押新高考第20题 统计概率(新高考)(解析版)
23年新高考数学20题说题

23年新高考数学20题说题新高考数学20题解析近年来,高考改革已经进行了多次调整和变革。
其中一项重要的改革是新高考制度的实施。
新高考数学考试的题型和难度相较于传统高考也有了一定的改变。
本文将针对新高考数学20题进行解析,帮助同学们更好地理解题目的要求和解题方法。
1. 题目描述:已知函数f(x) = 2^x,g(x) = log2x,那么f(x)与g(x)的图象关系是()解析:首先我们需要明确f(x) = 2^x是一个指数函数,它的图象是一条递增的曲线。
而g(x) = log2x是一个对数函数,它的图象是一条递减的曲线。
因此,f(x)与g(x)的图象关系是相互倒置的关系,即f(x)的图象在g(x)的图象的上方。
2. 题目描述:解方程2x^2 - 7x + 3 = 0,得x的值是()解析:对于这道题,我们可以使用因式分解或者求根公式来解题。
首先,我们观察方程的系数,发现2x^2 - 7x + 3无法直接进行因式分解。
因此,我们可以使用求根公式x = (-b ± √(b^2 - 4ac)) / 2a来求解。
带入a = 2,b = -7,c = 3,我们可以得到x = (7 ± √(49 - 24)) / 4。
化简得到x = (7 ± √25) / 4,即x = (7 ± 5) / 4。
因此,方程的两个解为x1 = 3/2,x2 = 2。
3. 题目描述:已知函数f(x) = 2^x,g(x) = log2x,那么f(x) + g(x) = ()解析:我们可以根据函数的性质来解答这道题目。
首先,我们知道指数函数与对数函数是互为反函数的关系。
即f(x) = 2^x与g(x) = log2x互为反函数。
因此,f(x) + g(x) = x。
答案为x。
4. 题目描述:若函数f(x) = 2x + 3,g(x) = 3x - 1,则f(x) * g(x) = ()解析:我们可以根据函数的性质来解答这道题目。
2024年高考数学试题(新课标I卷)解析版

2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。
高考数学-概率与统计(含22年真题讲解)

高考数学-概率与统计(含22年真题讲解)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】>70%,所以A错;讲座前中位数为70%+75%2讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3 ,4),(3,5),(3,6),(4,5),(4,6),(5,6)15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6)6种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】=7.4,A选项结论正确.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.1=8.50625>8,16B选项结论正确.=0.375<0.4,对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616C选项结论错误.=0.8125>0.6,对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316D选项结论正确.故选:C4.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率p丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p甲则p甲=2(1−p2)p1p3+2p2p1(1−p3)=2p1(p2+p3)−4p1p2p3记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙则p乙=2(1−p1)p2p3+2p1p2(1−p3)=2p2(p1+p3)−4p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=2(1−p1)p3p2+2p1p3(1−p2)=2p3(p1+p2)−4p1p2p3则p甲−p乙=2p1(p2+p3)−4p1p2p3−[2p2(p1+p3)−4p1p2p3]=2(p1−p2)p3<0p 乙−p丙=2p2(p1+p3)−4p1p2p3−[2p3(p1+p2)−4p1p2p3]=2(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D5.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P=21−721=23.故选:D.6.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有n=C84=70个结果,这4个点在同一个平面的有m=6+6=12个,故所求概率P=mn =1270=635.故答案为:635.7.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C53=10甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=310故答案为:3108.【2022年新高考2卷】已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为X∼N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)−P(2<X ≤2.5)=0.5−0.36=0.14.故答案为:0.14.9.【2022年浙江】现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=__________,E(ξ)=_________.【答案】 1635, 127##157 【解析】 【分析】利用古典概型概率公式求P(ξ=2),由条件求ξ分布列,再由期望公式求其期望. 【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有C 73种取法,其中所抽取的卡片上的数字的最小值为2的取法有C 41+C 21C 42种,所以P(ξ=2)=C 41+C 21C 42C 73=1635,由已知可得ξ的取值有1,2,3,4, P(ξ=1)=C 62C 73=1535,P(ξ=2)=1635,,P(ξ=3)=C 32C 73=335,P(ξ=4)=1C 73=135所以E(ξ)=1×1535+2×1635+3×335+4×135=127,故答案为:1635,127.10.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率; (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算K 2,再利用临界值表比较即可得结论. (1)根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M , 则P(M)=240260=1213;B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则P(N)=210240=78.A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=500×(240×30−210×20)2260×240×450×50≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.11.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为期望E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.12.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2)和材积量(单位:3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(x i−x̅)n i=1(y i −y̅)√∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.【答案】(1)0.06m 2;0.39m 3 (2)0.97 (3)1209m 3 【解析】 【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值. (1)样本中10棵这种树木的根部横截面积的平均值x̅=0.610=0.06样本中10棵这种树木的材积量的平均值y̅=3.910=0.39据此可估计该林区这种树木平均一棵的根部横截面积为0.06m 2, 平均一棵的材积量为0.39m 3 (2)r =∑(x i −x)10i=1(y i −y)√∑10i=1(x i −x)2∑10i=1(y i −y)2=∑10i=1i i 10xy√(∑10i=1x i 2−10x2)(∑10i=1y i 2−10y 2)=0.2474−10×0.06×0.39√(0.038−10×0.062)(1.6158−10×0.392)=0.0134√0.0001896≈0.01340.01377≈0.97则r ≈0.97 (3)设该林区这种树木的总材积量的估计值为Y m 3, 又已知树木的材积量与其根部横截面积近似成正比, 可得0.060.39=186Y,解之得Y =1209m 3. 