C++重点题型

合集下载

2021年内蒙古中考英语重点题型限时训练:完形填空+ 阅读理解(C)+ 选词填空+ 任务型阅读

2021年内蒙古中考英语重点题型限时训练:完形填空+ 阅读理解(C)+ 选词填空+ 任务型阅读

完形填空+ 阅读理解(C)+ 选词填空+ 任务型阅读[限时:30分钟]Ⅰ.完形填空A teacher decided to have her class play a game. The teacher told each student to bring a plastic bag with a few potatoes in it to school. Each student would “name” their potatoes after people they did not like. 1, the number of potatoes would be 2depending on how many people each student hated.The next day, with their potatoes, all the students went to school 3the game. Some kids had just one or two potatoes, while others had as many as five or six. The teacher then told the children that they would have to carry their potatoes with 4wherever they went for one week. Several days 5, some of the students started to complain(抱怨), as their potatoes began to rot(腐烂) and 6bad. The students who carried 7potatoes began to get unsatisfied with the heavy bags.One week later, the game 8. The teacher asked, “How did you 9carrying around your potatoes for a week?”The students complained once again. The teacher simply smiled and said, “This is what it’s like to carry hatred(仇恨) in your heart. You have to carry it with you wherever you go. If you can’t tolerate(容忍) carrying rotten potatoes for one week, how can you imagine having 10in your heart for a whole lifetime? Forgive others and move on with your life.”()1.A.However B.In a wordC.ThereforeD.After all()2.A.different B.similarC.the sameD.small()3.A.to watch B.to join inC.to winD.to lose()4.A.it B.thatC.themD.school bags()5.A.walked B.passed onC.passedD.walked by()6.A.taste B.smellC.soundD.feel()7.A.few B.someC.moreD.any()8.A.continued B.was doneC.beganD.was over()9.A.feel like B.look likeC.enjoyD.just like()10.A.love B.happinessC.friendshipD.hateⅠ. 阅读理解How can cactus(仙人掌) help the world? It can provide a new kind of sustainable fuel(可持续燃料). Nopalimex, a company in Mexico, has made one of the world’s first cactus-powered factories. The idea came to Sosa in Nopalimex when he was looking for ways to save money for his food factory. He now powers his factory with cactus gas(气体). The cost to produce the gas is half the cost of electricity.Soon, the gas produced by Nopalimex will also be used in cars. Nopalimex’s gas is made by using the prickly pear(刺梨)—a kind of cactus. To make the gas, the prickly pear is mixed together with manure(肥料). Then the mixture produces the gas that can be used as fuel.Why cactus? Fuel can be made from other plants such as corn, but there are a few reasons why cactus is a betterchoice. First, prickly pears need very little water and very little care, and grow well in hot temperatures. Today, these characteristics are key. Also, unlike corn, prickly pears don’t need space that could be used for other food plants. They can grow in areas where many food plants can’t grow. Last, after making gas from prickly pears and manure, their byproducts(副产品) can be used to help grow food.Scientists still need to do more research on making and using prickly pear gas. As projects like Nopalimex show, we have the possibility to produce more sustainable fuel to power our lives.1.How can cactus help the world?()A.By saving farmers’ money.B.By providing a new kind of sustainable fuel.C.By taking the place of corn.D.By producing a lot of electricity and gas.2.Why does Sosa power his factory with cactus gas?()A.Because he wants to save money for his food factory.B.Because he has grown a lot of cactus and corn in his town.C.Because he wants to be well-known around the world.D.Because he wants to grow cactus instead of corn.3.What does the underlined word “mixture” in Paragraph 2 refer to?()A.The Nopalimex company.B.The manure.C.The prickly pear and manure.D.Cactus.4.What is Paragraph 3 mainly about?()A.How cactus is used to produce gas.B.Where we can grow a lot of cactus.C.What Nopalimex does with cactus.D.Why cactus is a better choice to make fuel.Ⅰ. 选词填空阅读下列短文,用方框内所给单词的正确形式填空。

人教版小学数学六年级上册重点题型专项练习加答案(轻巧夺冠)

人教版小学数学六年级上册重点题型专项练习加答案(轻巧夺冠)

人教版小学数学六年级上册重点题型专项练习一.选择题(共10题, 共20分)1.如图, 赵锐从银行出发向南走1000米到学校, 然后向西走1200米.他现在走到了邮局的()面。

A.西B.东C.西北D.东南2.已知甲的80%等于乙的30%, 那么甲()乙。

(甲、乙均不为0)A.大于B.等于C.小于D.无法判断3.自行车的车轮快速旋转形成的图形是()。

A.正方形B.圆形C.三角形4.把一张周长是25.12 dm的圆形纸片沿直径剪成两个半圆形, 每个半圆形的周长是()dm。

A.12.56B.16.56C.20.56D.10.5 65.下列说法正确的是()。

A.自然数都是整数B.小数的末尾加上0, 小数变小 C.0.75000比75%小6.为防止“非典”, 在一个活动场所的50人中有一部分人戴上口罩, 下面的比率中, ()不是戴口罩和没戴口罩人的比率。

A.1: 1B.13: 12C.7: 3D.3: 17.在下面物体中, 表面是圆形的物体是()。

A.硬币B.数学课本C.方木条8.在圆圈里填上适当的符号。

()A.>B.=C.<9.参加某次数学竞赛的男生和女生人数的比是2: 3, 这次竞赛的平均成绩是93分, 其中男生的平均成绩是90分, 则女生的平均成绩是()分。

A.95B.94C.93D.9210.有甲、乙、丙三个仓库, 甲、乙两仓库存货吨数的比是5: 11, 乙、丙两仓库存货吨数的比是3: 2, 那么()仓库存货最少。

A.甲B.乙C.丙二.判断题(共10题, 共20分)1.如图, 求“?”表示的数既可以列式为:++, 也可以列式为:×3。

()2.甲数比乙数多35%, 乙数比甲数少35%。

()3.从学校在电影院的北偏东20度方向上, 也可以说成学校在电影院的东偏北70度方向上。

()4.扇形的两条直边可以不是圆的半径。

()5.一本书己经看了, 已看与未看页数的比是3:5。

()6.比的前项和后项同时乘或者除以相同的数, 比值不变。

第三章:函数的概念与性质重点题型复习-【题型分类归纳】(解析版)

第三章:函数的概念与性质重点题型复习-【题型分类归纳】(解析版)

