t )df = [W02 ∆ fV − + PS 0W0 f R ] = Pm1 2 RV 2
第5章 雷达侦察作用距离与截获概率
5.1.1 切线信号灵敏度PTSS和工作灵敏度POPS的定义 切线信号灵敏度PTSS 的定义如图5―1所示。在某 一输入脉冲功率电平作用下,接收机输出端脉冲与噪声 叠加后信号的底部与基线噪声(只有接收机内噪声时)的 顶部在一条直线上(相切),则称此输入脉冲信号功率为 切线信号灵敏度PTSS 。不难证明;当输入信号处于切线 电平时,接收机输出端视频信号与噪声的功率比约为 8dB。
GR FR 4
PTSS ≈ −114dBm + FR + 10lg(3.1∆ f R + 2.5 2∆ f R ∆ fV − ∆ fV2 + 1.56∆ f R2 )
(5―22)
第5章 雷达侦察作用距离与截≥ 2∆ fV , 2 2 << 2∆ f R ∆ fV − ∆ fV2 + ∆ f R2 时, GR FR 4
雷达原理_第五章-雷达作用距离

P2为目标散射的总功率, S1为照射的功率密度。雷达 截面积σ又可写为
P2 S1
5.1 雷 达 方 程
由于二次散射, 因而在雷达接收点处单位立体角内的 散射功率PΔ为
P P2 S1 4 4
据此, 又可定义雷达截面积σ为
4
返回接收机每单位立体角内的回波功率 入射功率密度
5.根据接收机信号检测理论 •当 Pr S i min 时,雷达才能可靠地发现目标
•当 P S r i min
•当 P S r i min
时,雷达发现目标的距离Rmax
时,雷达不能检测目标
Pt A2 r Pt G 22 ∴ Pr Si min 2 4 4 4 R max 4 3 Rmax
5.2 最小可检测信号
三、门限检测 由于接收机中始终存在噪声,且噪声具有起伏特
性。所以,在接收机输出的信号中,判断目标是否出
现成为一个统计问题,必须按照某种统计检测标准进 行判断。 终端检测设备为了检测出目标,通常将回波幅度 与根据接收机噪声电压平均值确定出的检测门限进行 比较 —— 这就是门限检测。
5.2 最小可检测信号
1.检测因子 D o
——满足检测性能(发现概率和虚警概率)时,检
波器输入端所需单个脉冲最小信噪比
S Do N o min
S N Bo
Er N o o min o min
5.2 最小可检测信号
检测时门限电压的高低影响以下两种错误判断的 多少: (1) 有号(虚警)。
应根据两种误判的影响大小来选择合适的门限。
5.2 最小可检测信号
2、检测的四种情况
(1)有目标判有目标——发现,出现概率称发现概率 P d
P2 S1
5.1 雷 达 方 程
由于二次散射, 因而在雷达接收点处单位立体角内的 散射功率PΔ为
P P2 S1 4 4
据此, 又可定义雷达截面积σ为
4
返回接收机每单位立体角内的回波功率 入射功率密度
5.根据接收机信号检测理论 •当 Pr S i min 时,雷达才能可靠地发现目标
•当 P S r i min
•当 P S r i min
时,雷达发现目标的距离Rmax
时,雷达不能检测目标
Pt A2 r Pt G 22 ∴ Pr Si min 2 4 4 4 R max 4 3 Rmax
5.2 最小可检测信号
三、门限检测 由于接收机中始终存在噪声,且噪声具有起伏特
性。所以,在接收机输出的信号中,判断目标是否出
现成为一个统计问题,必须按照某种统计检测标准进 行判断。 终端检测设备为了检测出目标,通常将回波幅度 与根据接收机噪声电压平均值确定出的检测门限进行 比较 —— 这就是门限检测。
5.2 最小可检测信号
1.检测因子 D o
——满足检测性能(发现概率和虚警概率)时,检
波器输入端所需单个脉冲最小信噪比
S Do N o min
S N Bo
Er N o o min o min
5.2 最小可检测信号
检测时门限电压的高低影响以下两种错误判断的 多少: (1) 有号(虚警)。
应根据两种误判的影响大小来选择合适的门限。
5.2 最小可检测信号
2、检测的四种情况
(1)有目标判有目标——发现,出现概率称发现概率 P d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r2 VT 2 dr exp exp 2 2 VT 2 2 2
