实数复习拔高题

合集下载

八年级数学_实数相关拔高习题及分析

八年级数学_实数相关拔高习题及分析

1、若a 、b 满足b a 53+3=7,则S =b a 32-的取值范围是 . 解析:运用a 、b 的非负性,建立关于S 的不等式组.2、设a 是一个无理数,且a 、b 满足ab -a -b+1=0,则b 是一个( )A .小于0的有理数B .大于0的有理数C .小于0的无理数D .大于0的无理数 解析: 对等式进行恰当的变形,建立a 或b 的关系式.3、已知a 、b 是有理数,且032091412)121341()2331(=---++b a ,求a 、b 的值. 解析:把原等式整理成有理数与无理数两部分,运用实数的性质建立关于a 、b 的方程组.4、(1) 已知a 、b 为有理数,x ,y 分别表示75-的整数部分和小数部分,且满足axy+by 2=1,求a+b 的值.(2)设x 为一实数,[x]表示不大于x 的最大整数,求满足[-77.66x]=[-77.66]x+1的整数x 的值.解析: (1)运用估算的方法,先确定x ,y 的值,再代入xy+by 2=1中求出a 、b 的值;(2)运用[x]的性质,简化方程.5、已知在等式s dcx b ax =++中,a 、b 、c 、d 都是有理数,x 是无理数,解答: (1)当a 、b 、c 、d 满足什么条件时,s 是有理数;(2) 当a 、b 、c 、d 满足什么条件时,s 是无理数.解析: (1)把s 用只含a 、b 、c 、d 的代数式表示;(2)从以下基本性质思考:设a 是有理数,r 是无理数,那么①a+r 是无理数;②若a ≠0,则a r 也是无理数;③r 的倒数r1也是无理数,解本例的关键之一还需运用分式的性质,对a 、b 、c 、d 取值进行详细讨论.6、.设x 、y 都是有理数,且满足方程04)231()321(=--+++πππy x ,那么x -y 的值是 .7、某人用一架不等臂天平称一铁块a 的质量,当把铁块放在天平左盘中时,称得它的质量为300克,当把铁块放在天平的右盘中时,称得它的质量为900克,求这一铁块的实际质量.8、设dcx b ax y ++=,a 、b 、c 、d 都是有理数,x 是无理数.求证: (1)当bc=ad 时,y 是有理数;(2)当bc ≠ad 时,y 是无理数.设△ABC 的三边分别是a 、b 、c ,且0448222=--++bc ab b c a ,试求AABC 的形状.。