第三章:函数的概念与性质重点题型复习题型一函数的概念辨析【例1】下列关于函数与区间的说法正确的是()A.函数定义域必不是空集,但值域可以是空集B.函数定义域和值域确定后,其对应法则也就确定了C.数集都能用区间表示D.函数中一个函数值可以有多个自变量值与之对应【答案】D【解析】对于A,函数的定义域和值域均为非空数集,A错误;对于B,若函数的定义域和值域均为R,对应法则可以是y x=,也可以是2=,B错误;y x对于C,自然数集无法用区间表示,C错误;对于D,由函数定义可知,一个函数值可以有多个自变量值与之对应,D正确.【变式1-1】下列对应关系或关系式中是从A 到B 的函数的是( ) A .A ⊆R ,B ⊆R ,221x y +=B .{}1,0,1A =-,{}1,2B =,:1f x y x →=+C .A =R ,B =R ,1:2→=-f x y x D .A =Z ,B =Z ,:21→=-f x y x 【答案】B【解析】对于A ,221x y +=可化为21y x =±-显然对任意x A ∈(1x =±除外),y 值不唯一,故不符合函数的定义; 对于B ,符合函数的定义;对于C ,当2x =时,对应关系无意义,故不符合函数的定义; 对于D ,当x 为非正整数时,对应关系无意义,故不符合函数的定义. 故选:B【变式1-2】已知集合{0,1,2}A =,{1,1,3}B =-,下列对应关系中,从A 到B 的函数为( )A .f :x y x →=B .f :2x y x →=C .f :2x y x →=D .f :21x y x →=-【答案】D【解析】对A :当0,1,2x =时,对应的y x =为0,1,2,所以选项A 不能构成函数;对B :当0,1,2x =时,对应的2y x 为0,1,4,所以选项B 不能构成函数;对C :当0,1,2x =时,对应的2y x =为0,2,4,所以选项C 不能构成函数; 对D :当0,1,2x =时,对应的21y x =-为1-,1,3,所以选项D 能构成函数;故选:D.【变式1-3】如图所示,下列对应法则,其中是函数的个数为( )A .3B .4C .5D .6 【答案】A【解析】①②③这三个图所示的对应法则都符合函数的定义,即A 中每一个元素在对应法则下,在B 中都有唯一的元素与之对应, 对于④⑤,A 的每一个元素在B 中有2个元素与之对应,∴不是A 到B 的函数,对于⑥,A 中的元素3a 、4a 在B 中没有元素与之对应,∴不是A 到B 的函数,综上可知, 是函数的个数为3.故选:A.【变式1-4】下列关系中是函数关系的是( )A .等边三角形的边长和周长关系B .电脑的销售额和利润的关系C .玉米的产量和施肥量的关系D .日光灯的产量和单位生产成本关系 【答案】A【解析】根据函数关系的定义可得,选项A 中,当等边三角形的边长取一定的值时,周长有唯一且确定的值与其对应,所以等边三角形的边长和周长符合函数关系;其他选项中,两个量之间没有明确的对应关系,所以不是函数关系故选:A【变式1-5】若函数()y f x =的定义域M ={x |22x -≤≤},值域为N ={y |02y ≤≤},则函数()y f x =的图象可能是( )A .B .C .D .【答案】B【解析】A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},故错误;C 中图象不表示函数关系,因为存在一个x 对应两个y ,不满足函数定义;D 中值域不是N ={y |0≤y ≤2}.只有B 中的定义域和值域满足题意,且表示函数关系,符合题意.故选:B.题型二 判断是否为同一个函数【例2】下列各组函数中,表示同一函数的是( )A .()()21,11x f x g x x x -==+- B .()()22,f x x g x x ==C .()()2,f x x g x x =D .()()211,1f x x x g x x +--【答案】C【解析】A. 函数()211x f x x -=-的定义域为{}|1x x ≠,()1g x x =+的定义域为R ,故不是同一函数;B. ()2f x x R ,()2g x x =的定义域为[0,)+∞,故不是同一函数;C. ()()2,f x x g x x x=的定义域都是R ,且解析式相同,故是同一函数;D. ()11f x x x +-{}|1x x ≥,()21g x x =-{|1x x ≥或1}x ≤-,故不是同一函数,故选:C【变式2-1】下列各组函数中,表示同一函数的是( )A .()0f x x =,()xg x x = B .()211x f x x -=-,()1g x x =+C .()11f x x x -+()21g x x =-D .()f x x =,()2g x x =【答案】A【解析】A 中,()0f x x =,()xg x x= 定义域都为{|0}x x ≠ ,对应关系以及值域相同,故为同一函数;B 中,()211x f x x -=-,定义域为{|1}x x ≠,()1g x x =+定义域为R ,故不是同一函数;C 中,()11f x x x =-+定义域为{|1}x x ≥,()21g x x -{|1x x ≥或1}x ≤- ,故不是同一函数;D 中,()f x x =,定义域为R ,()2g x x =定义域为{|0}x x ≥,故不是同一函数;故选:A【变式2-2】下列各组函数是同一函数的是( )A .2()f x x =与2()(1)g x x =+B .3()f x x -与()g x x =-C .()xf x x =与01()g x x=D .()33f x x x =+-2()9g x x =-【答案】C【解析】对于A ,()2f x x =,()()21g x x =+,对应关系不同,即不是同一函数,故A 不正确;对于B ,3()f x x x x -=--(,0]-∞,()g x x =-(,0]-∞, 定义域相同,对应关系不同,函数不是同一函数,故B 不正确; 对于C ,()1xf x x==,定义域为()(),00,∞-+∞,01()1g x x ==,定义域为()(),00,∞-+∞,定义域、对应关系相同,故为同一函数,故C 正确;对于D ,()33f x x x =+-[)3,+∞,2()9g x x =-(][),33,∞∞--⋃+,定义域不同,函数不是同一函数,故D 不正确;故选:C【变式2-3】下列各组函数是同一函数的是( )A .321x x y x +=+与y x = B .2x y x =与y x =C .||x y x=与1y = D .()21y x =-1y x =-【答案】A【解析】对于A ,321x xy x x +==+的定义域为R ,y x =的定义域为R ,则两个函数的定义域和对应关系都相同,是同一函数;对于B ,2x y x x==的定义域为{}0x x ≠,y x =的定义域为R ,则两个函数的定义域不同,不是同一函数; 对于C ,||x y x=的定义域为{}0x x ≠,1y =的定义域为R ,则两个函数的定义域不同,不是同一函数;对于D ,()211y x x =-=-和1y x =-的对应关系不同,故不是同一函数.故选:A.题型三 求函数的定义域【例3】函数()1321f x x x =--的定义域为( ) A .2{|3x x >且1}x ≠ B .2{|3x x <或1}x >C .2{|1}3x x ≤≤ D .2{|3x x ≥且1}x ≠ 【答案】D 【解析】由题得3202,103x x x -≥⎧∴≥⎨-≠⎩且1x ≠.所以函数的定义域为2{|3x x ≥且1}x ≠故选:D【变式3-1】函数()20213y x x=--的定义域为( )A .1,2∞⎛⎫- ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭ C .11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭D .11,,322⎛⎫⎛⎤-∞⋃ ⎪ ⎥⎝⎭⎝⎦【答案】C【解析】要使函数()20213y x x=--有意义, 则有30210x x ->⎧⎨-≠⎩,解得3x <且12x ≠,所以其定义域为11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式3-2】已知函数(+1)f x 的定义域为[1,2],则(23)f x -+的定义域为( ) A .[1,2] B .1[0,]2 C .[1,1]- D .1[,1]2【答案】B【解析】因为函数(+1)f x 的定义域为[1,2],所以12x ≤≤,则2+13x ≤≤, 所以22+33x ≤-≤,解得102x ≤≤, 所以(23)f x -+的定义域为1[0,]2,故选:B【变式3-3】已知函数()y f x =的定义域为[2,3]-,则函数(21)1f x y x +=+的定义域为( )A .3[,1]2- B .3[,1)(1,1]2--⋃- C .[3,7]- D .[3,1)(1,7]--⋃- 【答案】B【解析】由题意得:2213x -≤+≤,解得:312x -≤≤,由10x +≠,解得:1x ≠-,故函数的定义域是(]3,11,12⎡⎫---⎪⎢⎣⎭,故选:B .【变式3-4】函数f (x )221mx x --+R ,则实数m 的取值范围是( ) A .(0,1) B .(﹣∞,﹣1] C .[1,+∞) D .(﹣∞,﹣1) 【答案】B【解析】f (x )的定义域是R ,则2210mx x --+≥恒成立,即2+210mx x -≤恒成立,则0Δ0m ⎧⎨≤⎩<,解得1m ≤-,所以实数m 的取值范围为(],1-∞-.故选:B.【变式3-5】若函数2()1f x ax ax =++R ,则实数a 的取值范围是__________. 【答案】[0,4)【解析】()f x 的定义域是R ,则210ax ax ++>恒成立,0a =时,2110ax ax ++=>恒成立, 0a ≠时,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<, 综上,04a ≤<. 故答案为:[0,4).题型四 求函数的解析式【例4】已知函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,则()2f =( ) A .1 B .3 C .7 D .9 【答案】D【解析】因为函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,令()4f x x t -=,则()4f x x t =+, 所以()45f t t t =+=,解得1t =,所以()41f x x =+,(2)2419f =⨯+=,故选:D【变式4-1】已知二次函数()f x 满足()221465f x x x +=-+,求()f x 的解析式; 【答案】()259f x x x =-+【解析】设二次函数()()20f x ax bx c a =++≠,则()()()2212121f x a x b x c+=++++()()22442465ax a b x a b c x x =+++++=-+,故44,426,5a a b a b c =+=-++=,解得1,5,9a b c ==-=,故()259f x x x =-+.