则该林区这种树木的总材积量估计为1209m 313.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B ̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析 (2)(i )证明见解析;(ii)R =6; 【解析】【分析】(1)由所给数据结合公式求出K2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求R.(1)由已知K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为R=P(B|A)P(B̅|A)⋅P(B̅|A)P(B|A)=P(AB)P(A)⋅P(A)P(AB̅)⋅P(A B̅)P(A)⋅P(A)P(A B),所以R=P(AB)P(B)⋅P(B)P(A B)⋅P(A B̅)P(B̅)⋅P(B̅)P(AB̅)所以R=P(A|B)P(A|B)⋅P(A|B̅) P(A|B̅),(ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=614.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023 +55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.15.【2022年北京】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】(1)0.4(2)75(3)丙【解析】【分析】(1)由频率估计概率即可(2)求解得X的分布列,即可计算出X的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3P(X=0)=P(A1̅̅̅A2̅̅̅A3̅̅̅)=0.6×0.5×0.5=3,20P(X=1)=P(A1A2̅̅̅A3̅̅̅)+P(A1̅̅̅A2A3̅̅̅)+P(A1̅̅̅A2̅̅̅A3)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=8,20P(X=2)=P(A1A2A3̅̅̅)+P(A1A2̅̅̅A3)+P(A1̅̅̅A2A3)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=7,20P(X=3)=P(A1A2A3)=0.4×0.5×0.5=2.20∴X的分布列为∴E(X)=0×320+1×820+2×720+3×220=75 (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.1.(2022·河南省杞县高中模拟预测(理))某市有11名选手参加了田径男子100米赛的选拔比赛,前5名可以参加省举办的田径赛,如果各个选手的选拔赛成绩均不相同,选手小强已经知道了自己的成绩,为了判断自己能否参加省举办的田径赛,他还需要知道这11名选手成绩的( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【解析】 【分析】中位数恰好是第6名,比中位数成绩高即可确认自己能否进入省田径赛. 【详解】因为11名选手成绩的中位数恰好是第6名,知道了第6名的成绩,小强就可以判断自己是否能参加省举办的田径赛了,其余数字特征不能反映名次. 故选:B .2.(2022·黑龙江·大庆实验中学模拟预测(理))2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为( ) A .67B .910 C .25D .415【答案】B 【解析】 【分析】利用对立事件和古典概型的概率公式求解即可. 【详解】设“选出的3名航天员中既有男性航天员又有女性航天员”为事件M ,则()333336C C 91C 10P M ==+-.故选:B.3.(2022·全国·模拟预测(文))如图是一组实验数据的散点图,拟合方程()0by c x x=+>,令1t x=,则y 关于t 的回归直线过点()2,5,()12,25,则当()1.01,1.02y ∈时,x 的取值范围是( )A .()0.01,0.02B .()50,100C .()0.02,0.04D .()100,200【答案】D 【解析】 【分析】 先令1t x =可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得522512b c b c=+⎧⎨=+⎩从而求得21y t =+,再由y 的范围求得t 的范围,进而求得x 的范围. 【详解】根据题意可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得:522512b cb c =+⎧⎨=+⎩,所以2,1b c ==, 所以21y t =+,由()1.01,1.02y ∈可得1.0121 1.02t <+<, 所以0.0050.01t <<, 所以10.0050.01x<<,所以100200x <<, 故选:D4.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==, 所以买到中国疫苗的概率为119120P P =-=. 故选:D .5.(2022·四川省泸县第二中学模拟预测(理))食物链亦称“营养链”,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率( )A .35B .25C .23D .13【解析】 【分析】用列举法写出构成的摄食关系,计数后可求得概率. 【详解】从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,共有10种选法:鹰麻雀,鹰兔,鹰田鼠,鹰蝗虫,麻雀兔,麻雀田鼠,麻雀蝗虫,兔田鼠,兔蝗虫,田鼠蝗虫.其中田鼠鹰,兔鹰,麻雀鹰,蝗虫麻雀共四种可构成摄食关系,不能构成摄食关系的有6种,所以概率为63105P ==. 故选:A .6.(2022·山东潍坊·模拟预测)Poisson 分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson 分布的概率分布列为()()e 0,1,2,!kP X K k k λλ-===⋅⋅⋅,其中e 为自然对数的底数,λ是Poisson 分布的均值.当二项分布的n 很大()20n ≥而p 很小()0.05p ≤时,Poisson 分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用20.05/J m 紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是( ) A .31e -- B .3e - C .313e -- D .314e --【答案】A 【解析】 【分析】结合题意1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似条件,再计算二项分布的均值为Poisson 分布的均值λ,再代入公式先求不致死的概率,再用对立事件的概率和为1计算即可 【详解】由题, 1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似的条件,此时100000.00033λ=⨯=,故不致死的概率为()03330e e 0!P X --===,故致死的概率为()3101e P X --==-7.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】 【分析】根据正态分布的性质求出()22P X ≥,从而估计出人数; 【详解】 解:因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人); 故选:B8.(2022·河南·模拟预测)某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息:下列推断合理的是( ) A .改进生产工艺后,A 级产品的数量没有变化B.改进生产工艺后,D级产品的数量减少C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,B级产品的数量增加了不到一倍【答案】C【解析】【分析】由题可得改进生产工艺前后四个等级的生产量,逐项分析即得.【详解】设原生产总量为1,则改进生产工艺后生产总量为2,所以原A,B,C,D等级的生产量为0.3,0.37,0.28,0.05,改进生产工艺后四个等级的生产量为0.6,1.2,0.12,0.08,故改进生产工艺后,A级产品的数量增加,故A错误;改进生产工艺后,D级产品的数量增加,故B错误;改进生产工艺后,C级产品的数量减少,故C正确;改进生产工艺后,B级产品的数量增加超过2倍,故D错误.故选:C.9.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为()A.12B.23C.34D.1316【答案】D【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C =种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P =-=, 故选:D10.(2022·江苏·南京师大附中模拟预测)某同学在课外阅读时了解到概率统计中的马尔可夫不等式,该不等式描述的是对非负的随机变量X 和任意的正数a ,都有()()(),P X a f E X a ≥≤,其中()(),f E X a 是关于数学期望()E X 和a 的表达式.