2021年新高考数学ⅰ卷第21题解法荟萃
2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)

2021年高考数学真题试卷(新高考Ⅰ卷)一、选择题:本题共8小题,每小题5分,共40分。
1.设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=()A. {2}B. {2,3}C. {3,4,}D. {2,3,4}【答案】B【考点】交集及其运算【解析】【解答】解:根据交集的定义易知A∩B是求集合A与集合B的公共元素,即{2,3},故答案为:B【分析】根据交集的定义直接求解即可.2.已知z=2-i,则( z(z⃗+i)=()A. 6-2iB. 4-2iC. 6+2iD. 4+2i【答案】C【考点】复数的基本概念,复数代数形式的混合运算【解析】【解答】解:z(z+i)=(2−i)(2+2i)=4+4i−2i−2i2=6+2i故答案为:C【分析】根据复数的运算,结合共轭复数的定义求解即可.3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2 √2C. 4D. 4 √2【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:根据底面周长等于侧面展开图弧长,设母线为l,底面半径为r,则有2πr=180°360°×2πl,解得l=2r=2√2故答案为:B【分析】根据底面周长等于侧面展开图弧长,结合圆的周长公式与扇形的弧长公式求解即可.4.下列区间中,函数f(x)=7sin( x−π6)单调递增的区间是()A. (0, π2) B. ( π2, π) C. ( π, 3π2) D. ( 3π2, 2π)【答案】A【考点】正弦函数的单调性【解析】【解答】解:由−π2+2kπ≤x−π6≤π2+2kπ得−π3+2kπ≤x≤2π3+2kπ,k∈Z,当k=0时,[−π3,2π3]是函数的一个增区间,显然(0,π2)⊂[−π3,2π3],故答案为:A【分析】根据正弦函数的单调性求解即可.5.已知F 1,F 2是椭圆C :x 29+y 24=1 的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A. 13 B. 12 C. 9 D. 6 【答案】 C【考点】基本不等式在最值问题中的应用,椭圆的定义【解析】【解答】解:由椭圆的定义可知a 2=9,b 2=4,|MF 1|+|MF 2|=2a=6, 则由基本不等式可得|MF 1||MF 2|≤|MF1||MF2|≤(|MF1|+|MF2|2)2=9 ,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故答案为:C【分析】根据椭圆的定义,结合基本不等式求解即可. 6.若tan θ =-2,则sin θ(1+sin2θ)sin θ+cos θ=( )A. −65 B. −25 C. 25 D. 65 【答案】 C【考点】二倍角的正弦公式,同角三角函数间的基本关系,同角三角函数基本关系的运用 【解析】【解答】解:原式=sinθ(sin 2θ+2sinθcosθ+cos 2θ)sinθ+cosθ=sinθ(sinθ+cosθ)2sinθ+cosθ=sinθ(sinθ+cosθ)=sin 2θ+sinθcosθsin 2θ+cos 2θ=tan 2θ+tanθtan 2θ+1=25故答案为:C【分析】根据同角三角函数的基本关系,结合二倍角公式求解即可. 7.若过点(a,b)可以作曲线y=e x 的两条切线,则( ) A. e b <a B. e a <b C. 0<a<e b D. 0<b<e a 【答案】 D【考点】极限及其运算,利用导数研究曲线上某点切线方程【解析】【解答】解:由题意易知,当x 趋近于-∞时,切线为x=0,当x 趋近于+∞时,切线为y=+∞,因此切线的交点必位于第一象限,且在曲线y=e x 的下方. 故答案为:D【分析】利用极限,结合图象求解即可.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立 【答案】 B【考点】相互独立事件,相互独立事件的概率乘法公式,古典概型及其概率计算公式 【解析】【解答】解:设甲乙丙丁事件发生的概率分别为P(A),P(B),P(C),P(D), 则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16 ,对于A ,P(AC)=0;对于B ,P(AD)=16×6=136; 对于C ,P(BC)=16×6=136; 对于D ,P(CD)=0.若两事件X,Y 相互独立,则P(XY)=P(X)P(Y), 故B 正确. 故答案为:B【分析】根据古典概型,以及独立事件的概率求解即可二、选择题:本题共4小题。
2021年全国新高考Ⅰ卷数学试题(解析版)

数学
本试卷共4页,22小题,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.