【变式4-2】若函数()63f g x x ⎡⎤=+⎣⎦,且()21g x x =+,则()f x 等于( ) A .129x + B .61x + C .3 D .3x 【答案】D【解析】令()21g x x t =+=,则12t x -=()63132f t t t -∴=⨯+=,即()3f x x =故选:D.【变式4-3】设函数1121f x x ⎛⎫+=+ ⎪⎝⎭,则()f x 的表达式为( )A .()111x x x +-≠B .()111x x x +-≠C .()111xxx +≠-- D .()211xx x ≠-+ 【答案】B【解析】令()111t t x=+≠,则可得11xt 1t所以()()211111t f t t t t +=+=-≠-,所以()()111x f x x x +-≠=,故选:B【变式4-4】若对任意实数x ,均有()2()92f x f x x --=+,求()f x . 【答案】32x -.【解析】利用方程组法求解即可;∵()2()92f x f x x --=+(1) ∴()()()292f x f x x --=-+(2) 由(1)2(2)+⨯得3()96f x x -=-+, ∴()32()f x x x R =-∈. 故答案为:32x - .【变式4-5】设函数()f x 是R →R 的函数,满足对一切x ∈R ,都有()()22f x x f x +-=,则()f x 的解析式为()f x =______.【答案】2,111,1x x x ⎧≠⎪-⎨⎪=⎩ 【解析】由()()22f x x f x +-=,得()()()222f x x f x -+-=,将()f x 和()2f x -看成两个未知数,可解得()()211f x x x=≠-, 当1x =时,()()()212112f f -+-=,解得()11f =,综上,()2,1,11, 1.x f x x x ⎧≠⎪=-⎨⎪=⎩ 故答案为:2,111,1x xx ⎧≠⎪-⎨⎪=⎩.题型五 定义法证明函数的单调性【例5】已知函数()218x f x x -=+,判断并证明()f x 在区间[]22-,上的单调性. 【答案】单调递增,证明见解析【解析】()f x 在区间[]22-,上单调递增,理由如下: 任取1x ,[]22,2x ∈-,且12x x <,()()()()()()()()()()()()22122112121212122222221212121818811888888x x x x x x x x x x x x f x f x x x x x x x -+--+-++----=-==++++++.因为1222x x -≤<≤,所以120x x -<,1244x x -<+<,1244x x -<<, 所以12128x x x x +->- 所以121280x x x x ++->,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间[]22-,上单调递增.【变式5-1】已知函数()1f x x =-()f x 在区间[)1,+∞上的单调性,并证明你的结论.【答案】增函数,证明见解析【解析】()f x 在区间[)1,+∞上是增函数.证明如下:设[)12,1,x x ∀∈+∞,且12x x <, 则()()121212121111f x f x x x x x -=---+-, 因为[)12,1,x x ∈+∞,所以110x -≥210x -≥,又12x x <,所以120x x -<11x -21x -0, 12110x x -->,故()()120f x f x -<, 故()f x 在区间[)1,+∞上是增函数.【变式5-2】证明:函数31()2f x x x=-在区间(0,)+∞上是增函数.【答案】证明见解析.【解析】设12,(0,)x x ∈+∞,且12x x <,而3312121211()()22f x f x x x x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭()3312211122x x x x ⎛⎫=-+- ⎪⎝⎭()()2212121122122x x x x x x x x x x -=-+++()()221211221212x x x x x x x x ⎡⎤=-+++⎢⎥⎣⎦因为221211221210,0,0x x x x x x x x -<++>>,则()()2212112212120x x x x x x x x ⎡⎤-+++<⎢⎥⎣⎦, 所以12())0(f x f x -<,即12()()f x f x <,所以函数31()2f x x x=-在区间(0,)+∞上是增函数.【变式5-3】已知函数()f x 对任意的a ,∈b R ,都有()()()1f a b f a f b +=+-,且当0>x 时,()1f x >,判断并证明()f x 的单调性; 【答案】函数()f x 在R 上为增函数;(2)4(1,)3m ∈-.【解析】设12,x x 是R 上任意两个不等的实数,且12x x <,则210x x x ∆=->,()()()()()()()()212111211111y f x f x f x x x f x f x x f x f x f x ⎡⎤∆=-=-+-=-+--=∆-⎣⎦,由已知条件当0x >时,()1f x >, 所以()1f x ∆>,即0y ∆>, 所以函数()f x 在R 上为增函数;题型六 利用函数的单调性求参数【例6】若函数()1f x ax =+[]1,1-内单调递减,则实数a 的取值范围是______. 【答案】[)1,0-【解析】由题意知,第一步函数单调递减,由复合函数同增异减可知0a <,第二步考虑函数定义域,10ax +≥ 在[]1,1-恒成立,(1)0a f <⎧⎨≥⎩得到10a -≤< 故答案为:10a -≤<.【变式6-1】若1()1ax f x x +=-在区间(1,)+∞上是增函数,则实数a 的取值范围是______.【答案】1a <- 【解析】函数()111+1()=111a x a ax a f x a x x x -+++==+---, 由复合函数的增减性可知,若1()1a g x x +=-在(1,)+∞为增函数,10a ∴+<,1a <-,【变式6-2】(多选)函数2()(21)3f x x a x =+-+在(2,2)-上为单调函数,则实数a的取值范围可以是( )A .3,2⎛⎤-∞- ⎥⎝⎦B .35,42⎛⎫- ⎪⎝⎭C .35,42⎡⎤-⎢⎥⎣⎦ D .5,2⎡⎫+∞⎪⎢⎣⎭【答案】AD【解析】二次函数2()(21)3f x x a x =+-+图象对称轴为:212a x -=-, 因函数()f x 在(2,2)-上为单调函数,于是有: 当函数()f x 在(2,2)-上递减时,2122a --≥,解得32a ≤-, 当函数()f x 在(2,2)-上递增时,2122a --≤-,解得52a ≥, 所以实数a 的取值范围是:32a ≤-或52a ≥.故选:AD【变式6-3】已知函数21,22(),12x mx x f x m x x ⎧-≥⎪⎪=⎨⎪-≤<⎪⎩对于12,[1,)x x ∀∈+∞且12x x ≠,都有1212()[()()]0x x f x f x -->,则m 的取值范围为 ______.【答案】40,3⎛⎤⎥⎝⎦【解析】由题意可知,()f x 在[1,)+∞上为单调增函数,要使my x =-在[1,2)上单调递增,则0m -<,即0m >, 要使21()2f x x mx =-在[2,)+∞上单调递增,则2m ≤, 同时2112222m m ⨯-≥-,解得:43m ≤,综上可知:403m <≤.题型七 求函数的最值或值域【例7】求函数4y x x =+,142x ⎛⎫≤≤ ⎪⎝⎭的最大值与最小值.【答案】最大值172,最小值4 【解析】函数4y x x=+,根据对勾函数的性质可得:4y x x =+在122⎡⎤⎢⎥⎣⎦,上单调递减,[]2,4上单调递增. 当2x =时取到最小值4. 又当12x =时,117822y =+=,当4x =时,415y =+= 所以当12x =时取到最大值172, 所以函数4y x x=+的最大值172,最小值4【变式7-1】312y x x =+- )A .7,2⎛⎤-∞ ⎥⎝⎦B .5,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎫+∞ ⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为312y x x =+-所以1120,2x x -≥∴≤,又312y x x =+-12x ≤时单调递增, 所以当12x =时,函数取得最大值为72,所以值域是7,2⎛⎤-∞ ⎥⎝⎦,故选:A.【变式7-2】函数23()31x f x x -=+的值域( ) A .11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,,33⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭D .22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】依题意,2112112(31)2321113333()3131313331x x x f x x x x x +-+--====-⋅++++,其中111331y x =-⋅+的值域为()(),00,∞-+∞,故函数()f x 的值域为22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故选D .【变式7-3】若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( ) A .132⎡⎤⎢⎥⎣⎦,B .1023⎡⎤⎢⎥⎣⎦, C .51023⎡⎤⎢⎥⎣⎦, D .556⎡⎤⎢⎥⎣⎦, 【答案】B【解析】令()f x t =,1y t t =+,则132t ⎡⎤∈⎢⎥⎣⎦,. 当112t ⎡⎫∈⎪⎢⎣⎭,时,1y t t=+单调递减, 当[]13t ∈,时,1y t t=+单调递增,又当12t =时,52y =,当1t =时,2y =,当3t =时,103y =,所以函数()F x 的值域为1023⎡⎤⎢⎥⎣⎦,,故选:B .【变式7-4】已知{},min ,,,a a ba b b a b≤⎧=⎨>⎩设()f x {}2min 2,42x x x =--+-,则函数()f x 的最大值是( )A .2-B .1C .2D .3 【答案】B【解析】当2242x x x -≤-+-,即[]0,3x ∈时,()2f x x =-在[]0,3x ∈上单调递增,所以()max ()3321f x f ==-=, 当2242x x x ->-+-,即()(),03,x ∈-∞+∞时,()()224222f x x x x =-+-=--+在(),0x ∈-∞上单调递增,在()3,+∞上单调递减,因为()02f =-,()31f =,所以()()31f x f <=; 综上:函数()f x 的最大值为1,故选:B题型八 函数奇偶性的判断【例8】判断下列函数的奇偶性.