人教版七年级数学下《实数》拔高练习

人教版七年级数学下《实数》拔高练习

《实数》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)在实数32,﹣32,3﹣8,0.5,2π,3.14159,﹣|﹣25|,1.2020020002…(两个2之间依次多一个0)中,无理数有()A.2个B.3个C.4个D.5个2.(5分)下列实数是无理数的是()A.﹣1B.0.101001C.D.3.(5分)下列说法正确的是()A.无理数包括正无理数、负无理数和零B.实数都能用数轴上的点表示C.带根号的数都是无理数D.不带根号的数都是有理数4.(5分)在,,1.414,,﹣,3.252252225,0,中,无理数有()A.2个B.3个C.4个D.5个5.(5分)下列说法中,正确是()①带根号的数都是有理数;②无限小数都是无理数;③任何实数都可以进行开立方运算;④是分数.A.①B.②C.③D.④二、填空题(本大题共5小题,共25.0分)6.(5分)实数m,n在数轴上对应点的位置如图所示,化简:|m﹣n|=.7.(5分)计算:﹣|﹣2|=.8.(5分)数轴上A点表示,B点表示﹣1,则A点关于B点的对称点A′表示的数为9.(5分)用“☆”定义新运算:对于任意实数ab,都有a☆b=b2+a,例如1☆4=42+1=17,则﹣1☆(3☆2)=.10.(5分)我们知道的整数部分为1,小数部分为﹣1,则的小数部分是.三、解答题(本大题共5小题,共50.0分)11.(10分)为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了≈2.236,≈3.162,所以确定+1(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.12.(10分)计算:(1)+()2+;(2)+﹣|2﹣|.13.(10分)已知a﹣4的立方根是1,3a﹣b﹣2的算术平方根是3,的整数部分是c,求2a﹣3b+c的平方根.14.(10分)下列各数:﹣,3.1415,﹣,0,,,1.3030030003……(每两个3之间多一个0)中,(1)无理数为:;(2)整数为:;(3)请将正数按从小到大排列,并用“<”连接.15.(10分)计算:(1)1﹣(﹣5)(2)(﹣66)×(3)﹣|﹣2|(4)﹣12﹣×[﹣32×﹣2]《实数》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)在实数32,﹣32,3﹣8,0.5,2π,3.14159,﹣|﹣25|,1.2020020002…(两个2之间依次多一个0)中,无理数有()A.2个B.3个C.4个D.5个【分析】由于无理数就是无限不循环小数,由此即可判定选择项.【解答】解:无理数有2π,1.2020020002…(两个2之间依次多一个0)这2个,故选:A.【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(5分)下列实数是无理数的是()A.﹣1B.0.101001C.D.【分析】根据无理数的定义求解即可.【解答】解:A.﹣1是整数,属于有理数;B.0.101001是有限小数,即分数,属于有理数;C.是无理数;D.是分数,属于有理数;故选:C.【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(5分)下列说法正确的是()A.无理数包括正无理数、负无理数和零B.实数都能用数轴上的点表示C.带根号的数都是无理数D.不带根号的数都是有理数【分析】根据无理数的定义及实数与数轴的对应关系逐一分析求解可得.【解答】解:A.无理数包括正无理数、负无理数,此选项错误;B.实数都能用数轴上的点表示,此选项正确;C.带根号的数不一定都是无理数,如=2是有理数,此选项错误;D.不带根号的数不一定都是有理数,如π是无理数,此选项错误;故选:B.【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(5分)在,,1.414,,﹣,3.252252225,0,中,无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义求解即可.【解答】解:无理数有,﹣,这3个,故选:B.【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.(5分)下列说法中,正确是()①带根号的数都是有理数;②无限小数都是无理数;③任何实数都可以进行开立方运算;④是分数.A.①B.②C.③D.④【分析】直接利用有理数以及无理数的概念以及分数的概念分别分析得出答案.【解答】解:①带根号的数都是有理数,错误;②无限不循环小数都是无理数;③任何实数都可以进行开立方运算,正确;④是无理数,不是分数,故此选项错误.故选:C.【点评】此题主要考查了实数运算,正确掌握相关定义是解题关键.二、填空题(本大题共5小题,共25.0分)6.(5分)实数m,n在数轴上对应点的位置如图所示,化简:|m﹣n|=n﹣m.【分析】根据m、n在数轴上的位置判断出m、n的符号,再根据m﹣n的符号,去绝对值符号即可.【解答】解:∵由图可知,m<0<n,|m|>|n|,∴m﹣n<0,∴原式=n﹣m.故答案为:n﹣m.【点评】本题考查的是实数与数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.7.(5分)计算:﹣|﹣2|=﹣4.【分析】直接利用立方根以及绝对值的性质分别化简得出答案.【解答】解:﹣|﹣2|=﹣2﹣2=﹣4.故答案为:﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.8.(5分)数轴上A点表示,B点表示﹣1,则A点关于B点的对称点A′表示的数为﹣2【分析】根据对称中心是对应点的中点,可得答案.【解答】解:设A′表示的数是x,由A点关于B点的对称点A′,得B是A与A′连线的中点,∴(+x)=﹣1,解得x=﹣2﹣,故答案为:﹣2﹣.【点评】本题考查了实数与数轴,利用对称中心是对应点的中点得出方程是解题关键.9.(5分)用“☆”定义新运算:对于任意实数ab,都有a☆b=b2+a,例如1☆4=42+1=17,则﹣1☆(3☆2)=48.【分析】直接利用已知运算公式,进而分别计算得出答案.【解答】解:∵a☆b=b2+a,∴则﹣1☆(3☆2)=﹣1☆(22+3)=﹣1☆7=72+(﹣1)=48.故答案为:48.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.(5分)我们知道的整数部分为1,小数部分为﹣1,则的小数部分是﹣2.【分析】先估算出的大小,然后确定出其整数部分,然后再用减去其整数部分即可.【解答】解:4<5<9,∴2<<3.∴整数部分为2,∴小数部分为﹣2.故答案为:﹣2.【点评】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了≈2.236,≈3.162,所以确定+1>(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.【分析】(1)代入计算,再根据实数大小比较的方法进行比较即可求解;(2)依据勾股定理即可得到AD==,AB==,BD+AD=+1,再根据△ABD中,AD+BD>AB,即可得到+1>.【解答】解:(1)∵≈2.236,≈3.162,∴+1≈3.236,∵3.236>3.162,∴+1>.故答案为:>;(2)∵∠C=90°,BC=3,BD=AC=1,∴CD=2,AD==,AB==,∴BD+AD=+1,又∵△ABD中,AD+BD>AB,∴+1>.【点评】本题主要考查了三角形三边关系以及勾股定理的运用,解题时注意:三角形两边之和大于第三边.12.(10分)计算:(1)+()2+;(2)+﹣|2﹣|.【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接利用二次根式以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:(1)+()2+=3+3﹣2=4;(2)+﹣|2﹣|=3﹣4﹣(2﹣)=﹣3+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.13.(10分)已知a﹣4的立方根是1,3a﹣b﹣2的算术平方根是3,的整数部分是c,求2a﹣3b+c的平方根.【分析】首先根据立方根、算术平方根的概念可得a﹣4与3a﹣b﹣2的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得2a﹣3b+c,再根据平方根的求法可得答案.【解答】解:∵a﹣4的立方根是1,3a﹣b﹣2的算术平方根是±4,∴a﹣4=1,3a﹣b﹣2=9,解得:a=5,b=4;又∵3<<4,c是的整数部分,∴c=3;则2a﹣3b+c=1;故平方根为±1.【点评】此题主要考查了无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.14.(10分)下列各数:﹣,3.1415,﹣,0,,,1.3030030003……(每两个3之间多一个0)中,(1)无理数为:﹣,,1.3030030003……(每两个3之间多一个0);(2)整数为:0、;(3)请将正数按从小到大排列,并用“<”连接.【分析】(1)依据无理数的三种类型进行解答即可;(2)依据整数的定义进行解答即可;(3)先找出其中的整数,然后再比较大小即可.【解答】解:(1)无理数为:﹣,,1.3030030003……(每两个3之间多一个0);故答案为::﹣,,1.3030030003……(每两个3之间多一个0);(2)0为整数、=2,是整数;故答案为:0、;(3)<1.3030030003…<<3.1415.【点评】本题主要考查的是实数的相关概念,熟练掌握实数的有关概念是解题的关键.15.(10分)计算:(1)1﹣(﹣5)(2)(﹣66)×(3)﹣|﹣2|(4)﹣12﹣×[﹣32×﹣2]【分析】(1)依据有理数的减法法则进行计算即可;(2)先依据乘法的分配律进行计算,然后再利用有理数的加减法则进行计算即可;(3)先依据立方根的性质、算术平方根的定义、绝对值的性质进行计算,然后再进行加减即可;(4)先算乘方,然后再计算括号的运算,接下来,再计算乘法和减法.【解答】解:(1)原式=1+5=6;(2)原式=﹣33+22﹣30=﹣41;(3)原式=﹣2+﹣2=﹣;(4)原式=﹣1﹣×(﹣9×﹣2)=﹣1﹣×(﹣6)=﹣1+=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.。

