用MATLAB分析离散信号的频谱与信号的采样
实验2利用MATLAB分析信号频谱及系统的频率特性

实验2利用MATLAB分析信号频谱及系统的频率特性引言:在信号处理和通信领域中,频谱分析是一项非常重要的技术。
频谱分析可以帮助我们了解信号的频率特性,包括频率成分和幅度。
MATLAB是一款功能强大的数学软件,提供了多种工具和函数用于信号处理和频谱分析。
本实验旨在通过MATLAB分析信号频谱及系统的频率特性,深入理解信号处理和频域分析的原理和应用。
实验步骤:1.生成一个信号并绘制其时域波形。
首先,我们可以使用MATLAB提供的函数生成一个信号。
例如,我们可以生成一个用正弦函数表示的周期信号。
```matlabt=0:0.001:1;%时间范围为0到1秒,采样率为1000Hzf=10;%信号频率为10Hzx = sin(2*pi*f*t); % 生成正弦信号plot(t,x) % 绘制信号的时域波形图title('Time domain waveform') % 添加标题```2.计算信号的频谱并绘制频谱图。
使用MATLAB中的FFT函数可以计算信号的频谱。
FFT函数将信号从时域转换为频域。
```matlabFs=1000;%采样率为1000HzL = length(x); % 信号长度NFFT = 2^nextpow2(L); % FFT长度X = fft(x,NFFT)/L; % 计算X(k)f = Fs/2*linspace(0,1,NFFT/2+1); % 计算频率轴plot(f,2*abs(X(1:NFFT/2+1))) % 绘制频谱图title('Frequency spectrum') % 添加标题```3.使用MATLAB分析系统的频率特性。
MATLAB提供了Signal Processing Toolbox,其中包含了分析系统频率特性的函数和工具。
```matlabHd = designfilt('lowpassfir', 'FilterOrder', 6,'CutoffFrequency', 0.3, 'SampleRate', Fs); % 设计一个低通滤波器fvtool(Hd) % 显示滤波器的频率响应``````matlab[W,F] = freqz(Hd); % 计算滤波器的频率响应plot(F,abs(W)) % 绘制滤波器的振幅响应title('Frequency response of lowpass filter') % 添加标题```实验结果:运行上述代码后,我们可以得到如下结果:1.时域波形图2.频谱图3.滤波器频率响应讨论与结论:本实验通过MATLAB分析信号频谱及系统的频率特性,深入理解了信号处理和频域分析的原理和应用。
利用Matlab进行频谱分析的方法

利用Matlab进行频谱分析的方法引言频谱分析是信号处理和电子工程领域中一项重要的技术,用于分析信号在频率域上的特征和频率成分。
在实际应用中,频谱分析广泛应用于音频处理、图像处理、通信系统等领域。
Matlab是一种强大的工具,可以提供许多功能用于频谱分析。
本文将介绍利用Matlab进行频谱分析的方法和一些常用的工具。
一、Matlab中的FFT函数Matlab中的FFT(快速傅里叶变换)函数是一种常用的频谱分析工具。
通过使用FFT函数,我们可以将时域信号转换为频域信号,并得到信号的频谱特征。
FFT 函数的使用方法如下:```Y = fft(X);```其中,X是输入信号,Y是输出的频域信号。
通过该函数,我们可以得到输入信号的幅度谱和相位谱。
二、频谱图的绘制在进行频谱分析时,频谱图是一种直观和易于理解的展示形式。
Matlab中可以使用plot函数绘制频谱图。
首先,我们需要获取频域信号的幅度谱。
然后,使用plot函数将频率与幅度谱进行绘制。
下面是一个示例:```X = 1:1000; % 时间序列Y = sin(2*pi*10*X) + sin(2*pi*50*X); % 输入信号Fs = 1000; % 采样率N = length(Y); % 信号长度Y_FFT = abs(fft(Y)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, Y_FFT);```通过上述代码,我们可以得到输入信号在频谱上的特征,并将其可视化为频谱图。
三、频谱分析的应用举例频谱分析可以应用于许多实际问题中。
下面将介绍两个常见的应用举例:语音信号分析和图像处理。
1. 语音信号分析语音信号分析是频谱分析的一个重要应用领域。
通过对语音信号进行频谱分析,我们可以探索声波的频率特性和信号的频率成分。
在Matlab中,可以使用wavread 函数读取音频文件,并进行频谱分析。