(1)()31f x x x=-; (2)()(111x f x x x+=--(3)()2233f x x x -- (4)()2,12,112,1x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩.【答案】(1)奇函数;(2)既不是奇函数也不是偶函数(3)既是奇函数又是偶函数;(4)偶函数【解析】(1)()f x 的定义域是()(),00,∞-+∞,关于原点对称,又()()()3311f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,所以()f x 是奇函数.(2)因为()f x 的定义域为[)1,1-,不关于原点对称,所以()f x 既不是奇函数也不是偶函数. (3)因为()f x 的定义域为{}3,3-,所以()0f x =,则()f x 既是奇函数又是偶函数.(4)方法一(定义法)因为函数()f x 的定义域为R ,所以函数()f x 的定义域关于原点对称.①当x >1时,1x -<-,所以()()()()22f x x x f x -=-⨯-==; ②当11x -≤≤时,()2f x =;③当1x <-时,1x ->,所以()()()22f x x x f x -=⨯-=-=. 综上,可知函数()f x 为偶函数.方法二(图象法) 作出函数()f x 的图象,如图所示,易知函数()f x 为偶函数.【变式8-1】函数()2433x f x x -=+-的图象关于_________对称.【答案】原点【解析】要使函数有意义,则240330x x ⎧-≥⎪⎨+-≠⎪⎩,得2206x x x -≤≤⎧⎨≠≠-⎩且,解得20x -≤<或02x <≤,则定义域关于原点对称.此时33x x +=+,则函数()22244433x x x f x x ---===+-, ()()24x f x f x --==-,∴函数()f x 是奇函数,图象关于原点对称故答案为:原点【变式8-2】判断()||||()f x x a x a a R =+--∈的奇偶性.【答案】当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数 【解析】因为x ∈R ,所以定义域关于原点对称,当0a =时,则()||||0f x x x =-=,所以()f x 既是奇函数,又是偶函数; 当0a ≠时,因为()||||||||()f x x a x a x a x a f x -=-+---=--+=-, 所以()f x 是奇函数.综上所述,当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数.【变式8-3】设函数2()1f x x =+,则下列函数中为奇函数的是( ) A .()1f x + B .(1)f x + C .()1f x - D .(1)f x - 【答案】D 【解析】因为()21f x x =+ . 选项A :()2111f x x +=++,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故A 错.选项B :()221112f x x x +==+++,定义域为()()22-∞--+∞,,,定义域不对称,故B 错.选项C :()2111f x x -=-+,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故C 错.选项D :()22111f x x x-==-+,定义域为()()00-∞∞,,+,定义域对称,为奇函数.故D 正确.故选:D.【变式8-4】设()f x 是R 上的任意函数,则下列叙述正确的是( )A .()()f x f x -是奇函数B .()()f x f x -是奇函数 C .()()f x f x --是奇函数 D .()()f x f x +-是奇函数 【答案】C【解析】A 选项:设()()()F x f x f x =-,()()()()F x f x f x F x -=-=,则()()f x f x -为偶函数,A 错误;B 选项:设()()()G x f x f x =-,则()()()G x f x f x -=-,()G x 与()G x -关系不定,即不确定()()f x f x -的奇偶性,B 错误;C 选项:设()()()M x f x f x =--,则()()()()M x f x f x M x -=--=-, 则()()f x f x --为奇函数,C 正确;D 选项:设()()()N x f x f x =+-,则()()()()N x f x f x N x -=-+=, 则()()f x f x +-为偶函数,D 错误.故选:C.题型九 利用函数的奇偶性求值或求参【例9】若函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,则a b +=___________.【答案】12-【解析】因为函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,所以320a a ++=,得12a =-,又()()f x f x -=-,即323211()()()22x b x x x bx x -----=-++,即220bx =恒成立,所以0b =,所以12a b +=-. 故答案为:12-.【变式9-1】若函数()()()325x x a f xx +-=为奇函数,则=a ( )A .12 B .23 C .34D .1 【答案】B【解析】根据题意得()()()()()323255x x a x x a f x xx-+---++==--,因为函数()()()325x x a f xx +-=为奇函数,所以()()f x f x -=-,即()()()()323255x x a x x a x x-+++-=-,整理得:()640a x -=,所以640a -=,解得23a =.故选:B【变式9-2】已知函数()()32121f x a x x =-+-是偶函数,则a =______.【答案】1【解析】函数()()32121f x a x x =-+-是偶函数,则()()11f f -=,即()121121a a -+-=-+--,解之得1a = 经检验符合题意. 故答案为:1【变式9-3】已知函数()f x 是定义在R 上的奇函数,当0x >时,()(1)f x x x =+,那么()1f -等于( )A .﹣2B .﹣1C .0D .2 【答案】A【解析】因为0x >时,()(1)f x x x =+,可得()1122f =⨯=,又因为函数()f x 是定义在R 上的奇函数,可得()()112f f -=-=-.故选:A.【变式9-4】设()f x 是定义域为()2,2-的奇函数,当02x ≤<时,()122f x x m x =++-(m 为常数),则()1f -=( )A .53- B .53 C .32- D .32【答案】C【解析】因为()f x 是定义域为()2,2-的奇函数,所以()00f =,因为当02x ≤<时,()122f x x m x =++-, 所以()1002f m =-+=,解得12m =, 所以当02x ≤<时,()11222f x x x =++-,所以()()13111222f f ⎛⎫-=-=--++=- ⎪⎝⎭.故选:C.【变式9-5】设函数()()23211x x f x x ++=+在区间[]22-,上的最大值为M ,最小值为N ,则()20221M N +-的值为______.【答案】1【解析】由题意知,()32211x xf x x +=++([]2,2x ∈-), 设()3221x xg x x ++=,则()()1f x g x =+,因为()()3221x xg x g x x ---==-+,所以()g x 为奇函数, ()g x 在区间[]22-,上的最大值与最小值的和为0, 故2M N +=,所以()()202220221211M N +-=-=.题型十 利用函数的奇偶性求解析式【例10】设()f x 为奇函数,且当0x ≥时,2()f x x x =+,则当0x <时,()f x =( )A .2x x +B .2x x -+C .2x x -D .2x x -- 【答案】B【解析】设0x <,则0x ->,所以()2f x x x -=-,又()f x 为奇函数,所以()()()22f x f x x x x x =--=--=-+, 所以当0x <时,()2f x x x =-+.故选:B.【变式10-1】函数()f x 为偶函数,当()0,x ∈+∞时,()227f x x x =-,则当(),0x ∈-∞时,()f x =( )A .()227f x x x =-+B .()227f x x x =--C .()227f x x x =-D .()227f x x x =+ 【答案】D【解析】设(),0x ∈-∞,则()0,x -∈+∞,则()()()222727f x x x x x -=---=+,因为函数()f x 为偶函数,则当(),0x ∈-∞时,()()227f x f x x x =-=+.故选:D.【变式10-2】已知()f x 是定义在R 上的奇函数,且当0x ≥时,()21x a x a f x =+++,则当0x <时,()f x =( )A .2x x -B .2x x +C .2x x -+D .2x x -- 【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以()00f =,即()010f a =+=,解得1a =-,当0x ≥时,()2f x x x =-,当0x <时,0x ->,则()()22f x x x x x -=-+=+,因为()f x 是奇函数,所以()()2f x f x x x =--=--.故选:D .【变式10-3】若定义在R 上的偶函数()f x 和奇函数()g x 满足()()e xf xg x +=(e为无理数, 2.71828e =⋅⋅⋅),则()g x =( )A .e e x x --B .()1e e 2x x -+ C .()1e e 2x x -- D .()1e e 2x x -- 【答案】D【解析】由()()e xf xg x +=可得()()e x f x g x --+-=,根据()f x 与()g x 的奇偶性可得()()()()e xf xg x f x g x --+-=-=,故()()()()e e x xf xg x f x g x ---+=-⎡⎤⎣⎦.整理得()2e e x xg x --=-,即()()1e e 2x xg x -=-.