由于记忆模糊,该同学只能确定()(),f E X a 的具体形式是下列四个选项中的某一种.请你根据自己的理解,确定该形式为( ) A .()aE X B .()1aE XC .()a E XD .()E X a【答案】D 【解析】 【分析】根据期望的计算公式,以及m x a ≥即可求解. 【详解】设非负随机变量X 的所有可能取值按从小到大依次为0,i x i N *>∈,对应的概率分别为,0i i p p >设满足i x a ≥的有,,,m a a x k m n m N k N **≤≤∈∈,()ani i k P X a p =≥=∑,()111a ai nk i iii n i ii k i ax pE ax p x pX a -===+==∑∑∑,因为m x a ≥,所以1mx a≥()()()1111a a aaannniiiiiik k i k i k i k ii i i i x px px px p p P X a P X a E aa aaaX --=====⎛⎫+≥+=+≥≥≥ ⎪⎝⎭=∑∑∑∑∑故选:D11.(2022·吉林·三模(理))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的“钱袋子”,某社区开展“全民反诈在行动——反诈骗知识竞赛”活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:(1)求抽取的100名居民竞赛成绩的平均分x 和方差2s (同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现该社区参赛居民竞赛成绩X 近似地服从正态分布()2,N μσ,其中μ近似为样本成绩平均分x ,2σ近似为样本成缋方差2s ,若2μσμσ-<≤+X ,参赛居民可获得“参赛纪念证书”;若2μσ>+X ,参赛居民可获得“反诈先锋证书”,①若该社区有3000名居民参加本次竞赛活动,试估计获得“参赛纪念证书”的居民人数(结果保留整数);②试判断竞赛成绩为96分的居民能否获得“反诈先锋证书”. 附:若()2,XN μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.【答案】(1)75x =,2100s = (2)①2456 ;②能 【解析】 【分析】(1)利用公式直接求出均值、方差即可;(2)①结合给的概率和正态分布的性质,确定获得“参赛纪念证书”,进而计算可得人数; ②利用正态分布的知识求出2μσ>+X ,即95>X ,进而可得结果. (1)100名居民本次竞赛成绩平均分24224028445556575859575100100100100100100=⨯+⨯+⨯+⨯+⨯+⨯=x , 100名居民本次竞赛成绩方差22222422(4575)(5575)(6575)100100100=-⨯+-⨯+-⨯s 22240284(7575)(8575)(9575)100100100100+-⨯+-⨯+-⨯=, (2)①由于μ近似为样本成绩平均分x ,2σ近似为样本成绩方差2s , 所以,275,100μσ==,可知,10σ=,由于竞赛成绩X 近似地服从正态分布()2,N μσ,因此竞赛居民可获得“参赛纪念证书”的概率 (2)P X μσμσ-<≤+11()(22)22μσμσμσμσ=-<≤++-<≤+P X P X 110.68270.95450.818622≈⨯+⨯= 30000.81862455.82456⨯=≈估计获得“参赛纪念证书”的居民人数为2456;②当2μσ>+X 时,即95>X 时,参赛居民可获得“反诈先锋证书”, 所以竞赛成绩为96分的居民能获得“反诈先峰证书”.12.(2022·贵州·贵阳一中模拟预测(文))“十四五”规划纲要提出,全面推动长江经济带发展,协同推动生态环境保护和经济发展长江水资源约占全国总量的36%,长江流域河湖、水库、湿地面积约占全国的20%,珍稀濒危植物占全国的39.7%,淡水鱼类占全国的33%.长江经济带在我国生态文明建设中占据重要位置.长江流域某地区经过治理,生态系统得到很大改善,水生动物数量有所增加.为调查该地区某种水生动物的数量,将其分成面积相近的100个水域,从这些水域中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20,i i x y i =其中i x 和i y 分别表示第i 个样区的水草覆盖面积(单位:公顷)和这种水生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021-)120,i i x x ==∑(2021-)9000,i i y ==∑(y 201-)-)1000.i iix x y ==∑((y (1)求该地区这种水生动物数量的估计值(这种水生动物数量的估计值等于样区这种水生动物数量的平均数乘以地块数); (2)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间水草覆盖面积差异很大.为提高样本的代表性以获得该地区这种水生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数-)-) 1.732.niix y x r =≈∑((y【答案】(1)6000 (2)0.96(3)采用分层抽样的方法,理由见解析 【解析】 【分析】(1)根据该地区这种水生动物数量的估计值的计算方法求解即可; (2)根据相关系数的公式求解即可;(3)根据(2)中的结论各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性考虑即可 (1)样区水生动物平均数为201111200602020i i y ==⨯=∑, 地块数为100,该地区这种水生动物的估计值为100606000⨯=. (2)样本()(),1,2,,20i i x y i =⋯的相关系数为()()20,0.96.iix x y y r -===≈∑ (3)由(2)知各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性,由于各地块间水草覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,所以采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种水生动物数量更准确的估计.13.(2022·河南开封·模拟预测(理))大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在A ,B 两块试验田上进行实验(两地块的土质等情况一致).6月25日在A 试验田播种该品种大豆,7月10日在B 试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照[)100,150,[)150,200,[]200,250进行分组,得到如下表格:。
2025年高考预测押题卷-开学起始考模拟卷 高考数学热点(新高考专用)(解析版)

2025年高考预测押题卷(新高考专用)考试时间:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.若集合M={x|log2x<2},N={y|y=2x,x≥1},则M∩N=()A.[1,4)B.(0,2]C.∅D.[2,4)【分析】先通过解对数不等式求集合M,通过求解指数函数值域求集合N,再求交集即可.【解答】解:∵M={x|log2x<2}={x|0<x<4},N={y|y=2x,x≥1}={y|y≥2},∴M∩N=[2,4).故选:D.【点评】本题主要考查交集及其运算,属于基础题.2.已知函数在上单调递减,则实数ω的取值范围是()A.B.C.D.【分析】根据余弦函数的性质,可得单调区间长度小于等于半周期,可得﹣2≤ω<0,再利用整体代换法,即可求得,取k=0即可得出结果.【解答】解:函数的最小正周期,所以,即﹣2≤ω<0,当时,,依题意知,k∈Z,解得,又﹣2≤ω<0,∴当k=0时成立,.故选:A.【点评】本题主要考查余弦函数的图象与性质,属于基础题.3.欧拉恒等式e iπ+1=0(i为虚部单位,e为自然对数的底数)被称为数学中最奇妙的公式,它是复分析中欧拉公式e ix=cos x+i sin x的特例:当自变量x=π时,e iπ=cosπ+i sinπ=﹣1,得e iπ+1=0.根据欧拉公式,复数的虚部为()A.B.C.D.【分析】根据欧拉公式得到复数的代数形式,结合诱导公式计算,即可得出答案.【解答】解:由题意得=,则虚部为,故选:C.【点评】本题考查复数的欧拉公式,考查转化思想,考查运算能力,属于基础题.4.甲、乙、丙三人各进行一次打靶,三人打中的概率分别为0.8,0.8,0.7,则三人中至少有一人打中的概率为()A.0.988B.0.96C.0.948D.0.448【分析】三人中至少有一人打中的对立事件是三人均打不中,运用间接法解决即可.【解答】解:三人中至少有一人打中的对立事件是三人均打不中,三人均打不中的概率为(1﹣0.8)×(1﹣0.8)×(1﹣0.7)=0.012,所以三人中至少有一人打中的概率为1﹣0.012=0.988.故选:A.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.5.已知α,β均为锐角,且,则sin(α﹣β)=()A.B.C.D.【分析】利用题目信息以及平方关系分别计算得α,β角的正弦、余弦值,再利用两角差的正弦公式即可求得结果.【解答】解:由得,又,即,又α,β均为锐角,所以,.故选:C.