(1)若小明先回答A类问题,记 为小明的累计得分,求 的分布列;
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.
【答案】(1)见解析;(2) 类.
【解析】
【分析】(1)通过题意分析出小明累计得分 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答 类问题的数学期望,比较两个期望的大小即可.
(1)记 ,写出 , ,并求数列 的通项公式;
(2)求 的前20项和.
【答案】(1) ;(2) .
【解析】
【分析】(1)根据题设中的递推关系可得 ,从而可求 的通项.
(2)根据题设中的递推关系可得 的前 项和为 可化为 ,利用(1)的结果可求 .
【详解】(1)由题设可得
又 , ,
故 即 即
所以 为等差数列,故 .
12.在正三棱柱 中, ,点 满足 ,其中 , ,则()
A.当 时, 的周长为定值
B.当 时,三棱锥 的体积为定值
C.当 时,有且仅有一个点 ,使得
D.当 时,有且仅有一个点 ,使得 平面
【答案】BD
【解析】
【分析】对于A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;
信息技术视角下2021年全国高考数学Ⅰ卷第21题赏析

信息技术视角下2021年全国高考数学Ⅰ卷第21题赏析摘要:信息技术正悄然地影响数学课堂,特别是高中数学课堂,以往信息技术的相关软件“几何画板”,“Z+Z智能教育平台”,“玲珑画板”,“GGB”等各种信息技术软件,在初中数学课堂,小学数学课堂里被广泛接受和使用,但都有各自的缺点。
随着科学技术的高速发展,现代信息技术的升级和进化和问题的解决,使得相关软件对数学课程内容、数学教学、数学学习等方面开始产生深刻的影响。
二者整合的基本原则是有利于培养学生的数学核心素养,快速理解高中数学知识的生成与要点,使得知识一目了然,并能够学习之余,让联想,尝试,验证等一系列数学优秀品质得到提升,高中数学课程应提倡利用信息技术来呈现以往教学中难以呈现的内容。
关键词:信息技术课堂整合中学数学试题赏析本文选取2021年全国高考数学A卷第21题的题目与解答过程,展示给大家:21.在平面直角坐标系xoy中,已知,点M满足.记M的轨迹为C(1)求C的方程;(2)设点T在直线上,过T的两条直线分别交C于A,B两点和P,Q两点,且,求直线AB的斜率与直线PQ的斜率之和。
21(1):思路一:利用双曲线的定义,动点到定点之间的距离等于定值,且小于,进行大量的消根号运算得出方程(这里不做赘述)。
思路二:利用双曲线三个参数之间的关系,求出参数数值,得出方程。
解法赏析:法二:∵<=∴点M的轨迹是以F1,F2为焦点的双曲线的右支2a=2,2c=,得a=1,c=,∴∴C的方程为21(2):思路一:设出点,设直线AB方程:由得由韦达定理可得:设直线PQ的斜率为m(m≠k),同理可得∵∴∵m≠k,∴m=-k,m+k=0。
∴直线AB的斜率与直线PQ的斜率之和为0思路二:设直线AB方程:由得。
(以下同解法一)思路三:设直线AB方程:代入得设,设直线PQ方程:同理。
∵直线AB与直线PQ不重合,∴,直线AB的斜率与直线PQ的斜率之和为0参考文献:[1]蓝善贵.浅议如何用信息技术整合高中数学教学[J].才智,2013(15):62-63.[2]王彦辉.信息技术与高中数学课程整合的案例研究[D].西北师范大学,2007.[3]张松.信息技术与高中数学课堂教学融合探索课程教育研究,2018(45):165.[4]蒋鼎宏.信息技术在高中数学课堂教学中的有效运用]江苏教育研究,2018(31):70-72.。
2021年全国新高考Ⅰ卷数学试题(解析版)

【答案】B 【解析】
【分析】利用交集的定义可求 A B .