故选:D.题型十一 利用单调性奇偶性解不等式【例11】定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是( )A .12m <- B .12m > C .112m -≤< D .122m <≤ 【答案】C【解析】∵()f x 是偶函数,()()()f x f x f x ∴=-=,故(1)()f m f m -<可变形为(1)()f m f m -<,∵()f x 在区间[]0,2上单调递减,故212131222212112m m m m m m m m ⎧⎧⎪⎪-≤-≤-≤≤⎪⎪-≤≤⇒-≤≤⇒-≤<⎨⎨⎪⎪->⎪⎪<⎩⎩.故选:C.【变式11-1】若偶函数()f x 在[)0,∞+上单调递减,且()10f =,则不等式()2330f x x -+≥的解集是__________.【答案】[]1,2【解析】因为偶函数()f x 在[)0,∞+上单调递减,所以()f x 在(),0∞-上单调递增,又()10f =,所以()()110f f -==,所以当11x -≤≤时()0f x ≥,则不等式()2330f x x -+≥等价于21331x x -≤-+≤,解得12x ≤≤,所以原不等式的解集为[]1,2. 故答案为:[]1,2【变式11-2】函数()f x 是定义在()1,1-上的奇函数且单调递减,若2(2)(4)0,f a f a -+-<则a 的取值范围是( )A .)5,3 B .(3)(2,)-∞⋃+∞ C .()3,2 D .()3,2-【答案】C【解析】函数()f x 是定义在()1,1-上的奇函数且单调递减,2(2)(4)0f a f a -+-<可化为2(2)(4)f a f a -<-则2212114124a a a a -<-<⎧⎪-<-<⎨⎪->-⎩32a <故选:C【变式11-3】奇函数()2f x +是定义在()3,1--上的减函数,若()()1320f m f m -+-<,则实数m 的取值范围为______. 【答案】()1,2【解析】由题意知,函数()2f x +的定义域为()3,1--,所以函数()f x 的定义域为()1,1-,所以1111321m m -<-<⎧⎨-<-<⎩,解得12m <<.又奇函数()2f x +是()3,1--上的减函数,所以()f x 是()1,1-上的奇函数,且在()1,1-上单调递减. 由()()1320f m f m -+-<,得()()132f m f m -<--, 所以()()123f m f m -<-,所以123m m ->-,解得2m <.综上,12m <<. 故答案为:()1,2.【变式11-4】已知函数()f x 是定义在R 上的偶函数,若1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()1122120x f x x f x x x -<-成立,则不等式()()()21210mf m m f m --->的解集为( )A .(),1-∞-B .(),1-∞C .()1,+∞D .()1,-+∞ 【答案】C【解析】令()()g x xf x =,因为函数()f x 是定义在R 上的偶函数,所以()()()()g x xf x xf x g x -=--=-=-,即()g x 是定义在R 上奇函数.又1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()()()11221212120x f x x f x g x g x x x x x --=<--成立,所以()g x 在[)0,∞+上单调递减,又()g x 是定义在R 上奇函数,所以()g x 在R 上单调递减,所以()()()()()2121210mf m m f m g m g m ---=-->,即()()21g m g m >-, 所以21m m <-,解得1m.故A ,B ,D 错误.故选:C .题型十二 利用单调性奇偶性比较大小【例12】定义在R 上的偶函数()f x 在(0,)+∞上是减函数,则下列判断正确的是( )A .311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .113422f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C .311242f f f ⎛⎫⎛⎫⎛⎫<<- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .131224f f f ⎛⎫⎛⎫⎛⎫-<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】A【解析】因为()f x 为偶函数,所以11()()22f f -=,33()()22f f -=,又113422<<,且()f x 在(0,)+∞上是减函数, 所以311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A【变式12-1】已知定义在R 上的函数()f x 的图象是连续不断的,且满足以下条件:①()(),x f x f x ∀∈-=R ;②()12,0,x x ∀∈+∞,当12x x ≠时,()()2112120x f x x f x x x ->-.记()1a f =,()33f b -=,()55f c =,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a << 【答案】B【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,()()2112120x f x x f x x x ->-,即()()1212120f x f x x x x x ->-,所以函数()f x x 在(0,)+∞上单调递增. 又x ∀∈R ,()()f x f x -=,所以函数()f x 是R 上的偶函数, 所以()()3333f f -=,则有()()()135135f f f <<,所以a b c <<,故选:B .【变式12-2】已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,(2)b f =,(3)c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c << 【答案】B【解析】∵当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,∴当121x x <<时,()()210f x f x ->,即()()21f x f x >, ∴函数()f x 在(1,)+∞上为单调增函数, ∵函数(1)f x +是偶函数,即()()11f x f x +=-,∴函数()f x 的图象关于直线1x =对称,∴1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又函数()f x 在(1,)+∞上为单调增函数,∴5(2)(3)2f f f ⎛⎫<< ⎪⎝⎭,即1(2)(3)2f f f ⎛⎫<-< ⎪⎝⎭,∴b a c <<,故选:B .【变式12-3】已知()f x 对于任意R x ∈都有(2)()f x f x +=,且()f x 在区间[)0,2上是单调递增的,则( 6.5),(1),(0)f f f --的大小关系是( ) A .(1)(0)( 6.5)f f f -<<- B .( 6.5)(0)(1)f f f -<<- C .(1)( 6.5)(0)f f f -<-< D .(0)(1)( 6.5)f f f <-<- 【答案】D 【解析】()f x 对于任意R x ∈都有(2)()f x f x +=,∴()f x 周期为2,偶函数()f x 在区间[)0,2上是单调递增,( 6.5)(1.5)f f ∴-=,(1)(1)f f -=,(0)(1)(1.5)f f f ∴<<,即(0)(1)( 6.5)f f f <-<-故选:D题型十三 利用函数的周期性求值【例13】已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =( )A .3B .3-C .255D .255- 【答案】B【解析】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B【变式13-1】已知()f x 是定义域为R 的奇函数,满足(2)()f x f x -=,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( )A .2B .2022-C .0D .2022 【答案】A【解析】(2)()(2)()x f x f f f x x -=∴+=-,又()()f x f x -=-,(2)()()f x f x f x ∴+=-=-,∴函数的周期4T =.又函数()f x 是定义域为R 的奇函数,(0)0f ∴=,(2)(0)0f f ∴==,(3)(1)(1)2f f f =-=-=-,(4)(0)0f f ==(1)(2)(3)(4)20200f f f f +++=+-+=∴,又202250542=⨯+(1)(2)(3)(2022)5050(1)(2)2f f f f f f ∴++++=⨯++=.故选:A.【变式13-2】已知函数()1y f x =+的图象关于直线3x =-对称,且对R x ∀∈都有()()2f x f x +-=当(]0,2x ∈时,()2f x x =+.则()2022f =( )A .1-B .1C .2D .2- 【答案】D【解析】函数()1y f x =+的图象关于直线3x =-对称,∴函数()y f x =的图象关于直线2x =-对称,()()22f x f x ∴-+=--,取2x x =+可得()()2222f x f x -++=--+⎡⎤⎣⎦, ∴()()4f x f x =--又对x ∀∈R 有()()2f x f x +-=, 取4x x =--可得()()442f x f x --++=,所以()()()42f x f x f x =--=--.,()()424f x f x --=-+,()()4f x f x ∴+=-,()()()444f x f x f x ⎡⎤∴++=--=⎣⎦,即()()8f x f x +=,()f x ∴的周期8T =()()()()()()()2022252866242222222f f f f f f ∴=⨯+==+=-=-=-+=-.故选:D.【变式13-3】设函数()f x 的定义域为R ,()12f x +-为奇函数,()2f x +为偶函数,当[]1,2x ∈时,()2f x ax b =+.若()()011f f -+=,则20232⎛⎫= ⎪⎝⎭f ________. 