【点评】本题主要考查两角和与差的三角函数,属于基础题.6.在平行四边形ABCD中,E是对角线AC上靠近点C的三等分点,点F在BE上,若,则x=()A.B.C.D.【分析】根据平面向量三点共线定理和平面向量基本定理,由对应系数相等列方程求解即可.【解答】解:由题可知=,∵点F在BE上,∴=+(1﹣λ),∴=()+(),∴=,λ=,∴x==.故选:C.【点评】本题主要考查了平面向量三点共线定理和平面向量基本定理,属于基础题.7.已知数列{a n}满足a n+1=﹣a n+1(n∈N*),且a1=2023,若存在正偶数m使得(﹣1)1+(﹣1)2+⋯+(﹣1)m+m=2022a1a2⋯a m成立,则m=()A.2016B.2018C.2020D.2022【分析】由得,由此可得化简a1a2⋯a m;由及正偶数m得,由此可化简,最后建立等式关系求得m值.【解答】解:由题意,,故,∴﹣1,∵m为正偶数,∴,∴左边=(a3﹣a1)+(a5﹣a3)+⋅⋅⋅+(a m+1﹣a m﹣1)+m=a m+1﹣a1+m,此时a m+1﹣a1+m=a m+1﹣1,∴m=a1﹣1=2022.故选:D.【点评】本题主要考查数列递推式,考查运算求解能力,属于中档题.8.已知a=2.12.3,b=2.22.2,c=2.32.1,则a,b,c的大小关系是(参考数据ln2.5≈0.916)()A.a<c<b B.a<b<c C.c<a<b D.b<a<c【分析】比较a,b的大小关系等价于比较2.3ln2.1,2.2ln2.2的大小关系,等价于比较的大小关系,后者两边具有统一的结构形式,构造函数,利用导数研究函数在包含2.2和2.3的某个适当区间内的单调性,进而比较a,b的大小,得到a<b,同样思想,比较b,c得到b<c.从而得到结论.【解答】解:令,,令,,当x>0.1时,g'(x)<0,g(x)单调递减.又,∴当0.1<x<e+0.1时,f'(x)>0,f(x)单调递增.∴f(2.2)<f(2.3),即,则2.3ln2.1<2.2ln2.2,∴2.12.3<2.22.2,则a<b,令,则,令,则,当x>0时,φ'(x)<0,φ(x)单调递减.又,所以当0<x≤2.4时,h'(x)>0,所以在(0,2.4]上单调递增,∴h(2.1)<h(2.2),即,∴2.2ln2.2<2.1ln2.3,即2.22.2<2.32.1,则b<c,综上所述a<b<c.故选:B.【点评】本题主要考查了导数与单调性关系的应用,还考查了利用函数的单调性比较函数值的大小,属于中档题.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.已知双曲线C过点且渐近线方程为x±y=0,则下列结论正确的是()A.C的方程为x2﹣=1B.C的离心率为C.曲线y=e x﹣2﹣1经过C的一个焦点D.C的焦点到渐近线的距离为1【分析】根据给定条件,求出双曲线方程,再逐项计算判断作答.【解答】解:因为双曲线C的渐近线方程为,则设双曲线C:,又点在双曲线C上,有λ=1,即双曲线C的方程为,故A错误;双曲线C的实半轴长,虚半轴长b=1,半焦距c=2,双曲线C的离心率,故B错误;双曲线C的焦点坐标为(±2,0),其中(2,0)满足y=e x﹣2﹣1,故C正确;双曲线C的焦点(±2,0)到渐近线的距离,故D正确.故选:CD.【点评】本题主要考查双曲线的性质,考查运算求解能力,属于中档题.10.已知a>0,b>0,且a+b=4则下列结论一定正确的有()A.(a+2b)2≥8ab B.C.ab有最大值4D.有最小值9【分析】由已知结合不等式的性质及基本不等式分别检验各选项即可判断.【解答】解:因为a>0,b>0,且a+b=4,A:(a+2b)2﹣8ab=(a﹣2b)2≥0,A错误;当a=b=2时取等号,B显然错误;因为a+b=4,。
2023年全国卷1卷第20题解法

文章标题:2023年全国卷1卷第20题解法探讨与总结在2023年的全国卷1中,第20题涉及到了一个较为复杂的数学问题,需要考生具备一定的数学基础和解题技巧才能得到正确答案。
本文将从不同角度深入探讨该题的解法,帮助学生更好地理解并掌握解题方法。
1. 题目内容回顾2023年全国卷1卷第20题主要涉及到了概率和统计的知识,要求考生通过一组数据来计算某一事件发生的概率,并进行推断分析。
在题目中,给出了一组情境和相关数据,考生需要理解问题的要求,并根据给定的条件进行计算和推理。
2. 解题思路分析在解答这道题目时,考生首先需要明确题目所涉及的数学知识点,包括条件概率、事件的独立性等概念。
根据题目给出的具体数据和情境,可以分步进行推理和计算,得出最终的结果。
在这个过程中,考生需要运用到概率统计的相关公式和方法,同时进行逻辑推理和分析,确保解题过程的正确性和合理性。
3. 解题方法探讨针对这道题目,可以采用几种不同的解题方法,比如基于条件概率公式的推导计算,或者通过树状图、表格等方式来展现事件发生的可能性。
还可以运用到统计学的相关知识,对数据进行分析和推断。
在具体的解题过程中,要注意逻辑严谨,思维清晰,避免漏算和错误推断。
4. 个人观点和理解对于这道题目,我认为学生在备考的过程中,除了掌握基础的数学知识外,还需要具备一定的解题技巧和灵活思维。
解决复杂的概率统计问题,需要有较强的逻辑推理能力和数学建模能力,这也是考验学生综合能力的一种方式。
建议学生在备考过程中,多进行练习和思考,加强对数学问题的分析和解决能力。
总结回顾通过对2023年全国卷1卷第20题的探讨和分析,我们可以发现这道题目涉及到了多个数学知识点,具有一定的难度和挑战性。
在解题过程中,除了熟练掌握基础知识外,灵活运用概率和统计的方法,以及合理推理和分析能力同样重要。
希望学生们能够通过不断的练习和思考,提升自己的数学解题能力,更好地迎接考试的挑战。
文章字数:3824以上是根据您指定主题撰写的文章,希朥能够帮助到您。
【黄金20题】备战2024年新高考语文一轮复习题型专练(解析版)

预测07 古诗词鉴赏精选20题(名校名题预测)(解析版)上海专用,2024届高考语文精编预测系列一、古代诗歌阅读(2023春·上海浦东新·高三华师大二附中校考阶段练习)阅读下面这首词,完成各题。
甲()(唐)元稹昼静帘疏燕语频,双双斗雀动阶尘。
柴扉日暮随风掩,落尽闲花不见人。
乙()(宋)守璋草深烟景重,林茂夕阳微。
不雨花犹落,无风絮自飞。
1.这两首诗标题相同,最有可能是()A.早春B.晚春C.早秋D.晚秋2.下列对这两首诗理解和赏析不正确的一项是()A.从押韵上看,甲诗和乙诗都是一二四句押韵。
B.从选材上看,两首诗都选取典型意象写季节。
C.从描写上看,甲诗视听结合,乙诗侧重视觉。
D.从语言上看,两首诗都平实质朴,清新自然。
3.两首诗都围绕“静”字来写,请结合画线句,说说写法和效果有何不同?【答案】1.B 2.A 3.甲诗意在写“静”的境界,但却不见一个“静”字,而是以“不见人”而状幽静。
乙诗通过白描手法,写花落絮飞而无声的景象。
【解析】1.本题考查学生分析诗歌场景的能力。
根据甲诗“燕语”“雀动”“落尽闲花”和乙诗“草深”“林茂”“花犹落”可知,此时应是草木繁茂、花朵逐渐凋谢的晚春时节。
故选B。
2.本题考查学生分析理解诗歌内容的能力。
A.“甲诗和乙诗都是一二四句押韵”说法有误。
甲诗中第一句押“in”韵,二四句押“en”韵;乙诗第一句押“ong”韵,二四句押“ei”韵。
故应是二四句押韵。
故选A。
3.本题考查学生赏析诗歌表现手法及其表达效果的能力。
在甲诗中,画线句的意思是太阳已经落山,柴门随风关上;风吹落花满地都是,但只见落花却不见人。
日暮时分,应该是人归掩门之时,但是却不见归人,柴门只是随着风的吹动而自动掩了起来;花开应当有人欣赏,可是花儿落尽也不见有人。
两句虽都意在写“静”的境界,但表面却不见一个“静”字,这闲适、这静谧完全通过形象的景物显现。
以“不见人”而状幽静,手法别致,给人留下寻味的余地。
2024年新高考数学模拟卷A卷(解析版)

2024年新高考数学模拟卷A 卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2468M =,,,,{}2|280N x x x =--≤,则M N ⋂=()A .{}2,4B .{}2,4,6C .{}2,4,6,8D .[]24,【答案】A【详解】由题意{}2|280{|24}N x x x x x =--≤=-≤≤,∴{2,4}M N ⋂=.故选:A .2.复数2(2)i z i-=i 为虚数单位,则A .25B .C .5D .【答案】C【详解】()()()223443,1i i i z i i--⨯-===--()()2243 5.z -+-=3.已知()1,3a =-,()2,1b =- ,且()()2//a b ka b +-,则实数k =()A .2-B .2C .12D .12-【答案】D【详解】 (1,3)=- a ,()2,1b =- ,(1ka b k ∴-= ,3)(2---,1)(2k =+,13)k --,2(3,1)a b +=--,()//(2)ka b a b +-,(2)3(13)k k ∴-+=---,∴解得:12k =-.故选:D .4.已知函数2,(1)()4,(1)x a x ax x f x a x ⎧-++<⎪=⎨⎪≥⎩,若()y f x =在(),-∞+∞上单调递增,则实数a 的取值范围是()A .[]2,4B .()2,4C .()2,+∞D .[)2,+∞【答案】A【详解】()f x 在(),-∞+∞上单调递增;∴2112211414aa a a a a a a⎧≥⎪≥⎧⎪⎪>⇒>⎨⎨⎪⎪≤⎩⎪-++≤⎩,解得24a ≤≤;所以实数a 的取值范围为[]2,4.故选:A .5.