下面是一个示例:```[waveform, Fs] = wavread('speech.wav'); % 读取音频文件N = length(waveform); % 信号长度waveform_FFT = abs(fft(waveform)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, waveform_FFT);```通过上述代码,我们可以获取语音信号的频谱特征,并将其可视化为频谱图。
实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序实验三中使用FFT对信号进行频谱分析的目的是通过将时域信号转换为频域信号,来获取信号的频谱信息。
MATLAB提供了方便易用的函数来实现FFT。
首先,我们需要了解FFT的原理。
FFT(快速傅里叶变换)是一种快速计算离散傅里叶变换(DFT)的算法,用于将离散的时间域信号转换为连续的频域信号。
FFT算法的主要思想是将问题划分为多个规模较小的子问题,并利用DFT的对称性质进行递归计算。
FFT算法能够帮助我们高效地进行频谱分析。
下面是一个使用MATLAB进行频谱分析的示例程序:```matlab%生成一个10秒钟的正弦波信号,频率为1Hz,采样率为100Hzfs = 100; % 采样率t = 0:1/fs:10-1/fs; % 时间范围f=1;%正弦波频率x = sin(2*pi*f*t);%进行FFT计算N = length(x); % 信号长度X = fft(x); % FFT计算magX = abs(X)/N; % 幅值谱frequencies = (0:N-1)*(fs/N); % 频率范围%绘制频谱图figure;plot(frequencies, magX);xlabel('频率(Hz)');ylabel('振幅');title('信号频谱');```上述代码生成了一个10秒钟的正弦波信号,频率为1 Hz,采样率为100 Hz。
通过调用MATLAB的fft函数计算信号的FFT,然后计算每个频率分量的幅值谱,并绘制出信号频谱图。
在频谱图中,横轴表示频率,纵轴表示振幅。
该实验需要注意以下几点:1.信号的采样率要与信号中最高频率成一定比例,以避免采样率不足导致的伪频谱。
2.FFT计算结果是一个复数数组,我们一般只关注其幅值谱。
3.频率范围是0到采样率之间的频率。
实验三的报告可以包含以下内容:1.实验目的和背景介绍。
matlab求连续信号的频谱函数和离散信号频谱函数的方法

matlab求连续信号的频谱函数和离散信号频谱函数的方法Matlab提供了多种方法来求解连续信号和离散信号的频谱函数。
在本文中,我们将分步骤介绍这些方法。
一、连续信号频谱函数的方法连续信号的频谱函数是通过对连续信号进行傅里叶变换得到的。
而在Matlab中,傅里叶变换可以通过fft函数实现。
下面是求解连续信号频谱函数的步骤:1. 定义连续信号首先,我们需要定义一个连续信号,用一个函数来表示。
例如,我们定义一个简单的三角波信号:matlabt = linspace(0, 1, 1000); 定义时间范围x = sawtooth(2*pi*5*t); 定义三角波信号2. 进行傅里叶变换接下来,我们使用fft函数对连续信号进行傅里叶变换。
傅里叶变换将信号从时域转换到频域。
matlabX = fft(x);3. 计算频谱函数通过进行傅里叶变换,我们得到了频谱函数X。
然而,频谱函数X是一个复数数组,其中包含了信号的幅度和相位信息。
为了获得真正的频谱,我们需要计算幅度谱。
matlabP2 = abs(X/length(x));P1 = P2(1:length(x)/2+1);P1(2:end-1) = 2*P1(2:end-1);在上述代码中,我们将频谱函数除以信号长度,然后计算幅度,并使用对称性将频谱函数变换为正频率部分。
最后,我们将频谱函数的第一个和最后一个值乘以2。
4. 绘制频谱图最后,我们可以使用plot函数将频谱函数可视化。
matlabfs = 1000; 采样频率f = fs*(0:(length(x)/2))/length(x);plot(f,P1)xlabel('Frequency (Hz)')ylabel('Amplitude')以上步骤可以用于求解任何连续信号的频谱函数。
二、离散信号频谱函数的方法离散信号的频谱函数可以通过对信号进行离散傅里叶变换(Discrete Fourier Transform,DFT)来获得。
MATLAB信号频谱分析FFT详解

MATLAB信号频谱分析FFT详解FFT(快速傅里叶变换)是一种常用的信号频谱分析方法,它可以将信号从时域转换到频域,以便更好地分析信号中不同频率成分的特征。
在MATLAB中,使用fft函数可以方便地进行信号频谱分析。