中考数学复习《实数》专项提升训练题-附答案

中考数学复习《实数》专项提升训练题-附答案

中考数学复习《实数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.下列说法正确的是()A.不带根号的数是有理数B.数轴上的点只能表示有理数C.无限小数都是无理数D.在实数范围内,既不是整数也不是分数的数是无理数2.在数中,无理数是()A.B.0.303003 C.D.3.已知,且,则的值为()A.1 B.-7 C.-1 D.1或-74.如图所示的数轴被墨迹污染了,则下列选项中可能被覆盖住的数是()A.B.﹣C.﹣D.﹣5.有一个数值转换器,原理如图所示,当输入x的值为16时,输出的y的值为()A.8 B.C.2D.36.若与是同一个数两个不同的平方根,则为()A.B.3 C.D.17.设的小数部分是的整数部分是,则的值是()A.3 B.7 C.9 D.一个无理数8.如图,面积为6的正方形ABCD的顶点A在数轴上,且表示的数为﹣1,若点E在数轴上,(点E 在点A的右侧)且AB=AE,则点E所表示的数为()A.B.C.D.二、填空题9.比较大小:10.一个正方体形状得木箱容积是,则此木箱的边长是m.11.已知:|a|=3,b²=4,ab<0,a-b的值为.12.已知=13.点M,N,P,Q在数轴上的位置如图所示,这四个点中有一个点表示实数,这个点是.三、计算题14.实数运算:(1);(2).15.在数轴上表示下列各数,并用“<”连接.,0,,,16.已知的立方根是3,的算术平方根是4,c是的整数部分,一个正数的两个平方根分别是和,求的平方根.17.已知的平方根是,的立方根是.(1)求的值.(2)求的平方根.18.如图,这是由8个同样大小的立方体组成的魔方,总体积为64cm3.(1)求这个魔方的棱长;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;参考答案:1.D2.C3.A4.B5.B6.D7.A8.A9.>10.211.±512.19.02013.点P14.(1)解:原式===(2)解:原式===.15.解:∵∴数轴表示如下所示16.解:已知的立方根是3的算术平方根是4c是的整数部分一个正数的两个平方根分别是和的平方根为17.(1)解:∵的平方根是∴,解得∵的立方根是∴,且∴,解得∴.(2)解:由(1)可知∴∴的平方根为∴的平方根为.18.(1)解:设这个魔方的棱长为xcm,由题意得:x3=64,解得x=4 ∴这个魔方的棱长为4cm.(2)解:设正方形ABCD的边长为acm由题意得:由(1)得AC=BD=4cm∴魔方的一个面的面积=4×4=16cm2又∵阴影部分的面积是魔方一个面的面积的一半∴∴∴正方形ABCD的边长为.。

实数的复习试题及答案

实数的复习试题及答案

实数的复习试题及答案1. 判断题:实数包括有理数和无理数。

答案:正确。

2. 选择题:下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333...答案:C。

3. 填空题:实数的集合用符号表示为______。

答案:R。

4. 计算题:计算下列表达式的值:(1) √9(2) (-2)^2答案:(1) 3(2) 45. 简答题:请说明实数的分类。

答案:实数可以分为有理数和无理数。

有理数包括整数、分数,而无理数则包括无限不循环小数,如π和√2。

6. 应用题:如果一个数的平方是25,那么这个数是多少?答案:±5。

7. 解答题:解方程2x - 3 = 7。

答案:x = 5。

8. 证明题:证明√2是一个无理数。

答案:假设√2是有理数,那么它可以表示为两个互质整数的比,即√2 = a/b,其中a和b是整数且没有公因数。

然后通过反证法证明这个假设是错误的,从而得出√2是无理数的结论。

9. 多选题:下列哪些数是实数?A. 0B. 1/2C. πD. √3答案:A, B, C, D。

10. 填空题:实数的运算规则包括加法、减法、乘法和______。

答案:除法。

11. 计算题:计算下列表达式的值:(1) √4(2) (-3)^3答案:(1) 2(2) -2712. 简答题:实数的运算性质有哪些?答案:实数的运算性质包括交换律、结合律、分配律和零乘律等。