若椭圆X :()22211x y a a +=>与双曲线H :2213x y -=的离心率之和为736,则=a ()A .2B 3C 2D .1【答案】A【详解】椭圆X :()22210x y aa +=>H :2213x y -==,=2a=.故选:A.6.设过点(0,P 与圆22:410C x y x +--=相切的两条直线的夹角为α,则cos α=()A .19BC .19-D .【答案】A【详解】解法1:如图,圆22410x yx +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r ,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,得2sin 3APC APC ∠∠=,则221cos cos sin 09APB APC APC∠=∠-∠=-<,即APB ∠为钝角,且α为锐角,所以1cos cos(π)9APB α=-∠=.故选A.解法2:如图,圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB+-⋅∠=+-⋅∠,且πACB APB ∠=-∠,则448cos 5510cos APB ACB +-∠=+-∠,即44cos 55cos APB ACB -∠=-∠,解得1cos 09APB ∠=-<,即APB ∠为钝角,且α为锐角,则1cos cos(π)9APB α=-∠=.故选:A.解法3:圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =线方程为0x=,则圆心到切点的距离2d r =<,不合题意;若切线斜率存在,则设切线方程为y kx =,即0kx y -=,则圆心到切线的距离d =120,k k ==-1212sin tan 1cos k k k k ααα-==+,又α为锐角,由22sin cos 1αα+=解得1cos 9α=.故选:A.7.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则().A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件【答案】B【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足.故选:B8.若ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则()tan αβ+=()A .-1B .1C .-2D .2【答案】A【详解】解法一:由题得()()2sin sin cos 2222βαααβαβ⎫-=-+-⎪⎪⎝⎭,所以2sin sin 2cos sin sin cos cos sin cos cos sin sin αβαβαβαβαβαβ-=-++,即sin cos cos sin cos cos sin sin 0αβαβαβαβ++-=,即()()sin cos 0αβαβ+++=,显然()cos 0αβ+≠,故()tan 1αβ+=-.解法二:令π4αθ-=,则π4αθ=+,所以ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭可化为π2sin sin sin 2βθθβ⎛⎫=-+ ⎪⎝⎭,即()2sin sin cos βθθβ=-,所以2sin sin cos cos sin sin βθθβθβ=+,即cos cos sin sin 0θβθβ-=,所以()cos 0θβ+=,则ππ2k θβ+=+,k ∈Z ,所以()πππ3πtan tan tan πtan 14424k αβθβ⎛⎫⎛⎫+=++=++==- ⎪ ⎪⎝⎭⎝⎭,k ∈Z .故选:A.二、多选题:本题共3小题,每小题6分,共18分。
2023年新高考1卷理科概率题

2023年新高考1卷理科概率题一、某班级有男生25人,女生20人,随机选出一名课代表,选到女生的概率为?A. 1/2B. 4/9C. 5/9D. 2/5(答案)B。
解析:总人数为25+20=45人,选到女生的概率为20/45=4/9。
二、从一副扑克牌(去掉大小王)中随机抽取一张,抽到红心的概率为?A. 1/4B. 1/3C. 1/52D. 13/52(答案)A。
解析:一副扑克牌(去掉大小王)共有52张,其中红心13张,所以抽到红心的概率为13/52=1/4。
三、一个骰子投掷一次,出现点数为偶数的概率为?A. 1/2B. 1/3C. 1/4D. 1/6(答案)A。
解析:一个骰子有6个面,点数为偶数的有2、4、6三面,所以出现点数为偶数的概率为3/6=1/2。
四、甲、乙两人进行乒乓球比赛,甲获胜的概率为0.6,则乙获胜的概率为?A. 0.6B. 0.5C. 0.4D. 0.3(答案)C。
解析:甲获胜和乙获胜是两个对立事件,所以乙获胜的概率为1-0.6=0.4。
五、从1到100中随机选择一个数,这个数是5的倍数的概率为?A. 1/5B. 1/10C. 1/20D. 1/25(答案)C。
解析:从1到100中,5的倍数有20个,所以选择5的倍数的概率为20/100=1/5,但考虑到是选择“一个数”,所以实际概率为20/100=1/20的倍数即选C。
六、一个盒子里有3个红球和2个白球,从中随机取出两个球,两个球都是红球的概率为?A. 1/10B. 3/10C. 1/5D. 3/5(答案)B。
解析:从5个球中取两个球的组合数为C(5,2)=10,两个球都是红球的组合数为C(3,2)=3,所以两个球都是红球的概率为3/10。
七、某地区一周内下雨的天数服从二项分布B(7,0.3),则这一周内恰好有3天下雨的概率为?A. 0.1029B. 0.1323C. 0.2331D. 0.343(答案)B。
解析:二项分布的概率计算公式为P(X=k)=C(n,k)×pk×(1-p)(n-k),代入n=7,k=3,p=0.3,计算得到P(X=3)=C(7,3)×0.33×0.74=0.1323。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计概率统计概率是高考的重点和热点,从2019年高考情况来看,更是有压轴题的趋势,并且分值和题量都略有增加。
其中解答题考查涉及的主要方向有:(1)与社会生活紧密相连,紧跟时代步伐创设情境。
(2)概率的求解.同时也常渗透考查统计知识,背景新颖,体现了概率与统计的工具性和交汇性,综合考查考生的应用意识、阅读理解能力、数据处理能力和转化与化归思想的应用;(3)统计知识.其核心是样本数据的获得和分析方法,重点是频率分布直方图、茎叶图、样本的数字特征、线性回归方程、独立性检验,常与概率交汇命题,意在考查考生的数据分析能力和综合应用能力.1.均值与方差的性质若Y=aX+b,其中a,b是常数,X是随机变量,则(1)E(k)=k,D(k)=0,其中k为常数;(2)E(aX+b)=aE(X)+b,D(aX+b)=a2D(X);(3)E(X1+X2)=E(X1)+E(X2);(4)D(X)=E(X2)–(E(X))2;(5)若X1,X2相互独立,则E(X1·X2)=E(X1)·E(X2);(6)若X服从两点分布,则E(X)=p,D(X)=p(1–p);(7)若X服从二项分布,即X~B(n,p),则E(X)=np,D(X)=np(1–p).2.随机变量是否服从超几何分布的判断若随机变量X服从超几何分布,则满足如下条件:(1)该试验是不放回地抽取n次;(2)随机变量X表示抽取到的次品件数(或类似事件),反之亦然.3.求超几何分布的分布列的步骤第一步,验证随机变量服从超几何分布,并确定参数N,M,n的值;第二步,根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率;第三步,用表格的形式列出分布列.4.求超几何分布的均值与方差的方法(1)列出随机变量X的分布列,利用均值与方差的计算公式直接求解;(2)利用公式E (X )=nMN,D (X )=2()()(1)nM N M N n N N ---求解.1.(2021·湖南·高考真题)端午节吃粽子是我国的传统习俗.设一盘中装有6个粽子,其中肉粽1个,蛋黄粽2个,豆沙粽3个,这三种粽子的外观完全相同,从中任意选取2个. (1)用ξ表示取到的豆沙粽的个数,求ξ的分布列; (2)求选取的2个中至少有1个豆沙粽的概率. 【详解】(1)由条件可知0,1,2ξ=,()2326105C P C ξ===,()113326315C C P C ξ===,()2326125C P C ξ===,所以ξ的分布列,如下表,ξ0 12 P153515(2)选取的2个中至少有1个豆沙粽的对立事件是一个都没有, 则选取的2个中至少有1个豆沙粽的概率14155P . 2.(2021·北京·高考真题)在核酸检测中, “k 合1” 混采核酸检测是指:先将k 个人的样本混合在一起进行1次检测,如果这k 个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k 个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确. (I )将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测. (i)如果感染新冠病毒的2人在同一组,求检测的总次数; (ii)已知感染新冠病毒的2人分在同一组的概率为111.设X 是检测的总次数,求X 的 分布列与数学期望E(X).(II )将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y 是检测的总次数,试判断数学期望E(Y )与(I)中E(X)的大小.