首先,我们先介绍一下傅里叶变换的基本概念。
傅里叶变换是一种将信号分解成不同频率成分的技术。
对于任意一个周期信号x(t),其傅里叶变换X(f)可以表示为:X(f) = ∫(x(t)e^(-j2πft))dt其中,X(f)表示信号在频率域上的幅度和相位信息,f表示频率。
傅里叶变换可以将信号从时域转换到频域,以便更好地分析信号的频率特征。
而FFT(快速傅里叶变换)是一种计算傅里叶变换的高效算法,它通过分治法将傅里叶变换的计算复杂度从O(N^2)降低到O(NlogN),提高了计算效率。
在MATLAB中,fft函数可以方便地计算信号的傅里叶变换。
使用FFT进行信号频谱分析的步骤如下:1. 构造信号:首先,我们需要构造一个信号用于分析。
可以使用MATLAB中的一些函数生成各种信号,比如sin、cos、square等。
2. 采样信号:信号通常是连续的,为了进行FFT分析,我们需要将信号离散化,即进行采样。
使用MATLAB中的linspace函数可以生成一定长度的离散信号。
3. 计算FFT:使用MATLAB中的fft函数可以方便地计算信号的FFT。
fft函数的输入参数是离散信号的向量,返回结果是信号在频率域上的复数值。
4. 频率换算:信号在频域上的复数值其实是以采样频率为单位的。
为了更好地观察频率成分,我们通常将其转换为以Hz为单位的频率。
可以使用MATLAB中的linspace函数生成一个对应频率的向量。
5. 幅度谱计算:频域上的复数值可以由实部和虚部表示,我们一般更关注其幅度,即信号的相对强度。
可以使用abs函数计算出频域上的幅度谱。
6. 相位谱计算:除了幅度谱,信号在频域上的相位信息也是重要的。
使用Matlab对采样数据进行频谱分析

使用Matlab对采样数据进行频谱分析1、采样数据导入Matlab采样数据的导入至少有三种方法。
第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。
第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File-->Import Data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。
这种方法适合于数据量较大,但又不是太大的数据。
据本人经验,当数据大于15万对之后,读入速度就会显著变慢,出现假死而失败。
第三种方法,使用文件读入命令。
数据文件读入命令有textread、fscanf、load等,如果采样数据保存在txt文件中,则推荐使用textread命令。
如[a,b]=textread('data.txt','%f%*f%f');这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。
命令类似于C语言,详细可查看其帮助文件。
文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。
强烈推荐!2、对采样数据进行频谱分析频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即fft,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。
一般不指定N,即简化为Y=fft(b)。
Y即为FFT变换后得到的结果,与b的元素数相等,为复数。
以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。
典型频谱分析M程序举例如下:clcfs=100;t=[0:1/fs:100];N=length(t)-1;%减1使N为偶数%频率分辨率F=1/t=fs/Np=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)...+0.5*sin(1.8*2*pi*t)+0.9*s in(2.2*2*pi*t);%上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析figure(1)plot(t,p);grid ontitle('信号p(t)');xlabel('t')ylabel('p')Y=fft(p);magY=abs(Y(1:1:N/2))*2/N;f=(0:N/2-1)'*fs/N;figure(2)%plot(f,magY);h=stem(f,magY,'fill','--');set(h,'MarkerEdgeColor','red','Marker','*')grid ontitle('频谱图(理想值:[0.48Hz,1.3]、[0.52Hz,2.1]、[0.53Hz,1.1]、[1.8Hz,0.5]、[2.2Hz,0.9])');xlabel('f(Hz)')ylabel('幅值')对于现实中的情况,采样频率fs一般都是由采样仪器决定的,即fs为一个给定的常数;另一方面,为了获得一定精度的频谱,对频率分辨率F有一个人为的规定,一般要求F<0.01,即采样时间ts>100秒;由采样时间ts和采样频率fs即可决定采样数据量,即采样总点数N=fs*ts。