13. 解答题:解不等式3x + 5 > 11。

答案:x > 2。

14. 证明题:证明对于任意实数a和b,如果a > b,那么a + c > b + c。

答案:根据不等式的性质,可以证明如果a > b,那么对于任意实数c,a + c > b + c。

15. 多选题:下列哪些性质是实数的运算性质?A. 交换律B. 结合律C. 分配律D. 幂运算性质答案:A, B, C。

16. 填空题:实数的运算法则包括加法法则、减法法则、乘法法则和______。

数学提高题专题复习第六章 实数练习题附解析

数学提高题专题复习第六章 实数练习题附解析

数学提高题专题复习第六章 实数练习题附解析一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( ) A .M N < B .M N > C .M N D .M N ≥2.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)3.若2a a a -=,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧4.下列说法中正确的个数有( )①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④相反数等于本身的数是0;⑤绝对值等于本身的数是正数;A .2个B .3个C .4个D .5个 5.若一个正方形边长为a ,面积为3,即23a =,可知a 是无理数,它的大小在下列哪两个数之间( )A .1.5 1.6a <<B .1.6 1.7a <<C .1.7 1.8a <<D .1.8 1.9a <<6.下列实数中是无理数的是( )A .B .C .0.38D .7.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .38.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a -=﹣3a ;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个 9.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12-B .21-C .22-D .22-10.在数轴上表示7和6-的两点间的距离是( )A .76-B .67-C .76+D .(76)-+二、填空题11.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.12.观察下列算式:①246816⨯⨯⨯+=2(28)⨯+16=16+4=20;②4681016⨯⨯⨯+=2(410)⨯+16=40+4=44;…根据以上规律计算:3032343616⨯⨯⨯+=__________13.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).14.如果一个数的平方根和它的立方根相等,则这个数是______.15.若23(2)0y x -+-=,则y x -的平方根_________.16.一个数的立方等于它本身,这个数是__.17.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.18.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.19.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.20.已知2(21)10a b ++-=,则22004a b +=________.三、解答题21.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:3100010=31000000100=,1000593191000000<<,∴31059319100<<.∴能确定59319的立方根是个两位数.第二步:∵59319的个位数是9,39729=∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59, 而333275964<<,则33594<<,可得3305931940<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39.(解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤.(2)填空:321952=__________. 22.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 23.下面是按规律排列的一列数:第1个数:11(1)2--+. 第2个数:()()231112(1)11234⎡⎤⎡⎤----+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 第3个数:()()()()2345111113(1)111123456⎡⎤⎡⎤⎡⎤⎡⎤------+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦. …(1)分别计算这三个数的结果(直接写答案).(2)写出第2019个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.24.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ;25.观察下列各式的计算结果2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果:211-6= × ; 211-10= × ; (2)用你发现的规律计算: 22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果) 26.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++, ∴1p q x -=,∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•; ∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴M N >;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.D解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2);P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2);P 3(1,-1)=P 1(P 2(2,-2))=(0,4);P 4(1,-1)=P 1(P 3(0,4))=(4,-4);P 5(1,-1)=P 1(P 4(4,-4))=(0,8);P 6(1,-1)=P 1(P 5(0,8))=(8,-8);……P 2n-1(1,-1)=……=(0,2n );P 2n (1,-1)=……=(2n ,-2n ).因为2017=2×1009-1, 所以P 2017=P 2×1009-1=(0,21009).故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.3.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a ,得|a|=-a ,故a 是负数或0,∴实数a 在数轴上的对应点在原点或原点左侧故选:B .【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.4.A解析:A【分析】分别利用绝对值的定义、无理数、有理数的定义、相反数的定义分别进行判断即可得出答案.【详解】①0是绝对值最小的有理数;根据绝对值的性质得出,故此选项正确;②无限小数是无理数;根据无限循环小数是有理数判断,故此选项错误;③数轴上原点两侧的数互为相反数;根据到原点距离相等的点是互为相反数,故此选项错误;④相反数等于本身的数是0;根据相反数的定义判断,故此选项正确;⑤绝对值等于本身的数是正数;还有0的绝对值也等于本身,故此选项错误.∴正确的个数有2个故选:A.【点睛】本题主要考查了绝对值的定义、无理数、有理数的定义、相反数的定义等知识,熟练掌握其性质是解题关键.5.C解析:C【分析】分别计算出1.5、1.6、1.7、1.8、1.9的平方,然后与3进行比较,即可得出a 的范围.【详解】解:∵222221.52.25,1.6 2.56,1.7 2.89,1.83.24,1.9 3.61=====又2.89<3<3.24∴1.7 1.8a <<【点睛】此题主要考查了估算无理数的大小,利用平方法是解题关键.6.A解析:A【解析】【分析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【详解】解: A、π是无限不循环小数,是无理数;B、=2是整数,为有理数;C、0.38为分数,属于有理数;D. 为分数,属于有理数.故选:A.【点睛】本题考查的是无理数,熟知初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解答此题的关键.7.D解析:D【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x3=31-,解得x=23+1.故选D.8.A解析:A【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;3a-3a④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.9.D【分析】设点C的坐标是x,根据题意列得212x-+=-,求解即可.【详解】解:∵点A是B,C的中点.∴设点C的坐标是x,则212x-+=-,则22x=-+,∴点C表示的数是22-+.故选:D.【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.10.C解析:C【分析】在数轴上表示7和-6,7在右边,-6在左边,即可确定两个点之间的距离.【详解】如图,7和67在右边,6在左边,7和67-(6)76.故选:C.【点睛】本题考查了数轴,可以发现借助数轴有直观、简捷,举重若轻的优势.二、填空题11.-5【解析】∵32<10<42,∴的整数部分a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.12.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上1 6的算术平方根,依此进行计算即可.【详解】解:==1080+4=1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.13.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若a=b,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b)※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.14.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.15.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:,且,∴y-3=0,x-2=0,..的平方根是.故答案为:.【点睛】此题考查算术平解析:【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1. 【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.16.0或±1. 【分析】根据立方的定义计算即可. 【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1. 故答案为:0或±1. 【点睛】 本题考查了乘方的解析:0或±1. 【分析】根据立方的定义计算即可. 【详解】解:∵(﹣1)3=﹣1,13=1,03=0, ∴一个数的立方等于它本身,这个数是0或±1. 故答案为:0或±1. 【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.17.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可. 【详解】 (⊕2)⊕3=⊕3=3, 故答案为3. 【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.19.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π. 故答案为:π,圆的周长=π•d=1×π=π. 【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.20.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解. 【详解】 解:∵,∴2a+1=0,b −1=0, ∴a=,b =1, ∴,故答案为:. 【点睛】 本题考查了非负数解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解. 【详解】解:∵2(21)0a +=, ∴2a +1=0,b−1=0, ∴a =12-,b =1, ∴222004200411511244a b⎛⎫+=-+=+= ⎪⎝⎭,故答案为:54. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.三、解答题21.(1)48;(2)28 【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可. 【详解】解:(1)第一步:10=100=,11059210100000000<<,10100∴<,∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,,则45<<,可得4050<, 由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28=, 故答案为:28. 【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.22.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783 【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。