(结论不要求证明) 【详解】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次; 所以总检测次数为20次; ②由题意,X 可以取20,30,()12011P X ==,()1103011111P X ==-=, 则X 的分布列: X20 30P1111011所以()1103202030111111E X =⨯+⨯=; (2)由题意,Y 可以取25,30,两名感染者在同一组的概率为232981510020499C C P C ==,不在同一组的概率为29599P =, 则()()49529502530=999999E Y E X =⨯+⨯>. 3.(2021·全国·高考真题)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关. (1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由. 【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=;()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为 X20100 P0.20.320.48(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=;()()800.610.80.12P Y ==-=; ()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=. 因为54.457.6<,所以小明应选择先回答B 类问题.4.(2021·全国·高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===. (1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <; (3)根据你的理解说明(2)问结论的实际含义. 【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤, 故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<; 故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数, 若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>. 此时()()20300f p p p '=-++<,()230120f p p p '=+->, 故()f x '有两个不同零点34,x x ,且3401x x <<<, 且()()34,,x x x ∈-∞+∞时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数, 而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.1.(2022·福建·模拟预测)在某次数学考试中,共有四道填空题,每道题5分.已知某同学在此次考试中,在前两道题中,每道题答对的概率均为56,答错的概率均为16;对于第三道题,答对和答错的概率均为12;对于最后一道题,答对的概率为13,答错的概率为23.(1)求该同学在本次考试中填空题部分得分不低于15分的概率; (2)设该同学在本次考试中,填空题部分的总得分为X ,求X 的分布列. 【解析】 (1)设“第({1,2,3,4})i i ∈题答对”为事件i A ,设“得分不低于15分”为事件B ,则P (B )=()43211231241342341234P A A A A P A A A A P A A A A P A A A A P A A A A ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=5512551151111511551166236623662366236623⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯ =55108; (2)易知X 的取值可能为0,5,10,15,20, ()12341112106623108P X P A A A A ⎛⎫===⨯⨯⨯= ⎪⎝⎭,()23413412412312345P X P A A A A P A A A A P A A A A P A A A A ⎛⎫⎛⎫⎛⎫⎛⎫==+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=5112151211211116623662366236623⨯⨯⨯+⨯⨯⨯+⨯⨯+⨯⨯⨯23216=; ()()242313123413142410P X P A A A A P A A A A P A A A A P A A A A ⎛⎫⎛⎫⎛⎫==+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()14231234P A A A A P A A A A ⎛⎫++ ⎪⎝⎭=551251125111151115121111662366236623662366236623⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯ =8132168=; ()432112312413423415P X P A A A A P A A A A P A A A A P A A A A ⎛⎫⎛⎫⎛⎫⎛⎫==+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=5512551151111511856623662366236623216⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=; ()()1234551125206623216P X P A A A A ===⨯⨯⨯=;则X 的分布列为: X 05 10 15 20P1108 232163885216 252162.(2022·广东深圳·二模)2022年北京冬奥会后,由一名高山滑雪运动员甲组成的专业队,与两名高山滑雪爱好者乙、丙组成的业余队进行友谊赛.约定赛制如下:业余队中的两名队员轮流与甲进行比赛............,若甲连.续赢两场....则专业队获胜;若甲连续输两场.....则业余队获胜:若比赛三场还没有决出胜负,则视为平局,比赛结束.已知各场比赛相互独立,每场比赛都分出胜负,且甲与乙比赛,乙赢概率为13;甲与丙比赛,丙赢的概率为p ,其中1132p <<.(1)若第一场比赛,业余队可以安排乙与甲进行比赛,也可以安排丙与甲进行比赛.请分别计算两种安排下业余队获胜的概率;若以获胜概率大为最优决策,问:业余队第一场应该安排乙还是丙与甲进行比赛? (2)为了激励专业队和业余队,赛事组织规定:比赛结束时,胜队获奖金3万元,负队获奖金1.5万元;若平局,两队各获奖金1.8万元.在比赛前,已知业余队采用了(1)中的最优决策与甲进行比赛,设赛事组织预备支付的奖金金额共计X 万元,求X 的数学期望()E X 的取值范围. 【解析】 (1)第一场比赛,业余队安排乙与甲进行比赛,业余队获胜的概率为: 112153339P p p p =⨯+⨯⨯=; 第一场比赛,业余队安排丙与甲进行比赛,业余队获胜的概率为: ()22111213333P p p p p p =⨯+-⨯⨯=-+,因为1132p <<,所以212111103933P P p p p p ⎛⎫-=-=-> ⎪⎝⎭,所以12PP >. 所以,业余队第一场应该安排乙与甲进行比赛. (2)由已知 4.5X =万元或 3.6X =万元.由(1)知,业余队最优决策是第一场应该安排乙与甲进行比赛. 此时,业余队获胜的概率为159P p =, 专业队获胜的概率为()()3212881133399P p p p =⨯-+⨯-⨯=-,所以,非平局的概率为()13814.593P X P P p ==+=-,平局的概率为()13113.6193P X P P p ==--=+. X 的分布列为:X4.53.6()P X8193p -1193p +X 的数学期望为()81114.5 3.6 4.40.39393E x p p p ⎛⎫⎛⎫=⨯-+⨯+=- ⎪ ⎪⎝⎭⎝⎭(万元) 而1132p <<,所以()E x 的取值范围为:()4.25,4.3(单位:万元). 3.(2022·湖南·雅礼中学二模)“不关注分数,就是对学生的今天不负责:只关注分数,就是对学生的未来不负责.”为锻炼学生的综合实践能力,长沙市某中学组织学生对雨花区一家奶茶店的营业情况进行调查统计,得到的数据如下: 月份x24681012净利润(万元〕y 0.9 2.0 4.2 3.9 5.2 5.1(1)设ln ,i i i i x v x μ==试建立y 关于x 的非线性回归方程ln y a x b =+和y m x n =(保留2位有效数字); (2)从相关系数的角度确定哪一个模型的拟合效果更好,并据此预测次年2月(14x =计)的净利润(保留1位小数).