r
虚警概率Pfa一定,门限电平VT随之确定
pd (r )
式中
r 2 A2 rA exp I0 2 2 2 2 z 2n I0 ( z) 2n n! n0 2 n ! r
So N o min
匹配接收机
KT0Bn
检波器
检波后积累
检测装置 门限
在中频部分对单个脉冲 信号进行匹配滤波
雷达信号的检测性能由其发现概率Pd和 虚警概率Pfa定义
对检波后的n个脉 冲进行加权积累
输出包络超 过门限,认 为目标存在
8
虚警概率Pfa
p (v ) 2 exp 2 2
2 2
1 4
1 4
E S S S r N N 0 Bn N 0 N 0
检测因子
噪声功率谱密度
E S r N o min N 0 o min
Rmax
2 2 4 4 PG Pt A2 t 3 2 (4 ) kT0 Bn Fn D0 4 kT0 Bn Fn D0
S S i min kT0 Bn Fn N o min
D0表示的雷达方程
2 2
信噪比的接收信号能量表示形式 简单矩形脉冲: 能量 功率 脉冲宽度
PG PG t Rmax t 3 3 (4 ) Si min (4 ) kT0 Bn Fn ( S N )o min
,
即,在远场条件(平面波照射的条件)下,目标处每 单位入射功率密度在接收机处的单位立体角内产生的 反射功率乘以4π。 导电良好、各向同性的金属球,其σ为几何投影面积。 外形复杂的实际目标,不同照射方向有不同的σ值。
解: Pr
(4 )3 R0 2
2 2 PG t
4
2 2 PG t t (4 )3 R04
天线面积不变时,波长λ增加天线增益下降,Rmax下降;天 线增益不变时,波长λ增加要求天线面积增加,天线有效面 积增加→ Rmax增加。
3
§5.1.2 目标的雷达截面积
习题
P2 S1
目标的雷达截面积定义: 实际测量:
4 *
返回接收机每单位立体角内的回波功率 入射功率密度
设单基地雷达目标距离为R0 ,当标准金属圆 球(截面积为σ)置于目标方向离雷达R0 /2处 时,目标回波的平均强度正好与金属球的回波 强度相同,试求目标的雷达横截面积。
设置门限电平VT,则Pfa(噪声包络超 过门限的面积)即虚警概率:
T fa lim
虚警总数:
N
1 N
T
k 1
N
k
Pfa P(VT r )
VT 2 r2 dr exp exp 2 2 VT 2 2 2
1
1
E S D0 r N o min N 0 o min
检测目标信号所需的最小输出信噪比
能量形式的雷达方程
Et G Pt A Rmax 3 2 (4 ) kT0 Fn D0 4 kT0 Bn Fn D0
r
nf
T fa
T fa BIF
1 Pfa
当噪声分布函数一定时,虚警大小完全取决于门限
9
发现概率Pd
振幅为A的正弦信号同高斯噪声一起输入到中频滤波器 设信号的频率是中频滤波器的中心频率fIF,则包络检 波器的输出包络的概率密度函数为:
Pfa P(VT r )
显然
Pd+Pla=1,
Pan+Pfa=1
降低门限的缺点:只要有噪声存在,其尖峰超过门限 电平的概率增加,虚警相应增加。
7
接收检测系统方框图
将积累输出与某一 门限电压比较 检出信号包络
§5.2.2 检测性能和信噪比
由: Pd+Pla=1, Pan+Pfa=1
Si min Simin N i
2 2 2
P137,图5-7
10
例:设要求虚警总数为108,求50%和90% 发现概率所需的最小信噪比。
习题
解: n 1 f Pfa
Pfa 108
S 12.3 N min S 14.2 N min
某雷达要求虚警时间为2 小时,接收机带宽为 1MHz,求虚警概率。若要求虚警时间大于10 小时,问门限电平VT/σ应取多少?
积累对作用距离的改善
2 2 4 4 PG Pt A 2 t Rmax 3 2 (4 ) kT0 Bn Fn D0 4 kT0 Bn Fn D0 结论:
某雷达波长λ=3cm,Pt=2MW,G=37dB,最小可检测信号 Simin=0.05pW,已知探测目标的有效反射面积σ=10m2; ①求雷达的最大作用距离。 ②若该雷达为相干脉冲体制雷达,其他条件不变时,10个等幅 相参中频脉冲信号进行相参积累,如果作用距离要求不变, 发射功率Pt可以降低为多少?