七年级数学《实数》提高题及答案

七年级数学《实数》提高题及答案

实数提高题一.选择题(每小题3分,共30分)1.实数a 等于它的倒数,实数b 等于它的相反数,则20152014b a +( )A .0B . 1C .-1D .22.设a =26,则下列结论正确的是( )A .0.55.4<<aB .5.50.5<<aC .0.65.5<<aD .5.60.6<<a3.如图,数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则C 所表示的数是( )A .12-B .21-C .22-D .22-4.下列说法正确的有( )①无理数包括正无理数,0和负无理数;②无理数都可以用数轴上的点表示;③数轴上的点表示无理数;④实数与数轴上的点是一一对应关系.A .1个B .2个C .3个D .4个5.下列结论正确的是( )A . ()662-=--B . 93=-C .()6162±=-D .251625162=⎪⎪⎭⎫ ⎝⎛-- 6.已知实数a 与a 互为相反数,则a ( )A .为任意实数B .为非正实数C .为非负实数D .等于0 7.代数式21-+++x x x 的最小值是( )A .0B .21+C . 1D .不存在8.一个数的算术平方根是a ,比这个数大5的数的算术平方根是( )A .5+aB .5+aC .52+aD .52+a9.若()()y x ,5,53322--=-=则y x 的值为( ) A .0 B .-10 C .0或10 D .10或-100 C A B10.已知:x1,x ,x ,1x 02则<<的大小关系是( ) A . x x x >>21 B . 21x xx >> C .x x x 12>> D .21x x x>> 二.填空题(每小题3分,共30分) 11.81的平方根是 .12.一个正数x 的两个平方根是3a 1-+和a ,则________,==x a .13.当______y =时, 1y 2008--的值最大是 .14.平方根与立方根相同的数为x ,立方根与算术平方根相同的数为y ,则y x +的立方根是 .15.实数b a ,满足7,60==<b a ab 且,则b a +的立方根为 .16.已知b a ,为实数,且0262=-++b a ,则b a +的绝对值为 .17.在数轴上到原点距离等于3的所有点所表示的数是 .18.若的立方根,是的平方根,是64b 16a 则b a += .19.已知b a ,互为相反数,d ,c 互为倒数,m 的倒数等于它的本身,则()m m b a mcd -++的结果等于 .20.观察思考下列计算过程:∵ 112=121,∴121=11;同样:∵ 1112=12321, ∴ 12321=111;…由此猜想:76543211234567898=三:解答(40分)21.已知22(4)0,()y x y xz -++=求的平方根。