附:①相关系数12211()()())()niii n niii i x x y y r x x y y ===--=--∑∑∑,回归直线ˆˆˆy bx a =+中斜率和截距的最小二乘估计公式分别为121()()ˆˆˆ,()niii nii x x y y bay bx x x ==--==--∑∑;②参考数据:ln 20.7,ln 3 1.1,ln 5 1.6,ln 7268 2.8≈≈≈≈≈≈,1012143322450767.1≈≈≈【解析】 (1)ln 2ln 4ln6ln8ln10ln126μ+++++=10ln 22ln3ln51.86++=≈,0.92 4.2 3.9 5.2 5.13.556y +++++==,()()()()61()() 1.1 2.650.4 1.5500.650.30.350.5 1.650.7 1.55 5.55ii i y y μμ=--=-⨯-+-⨯-+⨯+⨯+⨯+⨯=∑,()()622222221() 1.10.400.30.50.7 2.2i i μμ=-=-+-++++=∑,所以616215.55) 2.52(.)2(()ii i i i a y y μμμμ==---==≈∑∑, 3.55 2.5 1.80.95b =-⨯=-, 所以模型ln y a x b =+的方程为 2.5ln 0.95y x =-,246810122.556v ++=≈,()()()()()61()() 1.15 2.650.55 1.550.150.650.250.350.65 1.650.95 1.55 6.435iii v v y y =--=-⨯-+-⨯-+-⨯+⨯+⨯+⨯=∑,()()()622222221() 1.150.550.150.250.650.95 2.985ii v v =-=-+-+-+++=∑,所以 6.4352.22.985m =≈, 3.55 2.2 2.55 2.1n =-⨯≈-, 所以模型y m x n =的方程为 2.1y x =; (2)()()622222221() 2.65 1.550.650.35 1.65 1.5515.1ii y y =-=-+-++++≈∑,所以1 5.550.9645.762.215.133.22r ===≈≈⨯,2 6.4350.9596.712.98515.145.07r =≈≈≈⨯,因为1r 更接近1,所以模型 2.5ln 0.95y x =-的拟合效果更好, 则次年2月净利润为 2.5ln140.95 5.6y ≈-≈万元.4.(2022·江苏·南京市第一中学三模)设2n ≥,*N n ∈ ,甲、乙、丙三个口袋中分别装有1n -、n 、1n +个小球,现从甲、乙、丙三个口袋中分别取球,一共取出n 个球.记从甲口袋中取出的小球个数为X . (1)当5n =时,求X 的分布列; (2)证明:0112223C C C C C C C n n n n n n n n n n +++=;(3)根据第(2)问中的恒等式,证明:()13n E X -=. 【解析】 (1)解:当5n =时,甲、乙、丙三个口袋中小球的个数分别为4、5、6, 随机变量X 的可能取值为0、1、2、3、4,()511515C 20C 13P X ===,()14411515C C 401C 91P X ===,()23411515C C 302C 91P X ===,()32411515C C 203C 143P X ===,()41411515C C 14C 143P X ===,所以,随机变量X 的分布列如下表所示:X1 2 3 4P213 4091 3091 201431143(2)证明:设从乙口袋抽取的小球的个数为随机变量Y ,由超几何分布可知,随机变量Y 的分布列为()()23C C 0,N C k n k n nnnP Y k k n k -==≤≤∈, 由组合数的性质可知,当0k n ≤≤且N k ∈时,C C k n kn n -=,根据分布列的性质可知22033CCC C1CCnnn k n k t t nnnnk t n n n n--====∑∑,所以,0011222230C C C C C C C C C nnn t t nnnnnnnn n n t =+++==∑. (3)证明:由题意可知,随机变量X 的可能取值为:0、1、2、、1n -,随机变量X 的分布列为()()1213C C 01,N C k n kn n nnP X k k n k --+==≤≤-∈, 当2n ≥时,()()()()()()()1121!12C 1C !1!1!1!kk n n n n n k k n k n k k n k -----⋅-=⋅==-⋅---⋅--!,则()()()()11111222122112100103331C C 1C C C C C C C k n k m n m k n k n n n n n n n n n n n n nk k k m n n nn n k E X k P X k ----------+-+-+====--=⋅====∑∑∑∑, 设一批产品中有()312,N n n n *-≥∈件产品,其中有2n -件次品,21n 件正品,从中抽取1n -件产品,其中次品的件数记为ξ,则ξ的可能取值有0、1、2、、2n -,根据分布列的性质可得()1122111031CC 1C n mn m n n n m n m n P m ξ----+-=-=-===∑∑,所以,211221310C C C n m n m n n n n m -----+-==∑,因此,()()()()()()()()()112221310331C C 1131!2!!1C 1!2!3!3m n m n n n n n n nm n nn n C n n n n n E X C n n n -----+-=---⋅-⋅-===⋅=-⋅∑. 5.(2022·湖南永州·三模)某游乐场开展摸球有奖活动,在一个不透明的盒子中放入大小相同的10个小球,其中红球4个,黑球6个,游客花10元钱,就可以参加一次摸球有奖活动,从盒子中一次随机摸取4个小球,规定摸取到两个或两个以上的红球就中奖.根据摸取到的红球个数,设立如下的中奖等级: 摸取到的红球个数2 3 4 中奖等级 三等奖二等奖一等奖(1)求游客在一次摸球有奖活动中中奖的概率;(2)若游乐场规定:在一次摸球有奖活动中,游客中三等奖,可获得奖金15元;中二等奖,可获得奖金20元;中一等奖,可获得奖金200元.请从游乐场获利的角度,分析此次摸球有奖活动的合理性. 【解析】 (1)解:设一次摸球有奖活动中中奖为事件A ,则事件A 包含的基本事件有:223140464646115C C C C C C ++=, 基本事件总数为:410210C =,∴()1152321042P A == ∴游客在一次摸球有奖活动中中奖的概率为2342. (2)解:设游客在一次摸球有奖活动中获得的奖金为X ,X 可以取0,15,20,200,()2319014242P X ==-= ()22464103157C C P X C === ()314641042035C C P X C ===()444101200210C P X C ===故X 的分布列为X0 15 20 200 P1942374351210X 的数学期望()9341203015202004273521021E X =⨯+⨯+⨯+⨯= 由于一次摸球有奖活动中支付给游客奖金的均值()2031021E X =<, 所以游乐场可获利,故此次摸球有奖活动合理.(限时:30分钟)1.2017年国家发改委、住建部发布了《生活垃圾分类制度实施方案》规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、用率要达35%以上.某市在实施垃圾分类之前,对该市大型社区(即人口数量在1万左右)一天产生的垃圾量(单位:吨)进行了调查.已知该市这样的大型社区有200个,如图是某天从中随机抽取50个社区所产生的垃圾量绘制的频率分布直方图.现将垃圾量超过14吨/天的社区称为“超标”社区.(1)根据上述资料,估计当天这50个社区垃圾量的平均值x (四舍五入精确到整数);(2)若当天该市这类大型社区的垃圾量()~,9X N μ,其中μ近似为(1)中的样本平均值x ,请根据X 的分布估计这200个社区中“超标”社区的个数(四舍五入精确到整数);(3)市环保部门决定对样本中“超标”社区的垃圾来源进行调查,现从这些社区中随机抽取3个进行重点监控,设Y 为其中当天垃圾量至少为16吨的社区个数,求Y 的分布列与数学期望. 附:()0.6827P X μσμσ-<≤+≈;(22)0.9545P X μσμσ-<≤+≈;(33)0.9974P X μσμσ-<≤+≈.【详解】(1)由频率分布直方图得该样本中垃圾量为[)4,6,[)6,8,[)8,10,[)10,12,[)12,14,[)14,16,[]16,18的频率分别为0.08,0.1,0.2,0.24,0.18,0.12,0.08,50.0870.1090.20110.24130.18150.12170.0811.0411,x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈所以当天这50个社区垃圾量的平均值为11吨; (2)由(1)知11μ=,29σ=,3σ∴=,10.6827(14)()0.158652P X P X μσ-∴>=>+==, 所以这200个社区中“超标”社区的个数为2000.1586532⨯≈;(3)由(1)得样本中当天垃圾量为[)14,16的社区有500.126⨯=个,垃圾量为[)16,18的社区有500.084⨯=个,所以Y 的可能取值为0,1,2,3,363101(0)6C P Y C ===,21643101(1)2C C P Y C ===,12643103(2)10C C P Y C ===,343101(3)30C P Y C ===,Y ∴的分布列为 Y123P1612310130()01236210305E Y ∴=⨯+⨯+⨯+⨯=.2.到2020年年底,经过全党全国各族人民共同努力,现行标准下9899万农村贫困人口全部脱贫,832个贫困县全部摘帽,12.8万个贫困村全部出列,区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务.