matlab离散信号的频谱分析实验报告

matlab离散信号的频谱分析实验报告Matlab离散信号的频谱分析实验报告引言:信号频谱分析是信号处理领域中的重要内容,它可以帮助我们了解信号的频率特性和频谱分布。
在实际应用中,离散信号的频谱分析尤为重要,因为大部分现实世界中的信号都是以离散形式存在的。
本实验旨在使用Matlab对离散信号进行频谱分析,并探索不同信号的频谱特性。
一、实验准备在进行实验之前,我们需要准备一些基本的工具和知识。
首先,我们需要安装Matlab软件,并熟悉其基本操作。
其次,我们需要了解离散信号的基本概念和性质,例如采样率、离散傅里叶变换等。
最后,我们需要准备一些实验数据,可以是自己生成的信号,也可以是从外部设备中获取的信号。
二、实验步骤1.生成离散信号首先,我们可以使用Matlab的随机函数生成一个离散信号。
例如,我们可以使用randn函数生成一个均值为0、方差为1的高斯白噪声信号。
代码如下:```matlabN = 1000; % 信号长度x = randn(N, 1); % 生成高斯白噪声信号```2.计算信号的频谱接下来,我们可以使用Matlab的fft函数对信号进行离散傅里叶变换,从而得到信号的频谱。
代码如下:```matlabX = fft(x); % 对信号进行离散傅里叶变换```3.绘制频谱图最后,我们可以使用Matlab的plot函数将信号的频谱绘制出来,以便更直观地观察信号的频谱特性。
代码如下:```matlabf = (0:N-1)*(1/N); % 构建频率轴plot(f, abs(X)); % 绘制频谱图xlabel('Frequency'); % 设置横轴标签ylabel('Magnitude'); % 设置纵轴标签title('Spectrum Analysis'); % 设置图标题```三、实验结果通过以上步骤,我们可以得到离散信号的频谱图。
用MATLAB对信号做频谱分析

⽤MATLAB对信号做频谱分析1.⾸先学习下傅⾥叶变换的东西。
学⾼数的时候⽼师只是将傅⾥叶变换简单的说了下,并没有深⼊的讲解。
⽽现在看来,傅⾥叶变换似乎是信号处理的⽅⾯的重点只是呢,现在就先学习学习傅⾥叶变换吧。
上⾯这幅图在知乎⼀个很著名的关于傅⾥叶变换的⽂章中的核⼼插图,我觉得这幅图很直观的就说明了傅⾥叶变换的实质。
时域上的东西直观的反应到了频域上了,很完美的结合到了⼀起,233333. ⽆数正弦波叠加,震荡的叠加的最后结果竟然是⽅波,同理,任何周期性函数竟然都能拆分为傅⾥叶级数的形式,这样的简介与优雅,真令⼈折服。
2.MATLAB对信号做频谱分析代码:(1)对 f1 = Sa(2t)的频谱分析1 clear;clc;2 hold on;3 R=0.05;4 t=-1.2:R:1.2;5 t1 = 2*t;6 f1=sinc(t1); %Sa函数7 subplot(1,2,1),plot(t,f1)8 xlabel('t'),ylabel('f1')9 axis([-2,2,-0.3,1.2]); %写出Sa函数上下限1011 N=1000;12 k=-N:N;13 W1=40;14 W=k*W1/N;15 F=f1*exp(-j*t'*W)*R; %f1的傅⾥叶变换16 F=real(F); %取F的实部17 subplot(1,2,2),plot(W,F)18 xlabel('W'),ylabel('F(jw)')View Code结果如下图:(2)对 f2 = u(t+2) - u(t-2)的频谱分析1 R=0.05;2 t=-3:R:3;3 f2=(t>=-2)-(t>=2);4 subplot(1,2,1),plot(t,f2)5 grid on;6 xlabel('t'),ylabel('f2')7 axis([-3,3,-0.5,1.5]);89 N=1000;k=-N:N;10 W1=40;11 W=k*W1/N;12 F=f2*exp(-j*t'*W)*R;13 F=real(F);14 subplot(1,2,2),plot(W,F)15 grid on;16 xlabel('W'),ylabel('F(jw)')View Code结果如下图:(3)对f3 = t[u(t+1) - u(t-1) ]的频谱分析1 R=0.05;2 h=0.001;3 t=-1.2:R:1.2;4 y=t.