初中数学提高题专题复习第六章 实数练习题附解析

初中数学提高题专题复习第六章 实数练习题附解析一、选择题1.在下面各数中无理数的个数有( )-3.14,,227,0.1010010001...,+1.99,-3π A .1个 B .2个 C .3个 D .4个2.对于每个正整数n ,设()f n 表示(1)n n +的末位数字.例如:(1)2f =(12⨯的末位数字),(2)6f =(23⨯的末位数字),(3)2f =(34⨯的末位数字),…则(1)(2)(3)(2019)f f f f ++++的值为( ) A .4040 B .4038 C .0 D .40423.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 5 4.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数5.1的结果应该在下列哪两个自然数之间( )A .3,4B .4,5C .5,6D .6,76.1的值( )A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间7.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有( ) A .1个 B .2个 C .3个D .4个8.若4a =,且a +b <0,则a -b 的值是( )A .1或7B .﹣1或7C .1或﹣7D .﹣1或﹣79.若a 、b 为实数,且满足|a -2|0,则b -a 的值为( )A .2B .0C .-2D .以上都不对10.在下列实数中,无理数是( )A .337B .πCD .13二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤372-的最大整数,则M +N 的平方根为________.13.如果一个有理数a 的平方等于9,那么a 的立方等于_____.14.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.15.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 16.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.172(2)-的平方根是 _______ ;38a 的立方根是 __________.18.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.19.如果36a =b 7的整数部分,那么ab =_______.20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.22.(1)观察下列式子:①100222112-=-==;②211224222-=-==;③322228442-=-==;……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立;(2)求01220192222++++的个位数字.23.探究: ()()()211132432222122222222-=⨯-⨯=-==-== …… (1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n 个等式;(3)计算:22018201920202222-2++⋅⋅⋅++.24.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.25.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭ (2326.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据无理数的三种形式求解.【详解】-3.14,,227,0.1010010001...,+1.99,-3π无理数的有:,0.1010010001...,-3π共3个 故选:C【点睛】 本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π等;②③虽有规律但是无限不循环的数,如0.1010010001…,等.2.A解析:A【分析】首先根据已知得出规律,f (1)=2(1×2的末位数字),f (2)=6(2×3的末位数字),f (3)=2(3×4的末位数字),f (4)=0,f (5)=0,f (6)=2,f (7)=6,f (8)=2,f (9)=0,…,找出规律,进而求出即可.【详解】解:∵f (1)=2(1×2的末位数字),f (2)=6(2×3的末位数字),f (3)=2(3×4的末位数字),f (4)=0,f (5)=0,f (6)=2,f (7)=6,f (8)=2,f (9)=0, …,∴每5个数一循环,分别为2,6,2,0,0…,∴2019÷5=403…4,∴f (1)+f (2)+f (3)+…+f (2019)=2+6+2+0+0+2+6+2+…+2+6+2+0=403×(2+6+2)+10=4040故答案为:A .【点睛】此题主要考查了数字变化规律,根据已知得出数字变化以及求出f (1)+f (2)+f (3)+…+f (2019)=403×(2+6+2)+10是解题关键.3.C解析:C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A.﹣4是16的平方根,说法正确;B.2,说法正确;C.116的平方根是±14,故原说法错误;D.,说法正确.故选:C.【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.4.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A、实数包括有理数和无理数,故此命题是假命题;B、有理数就是有限小数或无限循环小数,故此命题是假命题;C、无限不循环小数就是无理数,故此命题是假命题;D、无论是无理数还是有理数都是实数,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.5.D解析:D【分析】直接利用已知无理数得出最接近的整数,进而得出答案.【详解】解:∵72=49,82=64,∴78<<,∴617<<,1的结果应该在自然数6,7之间.故选:D.【点睛】本题考查了无理数的整数解问题,掌握求无理数的整数解的方法是解题的关键.6.B解析:B【分析】利用36<38<49得到671进行估算.【详解】解:∵36<38<49,∴67,∴51<6.故选:B .【点睛】本题考查了估算无理数的大小,熟练掌握运算法则是解本题的关键.7.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 8.D解析:D【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a 与b 的值,即可求出-a b 的值.【详解】解:∵3a ==,且a +b <0, ∴a =−4,a =−3;a =−4,b =3,则a −b =−1或−7.故选D .【点睛】本题考查实数的运算,掌握绝对值即二次根式的运算是解题的关键.9.C解析:C【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=,所以a=2,b=0.故b -a 的值为0-2=-2.故选C.10.B解析:B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:337,13是有理数, π是无理数,故选B .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题11..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M a<<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤22的最大整数,∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.13.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则. 14.【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1、的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:,解得:,故答案解析:2-【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:=12,解得:,故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.15.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立, ∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.16.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.17.2a【分析】根据平方根的定义及立方根的定义解答.【详解】的平方根是,的立方根是2a ,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a 的立方根是2a ,故答案为:,2a .【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根.18.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.19.12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】6a==479<<<<23<<∴的整数部分是2,即2b=则6212ab=⨯=故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x、y的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x、y的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030 xy+=⎧⎨-=⎩解得23 xy=-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)①21,②6,m n +;(2)35b =;(3)65a =【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值.【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ;(2)∵f (10m+n )=m+n ,且f (b )=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有()f a x y =+∵()510a f a -=∴()10510x y x y +-+=∴5410x y -=∵x 、y 为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a =【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.22.(1)11222n n n ---=,理由见解析;(2)01220192222++++的个位数字为5.【分析】(1)找规律,发现等式满足11222n n n ---=,证明,即可.(2)利用公式11222n n n ---=,分别表示每个项,利用相消法,计算结果,即可.【详解】(1)11222n n n ---=理由是:122n n --11122n n +--=-11222n n --=⨯-()1212n -=-⨯12n -=(2)原式=()()()()1021322020201922222222-+-+-++-2020022=-()505421=-505161=-因为6的任何整数次幂的个位数字为6.所以505161-的个位数字为5,即01220192222++++的个位数字为5.【点睛】本题考查了与数字运算有关的规律题,仔细观察发现规律是解题的关键.23.(1)655552222122-=⨯-⨯=;(2)12222122n n n n n +--=⨯⨯=;(3)-2【分析】(1)直接根据规律即可得出答案;(2)根据前3个式子总结出来的规律即可求解;(3)利用规律进行计算即可.【详解】解(1)26﹣25=2×25﹣1×25=25 ,(2)2n +1﹣2n =2×2n ﹣1×2n =2n ,(3)21+22+…+22018+22019﹣22020=21+22+…+22018+(22019﹣22020)=21+22+…+22018﹣22019=21+22+…+22017+(22018﹣22019)=…=21﹣22=-2.【点睛】本题主要考查有理数的运算与规律探究,找到规律是解题的关键. 24.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.25.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++=(3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (54)-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。

初中数学提高题专题复习第六章 实数练习题含答案

初中数学提高题专题复习第六章 实数练习题含答案一、选择题1.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >0 2.下列结论正确的是( ) A .64的立方根是±4B .﹣18没有立方根 C .立方根等于本身的数是0D 327-=﹣33.若2(1)|2|0x y -++=,则x y +的值等于( ) A .-3B .3C .-1D .1 4.若一个正方形边长为a ,面积为3,即23a =,可知a 是无理数,它的大小在下列哪两个数之间( )A .1.5 1.6a <<B .1.6 1.7a <<C .1.7 1.8a <<D .1.8 1.9a <<5.2222是2的算术平方根;④122<<.正确的是( )A .①④B .②④C .①③④D .①②③④ 6.下列各数中,比-2小的数是( )A .-1B .-5C .0D .1 7.下列说法正确的是( )A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0 C .27的平方根是7D .负数有一个平方根 8.下列各式中,正确的是( )A ()233-=-B 42=±C 164=D 393=9.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)232;(47是7的平方根.A .1B .2C .3D .410.若a 、b 为实数,且满足|a -2|2b -0,则b -a 的值为( )A .2B .0C .-2D .以上都不对二、填空题11.写出一个3到4之间的无理数____.12.m 的平方根是n +1和n ﹣5;那么m +n =_____.13.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.15.若()221210a b c -+-=,则a b c ++=__________.16.已知72m =,则m 的相反数是________.17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____. 18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.34330035.12=30.3512x =-,则x =_____________.20.若一个正数的平方根是21a +和2a +,则这个正数是____________.三、解答题21.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322+=-a b b a 的值. 解:由题意得(3)(20-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数, 2是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -+=+x+y 的值.22.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。