【详解】由题设有 A B 2,3 ,
故选:B .
2. 已知 z 2 i ,则 z z i ( )
A. 6 2i
【答案】C
B. 4 2i
C. 6 2i
【解析】
【分析】利用复数的乘法和共轭复数的定义可求得结果.
【详解】因为 z 2 i ,故 z 2 i ,故 z z i 2 i2 2i 6 2i
【详解】A: E( y) E(x c) E(x) c 且 c 0 ,故平均数不相同,错误; B:若第一组中位数为 xi ,则第二组的中位数为 yi xi c ,显然不相同,错误; C: D( y) D(x) D(c) D(x) ,故方差相同,正确;
D:由极差的定义知:若第一组的极差为 xmax xmin ,则第二组的极差为 ymax ymin (xmax c) (xmin c) xmax xmin ,故极差相同,正确;
max
由题意可知,直线 y b 与曲线 y f t 的图象有两个交点,则 b f t ea , max
当 t a 1时, f t 0 ,当 t a 1时, f t 0 ,作出函数 f t 的图象如下图所示:
由图可知,当 0 b ea 时,直线 y b 与曲线 y f t 的图象有两个交点.
12.
在正三棱柱 ABC A1B1C1 中, AB
AA1
1
,点
P
满足
BP
BC
BB1
,其中
0,1
,
0,1 ,则( )
A. 当 1 时, △AB1P 的周长为定值
B. 当 1 时,三棱锥 P A1BC 的体积为定值
C.
当
2021年高考北京卷数学第21题

2021年高考北京卷数学第21题20. 已知椭圆2222:1(0)x y E a b a b+=>>一个顶点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交3y =-交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【参考答案】(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【基本思路】(1)根据椭圆所过的点及四个顶点围成的四边形面积可求,a b ,从而可求椭圆的标准方程.(2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k 的范围,注意判别式的要求.【详细解析】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为1222a b ⨯⨯=,即a = 故椭圆的标准方程为:22154x y +=. (2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令=3y -,则112M x x y =-+,同理222N x x y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k∆=-+>,解得1k <-或1k >. 又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 又1212=22M N x x PM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k k kx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++ 故515k ≤即3k ≤,综上,31k -≤<-或13k <≤.。
2021年全国新高考Ⅰ卷数学试题(含答案解析)

2021年全国新高考Ⅰ卷数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,42.已知2i z=-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +3.其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .C .4D .4.下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( ) A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭5.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .66.若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .657.若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立二、多选题9.有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则( ) A .两组样本数据的样本平均数相同 B .两组样本数据的样本中位数相同 C .两组样本数据的样本标准差相同 D .两组样数据的样本极差相同10.已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 11.已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( ) A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =12.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P三、填空题13.已知函数()()322x xx a f x -=⋅-是偶函数,则a =______.14.已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 15.函数()212ln f x x x =--的最小值为______.四、双空题16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nkk S==∑______2dm .五、解答题17.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.18.某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.20.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.21.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C . (1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和. 22.已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.参考答案1.B 【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=, 故选:B . 2.C 【分析】利用复数的乘法和共轭复数的定义可求得结果. 【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C. 3.B 【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求. 【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =故选:B. 4.A 【分析】 解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 对于函数()7sin 6f x x π⎛⎫=-⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭, 则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件; 取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,CD 选项均不满足条件. 故选:A. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数. 5.C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【点睛】椭圆上的点与椭圆的两焦点的距离问题,常常从椭圆的定义入手,注意基本不等式得灵活运用,或者记住定理:两正数,和一定相等时及最大,积一定,相等时和最小,也可快速求解. 6.C 【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果. 【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++ ()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++. 故选:C . 