*(t>=-1)-t.*(t>=1);5 f4=diff(y)/h;6 subplot(1,2,1),plot(t,y)7 xlabel('t'),ylabel('y')8 axis([-1.2,1.2,-1.2,1.2]);910 N=1000;11 k=-N:N;12 W1=40;13 W=k*W1/N;14 F=y*exp(-j*t'*W)*R;15 F=real(F);16 subplot(1,2,2),plot(W,F)17 xlabel('W'),ylabel('F(jw)')18 axis([-40,40,-0.06,0.06]);View Code结果如下图:(4)对正弦波做FFT频谱分析1 %*************************************************************************%2 % FFT实践及频谱分析 %3 %*************************************************************************%4 %***************正弦波****************%5 fs=100;%设定采样频率6 N=128;7 n=0:N-1;8 t=n/fs;9 f0=10;%设定正弦信号频率10 %⽣成正弦信号11 x=sin(2*pi*f0*t);12 figure(1);13 subplot(231);14 plot(t,x);%作正弦信号的时域波形15 xlabel('t');16 ylabel('y');17 title('正弦信号y=2*pi*10t时域波形');18 grid;1920 %进⾏FFT变换并做频谱图21 y=fft(x,N);%进⾏fft变换22 mag=abs(y);%求幅值23 f=(0:length(y)-1)'*fs/length(y);%进⾏对应的频率转换24 figure(1);25 subplot(232);26 plot(f,mag);%做频谱图27 axis([0,100,0,80]);28 xlabel('频率(Hz)');29 ylabel('幅值');30 title('正弦信号y=2*pi*10t幅频谱图N=128');31 grid;3233 %求均⽅根谱34 sq=abs(y);35 figure(1);36 subplot(233);37 plot(f,sq);38 xlabel('频率(Hz)');39 ylabel('均⽅根谱');40 title('正弦信号y=2*pi*10t均⽅根谱');41 grid;4243 %求功率谱44 power=sq.^2;45 figure(1);46 subplot(234);47 plot(f,power);48 xlabel('频率(Hz)');49 ylabel('功率谱');50 title('正弦信号y=2*pi*10t功率谱');51 grid;5253 %求对数谱54 ln=log(sq);55 figure(1);56 subplot(235);57 plot(f,ln);58 xlabel('频率(Hz)');59 ylabel('对数谱');60 title('正弦信号y=2*pi*10t对数谱');61 grid;6263 %⽤IFFT恢复原始信号64 xifft=ifft(y);65 magx=real(xifft);66 ti=[0:length(xifft)-1]/fs;67 figure(1);68 subplot(236);69 plot(ti,magx);70 xlabel('t');71 ylabel('y');72 title('通过IFFT转换的正弦信号波形');73 grid;View Code执⾏结果如下图:(5)对矩形波做FFT频谱分析1 %****************2.矩形波****************%2 fs=10;%设定采样频率3 t=-5:0.1:5;4 x=rectpuls(t,2);5 x=x(1:99);6 figure(1);7 subplot(231); plot(t(1:99),x);%作矩形波的时域波形8 xlabel('t');9 ylabel('y');10 title('矩形波时域波形');11 grid;1213 %进⾏FFT变换并做频谱图14 y=fft(x);%进⾏fft变换15 mag=abs(y);%求幅值16 f=(0:length(y)-1)'*fs/length(y);%进⾏对应的频率转换17 figure(1);18 subplot(232);19 plot(f,mag);%做频谱图20 xlabel('频率(Hz)');21 ylabel('幅值');22 title('矩形波幅频谱图');23 grid;2425 %求均⽅根谱26 sq=abs(y);27 figure(1);28 subplot(233);29 plot(f,sq);30 xlabel('频率(Hz)');31 ylabel('均⽅根谱');32 title('矩形波均⽅根谱');33 grid;3435 %求功率谱36 power=sq.