当接收功率为接收机最小检测功率Simin时:
收发不同天线时,最大作用距离
Rmax PG A 4 t t2 r (4 ) S i min
1
收发同天线时
Ar At A
Gr Gt G
1 1
Rmax
2 2 PG 4 Pt A2 4 t 3 2 (4 ) Si min 4 Si min
r0
设置门限电平VT,发现概率Pd(r超过门限的概率)为:
结论: 门限电平VT一定时,发现概率Pd随信噪比增大而增大 信噪比一定时,虚警概率Pfa越小(VT越高),Pd越小
Pd pd (r )dr
VT
r A rA exp I 0 dr VT 2 2 2 r
第五章 雷达作用距离
最大测量距离
Rmax
PG A 4 t t2 r (4 ) Si min
1
作用距离是雷达的重要性能指标之一,它决定了雷达 能在多大的距离上发现目标。 作用距离的大小取决于雷达本身的性能,其中有发射 机、接收系统、天线等分机参数,同时又和目标的性 质及环境因素有关。
Simin N i
Si min
So N o min
匹配接收机
KT0Bn
检波器
检波后积累
检测装置 门限
信噪比表示的雷达方程
F Si N i So N o
灵敏度
S S Si FN i o FkT0 Bn o No No
12
§5.3.1 积累效果
非相干积累
相干积累
M个中频回波信号同相相加 信号功率增加为M2倍 相邻Tr噪声统计独立 噪声功率增大M 倍 信号电压增加为M倍
包络检波非线性作用 信号+噪声通过检波器,增加信号与噪声的相互作用项 影响检波器输出端信噪比 输出信噪比增加为 M ~ M 倍 思考:检测因子的变化
t
R0 2
R04
4
16
4
第二节 最小可检测信号
如果没有噪声,任何微弱的信号都能经任意放 大后被检测到。但雷达接收机的输出端,回波 信号总是和噪声及其他干扰混杂在一起,信号 放大的同时噪声也被放大,因此,噪声是限制 微弱信号检测的基本因素,雷达检测能力实质 上取决于信噪比。
§5.2.1 最小可检测信噪比
11
恒虚警
虚警概率一定时,发现概率Pd才随信噪比的增加 而增加,因此检测系统要求虚警保持一个恒定的 值;但随着噪声电压的变化,其包络振幅的概率 密度可能会发生变化,导致一定门限值的虚警概 率Pfa发生变化,从而使得在给定信噪比下得不到 所需的发现概率。所以,噪声电平变化时,系统 门限电平应相应变化以获得恒虚警。
G 2 A 4
雷达实际作用距离受目标后向散射截面积σ、 Simin、噪声和 其他干扰的影响,具有不确定性,服从统计学规律。
2
R4max∝λ2
2 2 PG Pt A2 t 3 2 (4 ) Si min 4 Si min 1 4 1 4
总结:
Rmax
A
G 2 4
R4max ∝1/λ2
基本雷达方程给出了作用距离和各参数间的定量关系, 但由于未考虑设备的实际损耗和环境因素,且目标有效反 射面积σ和最小可检测信号Simin不能准确预定,因此仅用 来作估算的公式,考察各参数对作用距离的影响。 雷达在噪声和其他干扰背景下检测目标,同时,复杂目 标的回波信号本身存在起伏,因此,接收机输出的是一个 随机量。雷达作用距离也不是一个确定值而是统计量,通 常只在概率意义上讲,当虚警概率(如10-6)和发现概率 (如90%)给定时的作用距离是多大。
识别系数M
1
S Simin FkT0 Bn o N o min
Rmax
2 2 PG 2 2 4 4 PG t t 3 3 (4 ) Si min (4 ) kT0 Bn Fn ( S N )o min
1
5
灵敏度
2 2 2
1 4
1 4
6
§5.2.2 门限检测
检测准则
门限检测采用奈曼-皮尔逊准则。该准则要求在给定的 信噪比条件下,在满足一定的虚警概率时的发现概率 最大,或者漏警概率最小。