【答案】34【解析】由()12f x +-为奇函数,可得()()1212f x f x +-=--++,函数()f x 关于点()1,2对称,又定义域为R ,则有()12f =;又()2f x +为偶函数,可得()()22f x f x +=-+,函数()f x 关于直线2x =对称,()()()4242f x f x f x =--=-+,又()()24f x f x +=--,则()()f x f x =-,则()()()222f x f x f x +=-+=-,函数()f x 周期为4,则202311131012422222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-==- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; 由上可得()()()()1,041424f f a b f f a b ==+=-=---,则2441a b a b a b +=⎧⎨++--=⎩,解得11a b =⎧⎨=⎩,则39131244f ⎛⎫=+= ⎪⎝⎭,则2023334224f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:34.题型十四 抽象函数综合问题【例4】函数f (x )对于任意的实数x ,y 都有f (x+y )=f (x )+f (y )成立,且当x >0时f (x )<0恒成立. (1)证明函数f (x )的奇偶性;(2)若f (1)= -2,求函数f (x )在[-2,2]上的最大值;(3)解关于x 的不等式211(2)()(4)(2) 22f x f x f x f -->-- 【答案】(1)证明见解析;(2)4;(3){|2x x <-或1}x >-【解析】(1)令x =y =0得f (0)=0,再令y =—x 即得f (-x )=-f (x ), ∴()f x 是奇函数.(2)设任意12,R x x ∈,且12x x <,则210x x ->,由已知得21()0f x x -<①,又212121()()()()()f x x f x f x f x f x -=+-=-②, 由①②可知12()()f x f x >,由函数的单调性定义知f (x )在(-∞,+∞)上是减函数,∴x ∈[-2,2]时,[]max ()(2)(2)(11)2(1)4f x f f f f =-=-=-+=-=, ∴f (x )当x ∈[-2,2]时的最大值为4.(3)由已知得:[]2(2)(4)2()(2)f x f x f x f -->--,由(1)知f (x )是奇函数, ∴上式又可化为:[]2(24)2(2)(2)(2)(24)f x x f x f x f x f x -->+=+++=+,由(2)知f (x )是R 上的减函数, ∴上式即:22424x x x --<+, 化简得(2)(1)0x x ++>,∴ 原不等式的解集为{|2x x <-或1}x >-.【变式14-1】已知函数()f x 的定义域是()0,∞+,对定义域内的任意12x x , 都有()()()1212f x x f x f x =+,且当01x <<时,()0f x >.(1)证明:当1x >时,()0f x <; (2)判断()f x 的单调性并加以证明;(3)如果对任意的()12,0,x x ∈+∞ ,()()()221212f x x f a f x x +≤+恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)函数()f x 单调递减,证明见解析;(3)(]0,2a ∈ 【解析】(1)(1)(1)(1)(1)0f f f f =+⇒=;1(1)()()0f f x f x=+=;当()0,1x ∈时,()11,x ∈+∞;()10()0f x f x>⇒<; ∴当1x >时,()0f x <.(2)单调递减.证明:()1212,0,x x x x ∀∈+∞<,且()()2211x f x f x f x ⎛⎫-= ⎪⎝⎭12x x <,211x x ∴>,210x f x ⎛⎫∴< ⎪⎝⎭,即()()12f x f x > ∴()f x 单调递减(3)函数()f x 的定义域是()0,∞+0a ∴>;()()()()()222212121212f x x f a f x x f x x f ax x +≤+⇒+≤恒成立;由(2),()f x 单调递减,221212x x ax x +≥恒成立,221212x x a x x +≤恒成立,因为22121212212x x x x x x x x +=+≥,当且仅当12x x =时等号成立,所以2a ≤; 又()f a 有意义,所以0a > 综上:(]0,2a ∈.【变式14-2】已知函数()f x 对任意,R x y ∈,都有()()()1f x y f x f y +=+-,且当0x >时,()1f x >.(1)求证:()f x 在R 上是增函数;(2)若关于a 的方程2(75)2f a a +-=的一个实根是1,求(6)f 的值;(3)在(2)的条件下,已知R m ∈,解关于x 的不等式()(2)3f mx f x ->+. 【答案】(1)证明见解析;(2)3;(3)详见解析【解析】(1)依题意()()()1f x y f x f y +=+-,且0x >时,()1f x >,令0x y ==,则()()()()0001,01f f f f =+-=,()()()()()1,2f x x f x f x f x f x -+=-+--+=,任取12x x <,()()()()121211f x f x f x f x x x -=--+()()()()12112111f x f x x f x f x x =--+-=--+⎡⎤⎣⎦,由于210x x ->,所以()211f x x ->,所以()()()()12120,f x f x f x f x -<<,所以()f x 在R 上递增. (2)由(1)知,()f x 在R 上递增,()()217532f f +-==,()()()()6333313f f f f =+=+-=.(3)依题意()()()1f x y f x f y +=+-,()f x 在R 上递增,()(2)3f mx f x ->+.()(2)12f mx f x -->+,()()()22,23f mx x f mx x f +->+->,()23,15mx x m x +->+>,当1m =-时,不等式的解集为空集. 当1m <-时,不等式的解集为5|1x x m ⎧⎫<⎨⎬+⎩⎭. 当1m >-时,不等式的解集为5|1x x m ⎧⎫>⎨⎬+⎩⎭.【变式14-3】设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且1()12f =-当0x >时,()0.f x < (1)求(0)f 的值;(2)判断函数()f x 的单调性,并给出证明; (3)如果()(2)2f x f x >-,求x 的取值范围;【答案】(1)0;(2)函数()f x 是定义在R 上的减函数,详见解析;(3)1x >-. 【解析】(1)令0x y ==,则()()()0000f f f -=-,∴()00f =;(2)函数()f x 是定义在R 上的减函数,设12,R x x ∀∈,且12x x >,则120x x ->, ∴()()()1212f x x f x f x -=-, ∵当0x >时,()0.f x <∴()120f x x -<,即()()120f x f x -< ∴()()12f x f x <,∴函数()f x 是定义在R 上的减函数;(3)∵()()()f x y f x f y -=-∴()()()00f x f f x -=-,又()00f =, ∴()()f x f x =--, ∴函数()f x 是奇函数,∵()()()f x y f x f y -=-,1()12f =-∴111112222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫--=--=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴()()(2)2(2)1(21)f x f x f x f f x >-=--=+, 又函数()f x 是定义在R 上的减函数, ∴21xx ,即1x >-,∴x 的取值范围为1x >-.题型十五 幂函数的图象性质【例15】现有下列函数:①3y x =;②12xy ⎛⎫= ⎪⎝⎭;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为( ) A .1 B .2 C .3 D .4 【答案】B【解析】幂函数满足ay x =形式,故3y x =,y x =满足条件,共2个故选:B【变式15-1】(多选)已知幂函数232()(21)m m f x a x -+=-,其中,a m R ∈,则下列说法正确的是( )A .1a =B .()f x 恒过定点(1,1)C .若3m =时,()y f x =关于y 轴对称D .若112m <<时,(2)(1)f f < 【答案】ABC【解析】因为232()(21)m m f x a x -+=-为幂函数,所以211a -=,解得1a =,故A 正确;则232()m m f x x -+=,故恒过定点(1,1),故B 正确;当3m =时,2()f x x =,22()()()f x x x f x -=-==,所以()y f x =为偶函数,则()y f x =关于y 轴对称,故C 正确; 当112m <<时,2320m m -+>,则()f x 在(0,)+∞上为增函数, 所以(2)(1)f f >,故D 错误.故选:ABC【变式15-2】图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是( )A .12,3,1-B .1-,3,12C .12,1-,3 D .1-,12,3【答案】D【解析】由题图知:10α<,201α<<,31α>,所以1α,2α,3α依次可以是1-,12,3.故选:D【变式15-3】当()0,x ∈+∞时,幂函数()22231m m y m m x --=--为减函数,则m =_________. 【答案】2【解析】函数为幂函数,则211m m --=,解得1m =-或2m =,又因为函数在(0,)+∞上单调递减, 可得2230m m --<,可得2m =, 故答案为:2【变式15-4】已知幂函数()233my m m x =--在()0,∞+上单调递增,则m =______.【答案】4【解析】由题意可得23310m m m ⎧--=⎨>⎩,解得4m =故答案为:4.【变式15-5】已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围.【答案】(1)()3f x x =;(2)2,3⎛⎫-∞ ⎪⎝⎭【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.题型十六 简单函数模型的应用【例16】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;。