^2;37 figure(1);38 subplot(234);39 plot(f,power);40 xlabel('频率(Hz)');41 ylabel('功率谱');42 title('矩形波功率谱');43 grid;4445 %求对数谱46 ln=log(sq);47 figure(1);48 subplot(235);49 plot(f,ln);50 xlabel('频率(Hz)');51 ylabel('对数谱');52 title('矩形波对数谱');53 grid;5455 %⽤IFFT恢复原始信号56 xifft=ifft(y);57 magx=real(xifft);58 ti=[0:length(xifft)-1]/fs;59 figure(1);60 subplot(236);61 plot(ti,magx);62 xlabel('t');63 ylabel('y');64 title('通过IFFT转换的矩形波波形');65 grid;View Code执⾏结果如下图:(6)对⽩噪声做频谱分析1 %****************3.⽩噪声****************%2 fs=10;%设定采样频率3 t=-5:0.1:5;4 x=zeros(1,100);5 x(50)=100000;6 figure(1);7 subplot(231);8 plot(t(1:100),x);%作⽩噪声的时域波形9 xlabel('t');10 ylabel('y');11 title('⽩噪声时域波形');12 grid;1314 %进⾏FFT变换并做频谱图15 y=fft(x); %进⾏fft变换16 mag=abs(y);%求幅值17 f=(0:length(y)-1)'*fs/length(y);%进⾏对应的频率转换18 figure(1);19 subplot(232);20 plot(f,mag);%做频谱图21 xlabel('频率(Hz)');22 ylabel('幅值');23 title('⽩噪声幅频谱图');24 grid;2526 %求均⽅根谱27 sq=abs(y);28 figure(1);29 subplot(233);30 plot(f,sq);31 xlabel('频率(Hz)');32 ylabel('均⽅根谱');33 title('⽩噪声均⽅根谱');34 grid;3536 %求功率谱37 power=sq.^2;38 figure(1);39 subplot(234);40 plot(f,power);41 xlabel('频率(Hz)');42 ylabel('功率谱');43 title('⽩噪声功率谱');44 grid;4546 %求对数谱47 ln=log(sq);48 figure(1);49 subplot(235);50 plot(f,ln);51 xlabel('频率(Hz)');52 ylabel('对数谱');53 title('⽩噪声对数谱');54 grid;5556 %⽤IFFT恢复原始信号57 xifft=ifft(y);58 magx=real(xifft);59 ti=[0:length(xifft)-1]/fs;60 figure(1);61 subplot(236);62 plot(ti,magx);63 xlabel('t');64 ylabel('y');65 title('通过IFFT转换的⽩噪声波形');66 grid;View Code执⾏结果如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六 用
MATLAB 分析离散信号的频谱与信号的采样
一、 实验目的
1、了解离散时间信号频谱的分析方法;
2、了解相关函数的调用格式及作用;
3、掌握用MATLAB 分析信号的采样过程与原理。
二、涉及的MATLAB 函数
1、fft 函数:可用来计算离散周期信号频谱 X[m] = fft(x)
x :是离散周期信号0~N -1 一个周期的序列值 X[m] 是离散周期信号的频谱
函数fft 还可用来计算离散非周期信号频谱、连续周期信号和连续非周期信号的频谱。
2、rectpuls 函数:表示矩形脉冲信号 y=rectpuls(t,width)