【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论. 7.D 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线. 【详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()t f t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减, 所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D. 【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法. 8.B 【分析】根据独立事件概率关系逐一判断 【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁, ,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙,故选:B 【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立 9.CD【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误. 【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;故选:CD 10.AC 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP ==,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α====,同理2||(cos 2|sin|2AP β==,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误; 故选:AC 11.ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误. 【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y+=,即240x y +-=, 圆心M 到直线AB45==>,所以,点P 到直线AB42-<410+<,A 选项正确,B 选项错误; 如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM ==4MP =,由勾股定理可得BP ==CD 选项正确.故选:ACD. 【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+. 12.BD 【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数. 【详解】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确. 对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫ ⎪⎝⎭,则11A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,0A ⎫⎪⎪⎝⎭,所以01,2AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选:BD . 【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内. 13.1 【分析】利用偶函数的定义可求参数a 的值. 【详解】因为()()322x x x a f x -=⋅-,故()()322x x f x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=, 时()()332222xx x x xa x a --⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =, 故答案为:1 14.32x =- 【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫ ⎪⎝⎭, ∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =- 故答案为:32x =-. 【点睛】利用向量数量积处理垂直关系是本题关键. 15.1 【分析】由解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值. 【详解】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞, ∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减; 当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减; 当1x >时,()212ln f x x x =--,有2()20f x x'=->,此时()f x 单调递增; 又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增; ∴()(1)1f x f ≥= 故答案为:1. 16.5 ()41537202n n -+-【分析】(1)按对折列举即可;(2)根据规律可得n S ,再根据错位相减法得结果. 【详解】(1)由对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,所以对着三次的结果有:5312561032022⨯⨯⨯⨯,,;,共4种不同规格(单位2dm ); 故对折4次可得到如下规格:5124⨯,562⨯,53⨯,3102⨯,3204⨯,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120()2dm ,第n 次对折后的图形面积为111202n -⎛⎫⨯ ⎪⎝⎭,对于第n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为1n +种(证明从略),故得猜想1120(1)2n n n S -+=,设()0121112011202120312042222nk n k n S S -=+⨯⨯⨯==++++∑,则121112021203120120(1)22222n nn n S -⨯⨯+=++++, 两式作差得:()211201111124012022222n nn S -+⎛⎫=++++-⎪⎝⎭ ()11601120122401212n nn -⎛⎫- ⎪+⎝⎭=+--()()112011203120360360222n n nn n -++=--=-,因此,()()4240315372072022n n n n S -++=-=-. 故答案为:5;()41537202n n -+-. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}n n a b +结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为()0d d ≠,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 17.(1)122,5b b ==;(2)300. 【分析】(1)根据题设中的递推关系可得13n n b b +=+,从而可求{}n b 的通项. (2)根据题设中的递推关系可得{}n a 的前20项和为20S 可化为()2012910210S b b b b =++++-,利用(1)的结果可求20S .【详解】(1)由题设可得121243212,1215b a a b a a a ==+===+=++= 又22211k k a a ++=+,2122k k a a +=+,*()k N ∈ 故2223k k a a +=+,即13n n b b +=+,即13n n b b +-= 所以{}n b 为等差数列,故()21331n b n n =+-⨯=-. (2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++,因为123419201,1,,1a a a a a a =-=-=-,所以()20241820210S a a a a =++++-()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【点睛】方法点睛:对于数列的交叉递推关系,我们一般利用已知的关系得到奇数项的递推关系或偶数项的递推关系,再结合已知数列的通项公式、求和公式等来求解问题. 18.(1)见解析;(2)B 类. 【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可. 