(完整版)实数提高练习题

(完整版)实数提⾼练习题实数提⾼练习题⼀、选择题1.在实数5、37 ().A .5B .37C D 2.-3216-的⽴⽅根是()(A )6(B)-6(C)36(D) -363.估算24+3的值()(A )在5和6之间(B )在6和7之间(C )在7和8之间(D )在8和9之间 4.下列说法正确的个数是()①⽆理数都是实数;②实数都是⽆理数;③⽆限⼩数都是有理数;④带根号的数都是⽆理数;⑤除了π之外不带根号的数都是有理数.(A)1个(B )2个(C )3个(D )4个5. ⽆理数3-的相反数是()A .3-B .3.C .31 D .31-6.若a 2=9,b 3=-64,则 a +b 的所有可能情况为()(A )7 (B )-7 (C )-1 (D )-7或-1 7.若2a b =.则下列等式中成⽴的是()(A )a b = (B )33a b = (C )a b = (D)=8.实数13、4、6π中,分数的个数是()(A )0 (B )1 (C )2 (D )39.若x <2,化简2)2(-x -|3-x |的正确结果是()(A )-1 (B )1 (C )2x -5 (D )5-2x10.如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的⼤⼩关系表⽰正确的是() A .a <1<-aB .a <-a <1C .1<-a <aD .-a <a <11A(第10题图)11.若225a =,3b =,则a b +=()A .-8B .±8C .±2D .±8或±2 ⼆、填空题12.数轴上-5到原点的距离为___________,表⽰-3.14的点在-π点的___ ____边.13.若将三个数11,7,3-表⽰在数轴上,其中能被如图所⽰的墨迹覆盖的数是__________________. 14.当m <0时,则2m +33m 的值为________. 15.若m >1,则m _______3m .(填“>”或“<”)16. ⼀个⾃然数的算术平⽅根为a,则⽐它⼤4的⾃然数的平⽅根为____。

部编数学七年级下册【单元测试】第六章实数(综合能力拔高卷)(解析版)含答案

人教版七年级数学下册【单元测试】第六章实数(综合能力拔高卷)(考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时90分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题:本题共10个小题,每小题2分,共20分。

在每小题给出的四个选项中只有一项是符合题目要求的。

a-是16的平方根,则a的值为()1.(2021·全国·七年级期末)若3A.4B.4±C.256D.1-或7【答案】D【分析】根据平方根的定义得到a-3=4,或a-3=-4,即可求出a的值.a-是16的平方根,【详解】解:∵3∴a-3=4或a-3=-4,∴a=7或a=-1.故选:D【点睛】本题考查了平方根的定义,熟知16的平方根是±4是解题关键.2.(2020·江苏昆山·七年级期中)下列各数:1,π3数的个数为()A.2B.3C.4D.5【答案】A【分析】根据无理数的定义:“无限不循环的小数是无理数”逐个分析判断即可.【详解】解:1,3p ==13,是有理数,,p 2个,故选A【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有p 的数.3.(2022·江苏无锡·七年级期末)下列各式中,正确的是( )A .4=±B 3=±C 3=D 4=-【答案】A【分析】根据平方根、算术平方根、立方根的定义逐项分析即可.【详解】解:A.4±,正确;3=,故不正确;3=-,故不正确;4=,故不正确;故选A .【点睛】本题考查了平方根、算术平方根、立方根的定义,熟练掌握定义是解答本题的关键.4.(2021·广西三江·七年级期中)若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数【答案】B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B .【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.5.(2021·广东·深圳市沙井中学七年级期中)下列判断中,你认为正确的是( )A .0的倒数是0B .2p是分数C .34D 3【答案】C【分析】根据倒数的概念即可判断A 选项,根据分数的概念即可判断B 选项,根据无理数的估算方法即可判断C 选项,根据算术平方根的概念即可判断D 选项.【详解】解:A 、0不能作分母,所以0没有倒数,故本选项错误;B 、2p属于无理数,故本选项错误;C 、因为 9<15<16,所以 34,故本选项正确;D 3,故本选项错误.故选:C .【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.6.(2021·福建福安·七年级期中)点A 在数轴上的位置如图所示,则点A 表示的数可能是( )A B C D 【答案】A 【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A 表示的数在4至4.5之间,A 、∵16<18<20.25,∴,故该选项符合题意;B 、∵9<10<16,∴,故该选项不符合题意;C 、∵20.25<24<25,∴,故该选项不符合题意;D 、∵25<30<36,∴,故该选项不符合题意;故选:A .【点睛】本题考查实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.7.(2021·广西港口·七年级期中)﹣π,﹣3A .3p -<-<<B .3p -<-<<C .3p -<-<<D .3p -<-<<【答案】B【分析】根据实数的大小比较法则即可得.【详解】解: 3.1430p -»-<-<,1.5<=,1.5>=,则3p -<-<<故选:B .【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.8.(2021·吉林珲春· )A .3与4B .4与5C .5与6D .12与13【答案】B【分析】估算即可得到结果.【详解】解:162225<<Q ,\45<<,故选:B .【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.9.(2021·河南伊川·七年级期中)有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A B.2C D.【答案】C【分析】直接利用立方根以及算术平方根、无理数分析得出答案.【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2,即y=.故选:C.【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.10.(2022·北京·七年级期末)我国明朝数学家程大位所著的《算法统宗》中介绍了一种计算乘法的方法,称为“铺地锦”.例如,如图1所示,计算31×47,首先把乘数31和47分别写在方格的上面和右面,然后以31的每位数字分别乘以47的每位数字,将结果计入对应的格子中(如3×4=12的12写在3下面的方格里,十位1写在斜线的上面,个位2写在斜线的下面),再把同一斜线上的数相加,结果写在斜线末端,最后把得数依次写下来是1457,即31×47=1457.如图2,用“铺地锦”的方法表示两个两位数相乘,则a的值是()A.5B.4C.3D.2【答案】A【分析】根据“铺地锦”的定义计算即可.【详解】解:设3下面的数字为x根据“铺地锦”的定义310a x a =+,解得5a x =∵5ax =必须是正整数,且a 为十位上的数字∴5a =故选:A【点睛】本题考查新定义;能够理解新定义,3a 的结果用各位数字正确表示出来是解题的关键.二、填空题:本题共8个小题,每题3分,共24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1. 给出下列说法:①6-是36的平方根;②16的平方根是4
;③2=
是无理数;⑤一个
无理数不是正数就是负数.其中,正确的说法有( ) A.①③⑤ B.②④ C.①③ D.①
2. 在实数范围内,下列命题是真命题的是( ) A.若x y >,则2
2
x y >
B.若2x =,则x y = C.若x y =,则x y =
=
x y =
3. 以下四个命题
①若a
是实数;②若a
a
是有理数;④若a