在接下来的5年过渡期,为巩固脱贫成果,将继续实行“四个不摘”,某市工作小组在2021年继续为已脱贫群众的生产生活进行帮扶,工作小组经过多方考察,引进了一种新的经济农作物,并指导一批农户于2021年初开始种植.已知该经济农作物每年每亩的种植成本为1000元,根据前期各方面调查发现,由于天气、市场经济等因素的影响,近几年该经济农作物的亩产量与每千克售价具有随机性,且互不影响,其具体情况如下表:该经济农作物市场价格(元/kg )1015该经济农作物每年亩产量(kg)400 600概率0.4 0.6 概率0.25 0.75(1)设2021年当地某农户种植一亩该经济农作物的纯收入为X 元,求X 的分布列;(2)已知当地某农户在2021年初种植了3亩该经济农作物,假设各亩地的产量相互独立,求该农户在2021年通过种植该经济农作物所获得的纯收入超过12000元的概率. (注:纯收入=种植收入-种植成本) 【详解】(1)由题知一亩地的种植收入可能为4000,6000,9000,故X 的所有可能取值为3000,5000,8000(3000)0.40.250.1P X ==⨯=,(5000)0.40.750.60.250.45P X ==⨯+⨯=,(8000)0.60.750.45P X ==⨯= X 的分布列为: X 3000 5000 8000 P0.10.450.45(2)纯收入超过12000元,即3亩地种植收入超过15000元, 若价格为10元/kg ,则3亩地的总产量超过1500kg , 因为40026001500⨯+<,所以符合条件的概率为()22330.750.250.750.40.3375C ⨯⨯+⨯=. 若价格为15元/kg ,则3亩地的总产量超过1000kg ,34001000⨯>, ∴P (纯收入超过1200元)0.60.33750.9375=+=3.第24届冬季奥林匹克运动会,将于2022年2月4日至2022年2月20日在北京举行实践“绿色奥运、科技奥运、人文奥运”理念,举办一届“有特色、高水平”的奥运会,是中国和北京的庄严承诺,也是全世界的共同期待.为宣传北京冬奥会,激发人们参与冬奥会的热情,某市开展了关于冬奥知识的有奖问答.从参与的人中随机抽取100人,得分情况如下:(1)得分在80分以上称为“优秀成绩”,从抽取的100人中任取2人,记“优秀成绩”的人数为X ,求X 的分布列及数学期望;(2)由直方图可以认为,问卷成绩值Y 服从正态分布()2,N μσ,其中μ近似为样本平均数,2σ近似为样本方差.①求(77.289.4)P Y <<;②用所抽取100人样本的成绩去估计城市总体,从城市总人口中随机抽出2000人,记Z 表示这2000人中分数值位于区间(77.2,89.4)的人数,利用①的结果求()E Z .15012.2≈14612.1≈,()0.6826P Y μσμσ-<<+=,(22)0.9544P Y μσμσ-<<+=,(33)0.9974P Y μσμσ-<<+=.【详解】(1)得分80以上的人数为10010(0.0080.002)10⨯⨯+=,X 可能取值为0,1,22902100C 89(0)C 110P X ===,1110902100C C 2(1)C 11P X ===,2102100C 1(2)C 110P X ===, X 分布列为: X12P89110 211 1110()012110111105E X =⨯+⨯+⨯=. (2)10(350.002450.009550.022650.033750.024850.008950.002)x =⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯65=22222(3565)100.002(4565)100.009(5565)100.022(7565)100.024s =-⨯⨯+-⨯⨯+-⨯⨯+-⨯⨯ 22(8565)100.008(9565)100.002150+-⨯⨯+-⨯⨯=取65x μ==,212.2s σ==①1(77.289.4)[(22)()]0.13592P Y P Y P Y μσμσμσμσ<<=-<<+--<<+= ②~(2000,0.1359)Z B ,()20000.1359271.8E Z =⨯=4.在刚刚过去的寒假,由于新冠疫情的影响,哈尔滨市的A 、B 两所同类学校的高三学年分别采用甲、乙两种方案进行线上教学,为观测其教学效果,分别在两所学校的高三学年各随机抽取60名学生,对每名学生进行综合测试评分,记综合评分为80及以上的学生为优秀学生,经统计得到两所学校抽取的学生中共有72名优秀学生.(1)用样本估计总体,以频率作为概率,若在A 、B 两个学校的高三学年随机抽取3名学生,求所抽取的学生中的优秀学生数的分布列和数学期望;(2)已知A 学校抽出的优秀学生占该校抽取总人数的23,填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为学生综合测试评分优秀与教学方案有关.优秀学生非优秀学生合计 甲方案 乙方案 合计附:()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.0010k2.0722.7063.841 5.024 6.635 7.879 10.828()()()()()22n ad bc K a b c d a c b d -=++++,其中 n a b c d =+++.【详解】()1由已知,学生为优秀的概率为720.6120=, 记优质学生数为X ,由题意知,X 的所有可能取值为0,1,2,3.则()()3300.40.064P X C ===,()()23110.40.60.288P X C ===,()()22320.40.60.432P X C ===,()()33330.60.216P X C ===.故X 的分布列为X12 3P0.0640.2880.4320.216所以X 的数学期望为()30.6 1.8E X =⨯=.()2填写列联表如下优秀学生 非优秀学生 合计甲方案 40 20 60 乙方案 3228 60合计7248120计算()2212040282032 2.22 2.70660607248k ⨯-⨯=≈<⨯⨯⨯,所以不能在犯错误的概率不超过0.1的前提下认为学生综合测试评分优秀与教学方案有关.5.为了调查A 地区200000名学生寒假期间在家的课外阅读时间,研究人员随机抽取了20000名学生作调查,所得结果统计如下表所示: 阅读时间() h []0,10(]10,20(]20,30(]30,40(]40,50(]50,60频数2003700530080002300500(1)若阅读的时间Z 近似地服从正态分布(),64N μ,其中μ为这20000名学生阅读时间的平均值,试估计这200000名学生中阅读时间在(]6,38的学生人数(同一组数据用该组区间的中点值为代表); (2)以频率估计概率,若从全体学生中随机抽取5人,记阅读时间在(]30,40中的人数为X ,求X 的分布列和数学期望()E X ;(3)为了调查阅读时间与性别是否具有相关性,研究人员从这20000名学生中再随机抽取500名男生和500名女生作进一步调查,所得数据如下表所示,判断是否有99.9%的把握认为阅读时间与性别具有相关性.阅读时间在[]0,30之间 阅读时间在(]30,60之间 男生 200 女生 100附:若()2~,Z Nμσ,则()0.6827P Z μσμσ-<≤+=,()220.9545P Z μσμσ-<≤+=,()330.9973P Z μσμσ-<≤+=.()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥ 0.1000.0500.0100.0010k2.7063.841 6.635 10.828【详解】(1)依题意,5200153700255300358000452300555003020000μ⨯+⨯+⨯+⨯+⨯+⨯==,则()230,8ZN ,故()()0.68270.997363830.842P Z P Z μσμσ+<≤=-<≤+==,故所求人数约为2000000.84168000⨯=人.(2)由题意,可得阅读时间在(]30,40的人数所占的频率为80002200005=,所以2~5,5X B ⎛⎫ ⎪⎝⎭,X 的可能取值为0,1,2,3,4,5.所以()53243053125P X ⎛⎫=== ⎪⎝⎭,()4152********C 553125625P X ⎛⎫⎛⎫==== ⎪⎪⎝⎭⎝⎭, ()23252310802162C 553125625P X ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,()3235237201443553125625P X C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,()24523240484C 553125625P X ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,()5232553125P X ⎛⎫=== ⎪⎝⎭, 故X 的分布列为:X12 34 5P2433125 16262521662514462548625323125故()525E X =⨯=. (3)完善列联表如下: 阅读时间在[]0,30之间 阅读时间在(]30,60之间 总计 男生 300 200 500 女生 100 400 500 总计4006001000由于()221000300400200100166.6710.828500500400600K ⨯⨯-⨯=≈>⨯⨯⨯,所以有99.9%的把握认为阅读时间与性别具有相关性.。