产生宽度为0.4,幅度为1,以零点对称的矩形波1P (t)
三、实验内容
1、用MATLAB 实现下图所示周期矩形序列的频谱
x[k]的频谱函数为:X[m]=
)
(
sin )]
12([
sin N
m
M N
m
ππ+
k
%Program 6_1计算离散周期矩形序列的频谱
N=32; M=4; %定义周期矩形序列的参数x=[ones(1,M+1),zeros(1,N-2*M-1),ones(1,M)]; %产生周期矩形序列X=fft(x); %计算DFS系数
m=0:N-1;
stem(m,real(X)); %画出频谱X的实部title('X[m]的实部');xlabel('m')
figure;
stem(m,imag(X)); %画出频谱X的虚部title('X[m]的虚部');xlabel('m');
xr=ifft(X);
figure;
stem(m,real(xr));
xlabel('k');
title('重建的x[k]');
仿真的结果如下:
2、用MATLAB 实现脉冲采样抽样函数的过程。
)()()(t p t S t f a ⋅=,要求:求出抽样函数
Sa(t)、矩形脉冲
波P(t)与抽样结果f(t)的波形。
其中)(t p 的波形如下:
-0.20.20.40.81 1.4
-0.4-0.8-1-1.4t
程序如下:
t=-3*pi:0.01:3*pi; % 定义时间范围向量 s=sinc(t/pi); % 计算Sa(t)函数 subplot(3,1,1),plot(t,s); % 绘制Sa(t)的波形 title('抽样函数Sa(t)');
p=zeros(1,length(t)); % 预定义p(t)的初始值为0 for i=16:-1:-16
p=p+rectpuls(t+0.6*i,0.4); % 利用矩形脉冲函数rectpuls 的平移来产
生宽度为0.4,幅度为1的矩形波p(t)
end
subplot(3,1,2),stairs(t,p); % 用阶梯图形表示矩形脉冲 title('矩形脉冲'); axis([-10 10 0 1.2]); f=s.*p;
subplot(3,1,3),plot(t,f); % 绘制f(t)=Sa(t)*p(t)的波形 xlabel('t');
ylabel('Sa(t)*p(t)'); 仿真结果如下:
3、用MATLAB 分析如图所示三角波信号的采样过程。
低通
π
ω4=c )
(t f )
(1t y )
(t T δ)
(t y
f(t)0-0.50.5
1
……
……
-Ts
Ts
0Ts=0.2s
)
(t T δ|
|21)(t t f -=
要求:
(1)、 求)(t f 的频谱图)(ωF (2)、求)(1t y 的频谱图)(1ωY (3)、求)(t y 的频谱图)(ωY
)4(21))
21
cos(1(4)(22
ωω
ωωa S F =-= Matlab 程序如下:
syms t w f; % 定义符号变量 f=(1-2*abs(t))*exp(-j*w*t); % 计算被积函数 F=int(f,t,-1/2,1/2); % 计算傅立叶系数F(w) F=simple(F);F % 化简
subplot(3,1,1), % 绘制三角波的幅频特性曲线F(w)
low=-26*pi;high=-low; % 设置w 的上界和下界 ezplot(abs(F),[low:0.01:high]); axis([low high -0.1 0.5]); xlabel(''); title('三角波的频谱');
subplot(3,1,2), % 绘制经过截止频率为4*pi 低通滤波器后的频谱Y1(w)
ezplot(abs(F),[-4*pi:0.01:4*pi]); axis([low high -0.1 0.5]); xlabel('');
title('低通滤波后的频谱');% 采样信号的频谱是原信号频谱的周期延拓,延拓
周期为(2*pi)/Ts
% 利用频移特性F[f(t)*exp(-j*w0*t)]=F(w+w0)来实
现
subplot(3,1,3); % 绘制采样后的频谱Y(w)
Ts=0.2; % 采样信号的周期
w0=(2*pi)/Ts; % 延拓周期10*pi for k=-2:2
ft=f*exp(-j*w0*k*t);
FT=int(ft,t,-1/2,1/2);
ezplot((1/Ts)*abs(FT),[(-4*pi-k*w0):0.01:(4*pi-k*w0)]);
hold on
end
axis([low high -0.1 2.5]); xlabel('');
title('采样后的频谱');
如有侵权请联系告知删除,感谢你们的配合!。