A.①④ B.②③ C.③ D.④
4. 一个正整数的算术平方根为a ,则比这个正整数大3的数的算术平方根是( ) A.3a +
B.a +
5. 当01a <<,下列关系式成立的是( )
a >
a >
a <
a <
a <
a >
a >
a <
6. 0是( )A.最小的自然数 B.最小的整数 C.最小的实数
D.以上都不对
7. 下列说法中,不正确的是( ) A.若a 为任一有理数,则a 的倒数是1
a
B.若a b =,则a b =± C.若实数a 的倒数为3,则13
a =
D.2
10a +> 8、如图,数轴上表示1
的对应点分别为A B ,,点B 关于A 的对称点为C ,则点C 表示的数是( )
1
B.1
C.2
2
9. 估算24+3的值( )
(A )在5和6之间 (B )在6和7之间 (C )在7和8之间 (D )在8和9之间 10. 若a 2=9,b 3
=-64,则a +b 的所有可能情况为( ) (A )7 (B )-7 (C )-1 (D )-7或-1
11. 下列结论正确的是( )①4-= -4- ②2
2)(-=2 ③(2-)2= -2
④38-= -38 ⑤332)
(-= -2 ⑥(32-)3= -2 A 、2个 B 、3个 C 、4个 D 、5个
12. 若一个数的平方根与它的立方根完全相同,则这个数是( )
(A )0 (B )1 (C )-1 (D )±1, 0
13. 的大小应为( ) A.7~8之间
B.8.0~8.5之间 C.8.5~9.0之间
D.9~10之间
14. 若4,则估计m 的值所在的范围是 ( ) A.1<m <2 B.2<m <3 C.3<m <4 D.4<m <5
二、填空题
15. 的算术平方根为 .
16. 大于的整数是 .
17. 若195+x 的立方根是4,则34x +的平方根是 ;
18. ⑴ 一个数的平方等于它的本身的数是 ⑵ 平方根等于它的本身的数是 ⑶ 算术平方根等于它的本身的数是 ⑷ 立方根等于它的本身的数是 ⑸ 大于0且小于π的整数是 ⑹ 满足21-<x <15-的整数x 是 19. 当m <0时,则2m +33m 的值为___________.
20. 若2-m 与2m +1是同一个数的平方根,则这个数可能是_________.
21. 写出3到4之间的一个无理数___________. 22. 若2x -3的平方根是±5,则x= _______ 23. 观察下列式子,猜想规律并填空
____76543211234567898,;11111234321,11112321;;11121;11=∴====
24. 的点的距离最近的整数点所表示的数是 .
a 和
b 之间,且<b , 那么a 、b 的值分别是______.
26. 计算:
(1)(-25)2 (2)?±52+122
(3) 35+225-45 (4)5 37+-249-37
27. 计算:(1 (2)12+;
(3)2
3
1(2)2⎛⎫
-- ⎪⎝⎭
(4)、+=
28. 已知a 、b
=b+4,求a 、b 的值.
29. 计算:
(1)
-2(3
); (2)3
64--9+2
541⎪⎭

⎝⎛-.
30. 计算210,410,610,3610,3910,31210,你能从中找出计算的规律吗?如果将根号内的10换成正数a ,这种计算的规律是不只仍然保持?
31. 下列四个例题中,正确的是( )
A.数轴上任意一点都表示一个有理数 B.数轴上任意一点都表示一个无理数 C.数轴上的点与实数一一对应 D.数轴上的点与有理数一一对应 32. 已知正数m 满足条件2
39m =,则m 的整数部分为( ) A.9
B.8
C.7
D.6
33. 如图,实数P
=( ) A.23P - B.1 C.1- D.23P -+
34. 343-开立方所得的数是( ) A.7±
B.7-
C.7
D.35. m
n
m n -= . 36、
a ,则a 可表示为 .
37、
的整数部分为 ,小数部分为
.的立方根是 ,的平方根是 .
38、 估算下列数的大小
(1
0.1)≈ (2
1)≈
(3
0.1)≈ (4
0.1)≈ (5
1)≈ 39. 如果a a >,那么a 的取值范围是 .
40.
在数轴上与原点的距离是的点所表示的实数是_________.。

相关文档
最新文档