七年级英语重点题型

七年级英语重点题型

七年级英语重点题型一、单项选择(10题)1. —______ is your father?—He is a doctor.A. Who.B. What.C. Which.D. Where.解析:根据答语“He is a doctor.”(他是一名医生),是在询问职业,对职业提问用what,所以答案是B。

2. There ______ some milk and apples on the table.A. is.B. are.C. have.D. has.解析:There be句型遵循就近原则,be动词的形式取决于靠近它的名词的单复数形式。

这里靠近be动词的是some milk(不可数名词),所以be动词用is,答案是A。

3. —______ do you go to school?—By bike.A. What.B. When.C. How.D. Where.解析:根据答语“By bike.”(骑自行车),是在询问交通方式,对交通方式提问用how,答案是C。

4. My sister ______ English very much.A. like.B. likes.C. liking.D. to like.解析:句子描述的是一般的情况,主语my sister是第三人称单数,一般现在时中,第三人称单数作主语时,动词要用第三人称单数形式,like的第三人称单数形式是likes,答案是B。

5. —Is this your book?—Yes, it is. It's ______.A. mine.B. my.C. me.D. I.解析:这里需要一个名词性物主代词来表示“我的(书)”,mine是名词性物主代词,my是形容词性物主代词,me是宾格,I是主格,所以答案是A。

6. I can't find my pen. Could you help ______?A. me.B. I.C. my.D. mine.解析:help是动词,后面要跟宾格形式,me是宾格,I是主格,my是形容词性物主代词,mine是名词性物主代词,所以答案是A。

c语言基础知识点数组名

c语言基础知识点数组名
④考点分析:在考试中,数组名经常作为一道基础但又关键的考题出现。可能会要求你通过数组名来访问或修改数组中的元素,或者编写一个程序来遍历和处理数组中的数据。
三、详细讲解
数组名在C语言中是一个非常基本但又极其重要的概念。它代表了数组在内存中的起始地址,使得我们可以通过数组名加上偏移量来访问数组中的任何元素。下面我们来详细聊聊数组名的几个关键点。
①基础题型:请声明一个包含10个浮点数的数组,并输出数组的第二个元素。
②提高题型:编写一个函数,接收一个整数数组和要操作的索引以及新值作为参数,将该索引处的元素更新为新值。
③易错分析:注意不要混淆数组名和数组名加上元素的内存地址(比如尝试改变数组名本身或者直接将数组名赋值为另一个数组)。
④解题技巧:在处理数组时,始终记得数组名是指向数组第一个元素的指针,通过在数组名后加上索引来访问特定元素是常用且高效的操作方法。
c语言基础知识点数组名
一、知识概述
数组名在C语言中
①基本定义:在C语言中,数组名代表数组在内存中的起始地址,它是指向数组第一个元素的指针。换句话说,数组名就像是快递包裹上的地址标签,帮助我们快速找到数组这块“包裹”的起点。
②重要程度:掌握数组名非常关键,因为它直接关系到我们如何操作数组中的数据。无论是访问单个元素,还是对整个数组进行遍历和处理,数组名都起着至关重要的作用。
ageArray[i] += 5;
}
//打印修改后的年龄数组(可选)
for (int i = 0; i < 5; i++) {
printf("New age of person %d: %d\n", i+1, ageArray[i]);
}

人教版小学数学六年级上册重点题型专项练习含解析答案

人教版小学数学六年级上册重点题型专项练习含解析答案

人教版小学数学六年级上册重点题型专项练习一.选择题(共10题,共20分)1.一个直角三角形,两个锐角度数的比是1∶2,这两个锐角各是()。

A.36度,54度B.30度,60度C.40度,50度 D.52度,37度2.三角形是有角的图形.如果某个平面封闭的图形没有角,那么()。

A.这个图形一定是圆B.这个图形不是三角形C.这个图形是四边形D.这个图形是扇形3.一项工程节约投资20万元,实际比计划节约,计划投资()。

A.100万元B.16万元C.25万元D.4万元4.一堆货物2吨,运走了吨,还剩下多少吨?正确列式是()。

A.2-B.2×C.2×(1-)5.一个等腰三角形底角度数与顶角度数的比是1:3,它的顶角是()度。

A.36B.108C.72D.456.甲数是20,乙数是15,算式(20-15)÷20=25%表示()。

A.乙数比甲数少25%B.甲数比乙数多25%C.乙数是甲数的25%D.甲数是乙数的25%7.把20克的盐放入100克水,盐与盐水的比为()。

A.1:6B.1:5C.20:1008.4:7的前项加8,要使比值不变,后项应该是()。

A.加8B.乘8C.乘39.甲数除以乙数的商是3.2,乙数与甲数的最简整数比是()。

A.16:5B.5:16C.3:2D. 2:310.大圆的半径是小圆半径的3倍,则大圆面积是小圆面积的()。

A.3倍B.4倍C.6倍D.9倍二.填空题(共10题,共22分)1.全世界大约有200个国家,其中缺水的国家约有100多个,严重缺水的国家约有40多个,缺水的国家约占全世界国家总数的()%;严重缺水的国家约占全世界国家总数的()%。

2.在100 g盐水中,盐与盐水的质量比是1∶10,盐有()g,水有()g。

3.20的40%是(),36的10%是(),50千克的60%是()千克,800米的25%是()米。

4.连接()和()任意一点的线段叫做圆的半径,用字母()表示。

人教版数学三年级上册重点题型专项练习带答案(完整版)

人教版数学三年级上册重点题型专项练习带答案(完整版)

人教版数学三年级上册重点题型专项练习一.选择题(共10题, 共20分)1.一只大象重6吨90千克, 合()。

A.6090千克B.6900千克C.6009千克2.412×6大约是()。

A.2400B.3000C.4000D.27003.秒针走30秒, 走了()个大格。

A.5B.6C.304.墨水瓶的高度约为6()。

A.厘米B.毫米C.分米5.一张长方形纸对折3次后, 每份是它的()。

A. B. C.6.王老师为班级里学习进步的同学买了4件奖品, 其中最贵的一件是26元, 最便宜的一件是22元。

估一估, 这4件奖品的总价钱大约在()元之间。

A.70~80B.80~90C.90~100 D.100~1107.一名小学生一步长大约5()。

A.厘米B.分米C.米8.一头大象重3()。

A.吨B.千克C.克9.一个正六边形边长20厘米, 周长是()。

A.120厘米B.80厘米C.60厘米10.三(1)班学生平均体重是35()。

A.千米B.千克C.米二.判断题(共10题, 共20分)1.1吨铁和1吨沙子一样重。

()2.小马虎在计算一道三位数的减法时, 把被减数359错看成395, 这样算出的结果比正确结果多了36。

()3.与元一样大。

()4.一个长方形的周长就是它的长与宽的和。

()5.2个边长4厘米的正方形拼成一个长方形, 拼成的长方形周长比原来2个正方形的周长和减少了8厘米。

()6.四个角都是直角的四边形, 不是长方形就是正方形。

()7.2时=20分。

()8.1+3+4+5<6×7×8×9×0×5。

()9.火车每小时行120米。

()10.乘数末尾有0, 积的末尾一定有0;乘数中间有0, 积的中间一定有0。

()三.填空题(共10题, 共23分)1.填上“>”“<”或“=”。

876-86()800-86 740+50()500+732.把一根3米长的绳子, 剪成同样长的6段, 每段长()分米。

数学初一下册重点题型

数学初一下册重点题型

选择题:
下列哪个数是有理数?
A. π
B. √2
C. -3/4(正确答案)
D. e
下列哪个选项是方程2x + 3 = 7 的解?
A. x = 1
B. x = 2(正确答案)
C. x = -1
D. x = 3
下列哪个图形是轴对称图形?
A. 等腰三角形(正确答案)
B. 平行四边形
C. 梯形
D. 一般三角形
下列哪个选项是代数式3x2 - 2x + 1 的次数?
A. 1
B. 2
C. 3(正确答案)
D. 4
下列哪个选项是不等式2x - 5 < 3 的解集?
A. x < 4
B. x > 4
C. x < -4
D. x > -4(正确答案)
下列哪个选项是平面直角坐标系中,点P(3, -4)的纵坐标?
A. 3
B. -3
C. 4
D. -4(正确答案)
下列哪个选项是线段AB的中点坐标,若A(2, 3),B(4, 5)?
A. (3, 4)(正确答案)
B. (2, 4)
C. (3, 3)
D. (4, 4)
下列哪个选项是描述数据集中趋势的统计量?
A. 众数(正确答案)
B. 极差
C. 方差
D. 标准差
下列哪个选项是方程组的解,对于方程组{ x + y = 5, x - y = 1 }?
A. { x = 3, y = 2 }(正确答案)
B. { x = 2, y = 3 }
C. { x = 1, y = 4 }
D. { x = 4, y = 1 }。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、利用二维数组求学生的平均成绩及每科成绩。

#include<iostream.h>void main(){floata[4][3]={{1,2,3},{4,5,6},{7,8,9},{10,11,12}};float s1,s2;cout<<"输出每位同学的平均成绩"<<endl;for(int i=0;i<4;i++){s1=0;cout<<"第"<<i+1<<"位同学的平均成绩为:";for(int j=0;j<3;j++){s1+=a[i][j];}cout<<s1*1/3<<endl;}cout<<"输出没门课程的平均成绩:"<<endl;for(int x=0;x<3;x++){cout<<"第"<<x+1<<"门课程的平均成绩:";s2=0;for(int y=0;y<4;y++){s2+=a[y][x];}cout<<s2*1/4<<endl;}}二、输出菱形#include<iostream.h>void main(){inti,j,k;for(i=0;i<5;i++){for(j=0;j<8-2*i;j++)cout<<" ";for(k=0;k<2*i+1;k++)cout<<"* ";cout<<endl;}for(i=0;i<4;i++){for(j=0;j<2+2*i;j++)cout<<" ";for(k=0;k<7-2*i;k++)cout<<"* ";cout<<endl;}}三、输出数的菱形#include<iostream.h>void main(){inti,j,k;for(i=0;i<5;i++){for(j=0;j<8-2*i;j++)cout<<" ";for(k=0;k<i+1;k++)cout<<i+1<<" ";cout<<endl;}}四、判断一个数是不是素数用相应的for语句(1)#include<iostream.h>bool flag=true;void main(){intn,i;cin>>n;for(i=2;i<n-1;i++){if(n%i==0)flag=false;}if(flag)cout<<"是素数";elsecout<<"不是素数";}(2)#include<iostream.h>bool flag=false;void prime(int a){for(int b=2;b<a-1;b++){if(a%b==0)flag=true;}if(flag)cout<<"不是素数"<<endl;elsecout<<"是素数"<<endl;}main(){int x;cin>>x;prime(x);}(3)用while语句#include<iostream.h>void main(){intn,i;cin>>n;i=2;while(i<n){if(n%2==0)break;elsei++;}if(i==n)cout<<"是素数"<<endl;elsecout<<"不是素数"<<endl;}五、对学生的成绩进行等级分配(1)#include<iostream.h>void main(){float a;cin>>a;if(a>=90)cout<<'A'<<endl;else if(a>=80)cout<<'B'<<endl;else if(a>=70)cout<<'C'<<endl;else if(a>=60)cout<<'D'<<endl;elsecout<<'F'<<endl;}(2)#include<iostream.h>void main(){float a;cout<<"请输入该同学的成绩:";cin>>a;int c=int(a)/10;switch(c){case 9:cout<<'A'<<endl;break;case 8:cout<<'B'<<endl;break;case 7:cout<<'C'<<endl;break;case 6:cout<<'D'<<endl;break;default :cout<<'F'<<endl;}}六、将十进制转化成二进制。

(1)#include<iostream.h>void main(){intn,j;int i=0;int a[100];cin>>n;while(n!=0){if(n%2!=0)a[i]=1;elsea[i]=0;n/=2;i++;}for(j=i-1;j>-1;j--){cout<<a[j];}cout<<endl;}七、将十进制转化成十六进制数#include<iostream.h>void main(){intn,j,i=0;int a[100];cin>>n;while(n){a[i]=n%16;n/=16;i++;}for(j=i-1;j>=0;j--)switch(a[j]){case 10:cout<<'A';break;case 11:cout<<'B';break;case 12:cout<<'C';break;case 13:cout<<'D';break;case 14:cout<<'E';break;case 15:cout<<'F';break;default:cout<<a[j];}cout<<endl;}八、冒泡法排序(从大到小)#include<iostream.h>constint N=10;void main(){int a[N]={9,1,8,2,7,3,6,4,5,1};inti,j;for(i=0;i<N-1;i++){for(j=0;j<N-i-1;j++)if(a[j+1]>a[j]){int t=a[j];a[j]=a[j+1];a[j+1]=t;}}for(i=0;i<N;i++)cout<<a[i]<<" ";cout<<endl;}九、冒泡法排序(从小到大)#include<iostream.h>constint N=10;void main(){int a[N]={9,1,8,2,7,3,6,4,5,1};inti,j;for(i=0;i<N-1;i++){for(j=0;j<N-i-1;j++)if(a[j+1]<a[j]){int t=a[j];a[j]=a[j+1];a[j+1]=t;}}for(i=0;i<N;i++)cout<<a[i]<<" ";cout<<endl;}十、输入一串字符进行大小写的转化,到#结束输出相应的结果#include<iostream.h>void main(){char c;cin>>c;while(c!='#'){c=c>='A'&&c<='Z'?c+32:c-32;cout<<c<<" ";cin>>c;}cout<<endl;}十一、字符的转化(输入一个字符进行大小写转换)。

相关文档
最新文档