【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=; ()()200.810.60.32P X ==-=; ()1000.80.60.48P X ==⨯=.所以X 的分布列为(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=; ()()800.610.80.12P Y ==-=; ()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=. 因为54.457.6<,所以小明应选择先回答B 类问题.19.(1)证明见解析;(2)7cos 12ABC ∠=. 【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论. (2)由题设2,,33b bBD b AD DC ===,应用余弦定理求cos ADB ∠、cos CDB ∠,又ADB CDB π∠=-∠,可得42221123b b a a +=,结合已知及余弦定理即可求cos ABC ∠.【详解】(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c b C ABC =∠,即sin sin C cABC b=∠, ∴acBD b=,又2b ac =, ∴BD b =,得证.(2)由题意知:2,,33b b BD b AD DC ===, ∴22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅, ∵ADB CDB π∠=-∠,∴2222221310994233b bc a b b --=,整理得2221123b a c +=,又2b ac =, ∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-∠==-,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b =时,7cos 12ABC ∠=;综上,7cos 12ABC ∠=. 【点睛】关键点点睛:第二问,根据余弦定理及ADB CDB π∠=-∠得到,,a b c 的数量关系,结合已知条件及余弦定理求cos ABC ∠. 20.(1)详见解析(2) 【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【详解】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD , 因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角, 4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形 因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11111332BCD V AO S ∆=⋅=⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.21.(1)()221116y x x -=≥;(2)0. 【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b的值,即可得出轨迹C 的方程; (2)设点1,2T t ⎛⎫⎪⎝⎭,设直线AB 的方程为112y t k x ⎛⎫-=- ⎪⎝⎭,设点()11,A x y 、()22,B x y ,联立直线AB 与曲线C 的方程,列出韦达定理,求出TA TB ⋅的表达式,设直线PQ 的斜率为2k ,同理可得出TP TQ ⋅的表达式,由TA TB TP TQ ⋅=⋅化简可得12k k +的值. 【详解】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b =,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点, 不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-, 联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >. 由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-, 所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=. 因此,直线AB 与直线PQ 的斜率之和为0. 【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【分析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可证明该结论成立. 【详解】(1)函数的定义域为()0,∞+, 又()1ln 1ln f x x x '=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<, 故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=, 故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 设1211,x x a b==,由(1)可知不妨设1201,1x x <<>. 因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<, 故21x e <<. 先证:122x x +>,若22x ≥,122x x +>必成立.若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<, 故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<. 设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦,因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=, 故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立, 综上,122x x +>成立. 设21x tx =,则1t >, 结合ln 1ln +1a b a b+=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-,即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-,要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<, 即证:()1ln ln 111t t tt t --++<-,即证:()()1ln 1ln 0t t t t -+-<,令()()()1ln 1ln ,1S t t t t t t =-+->, 则()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭, 先证明一个不等式:()ln 1x x ≤+. 设()()ln 1u x x x =+-,则()1111xu x x x -'=-=++, 当10x -<<时,()0u x '>;当0x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故()()max 00u x u ==, 故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭,故()0S t '<恒成立, 故()S t 在()1,+∞上为减函数,故()()10S t S <=, 故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立. 综上所述,112e a b<+<.【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.。
2021年全国数学一卷和二卷文理科第21题解答 (1)

2021年全国一卷理科第21题解答21.已知函数2()(2)x x f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解:(1)由2'()2(2)1(21)(1)x x x x f x ae a e e ae =+--=+-,及210x e +>可知:①当0a ≤时,'()0f x <,此时()f x 在R 上递减;②当0a >时,由'()0f x =得ln x a =-,此时()f x 在(,ln )a -∞-上递减,在(ln ,)a -+∞上递增.(2)由(1)知:①若0a ≤,则()f x 在R 上递减,至多有一个零点,不合题意;②若0a >,则()f x 在(,ln )a -∞-上递减,在(ln ,)a -+∞上递增.再由()f x 有两个零点可知min 1()(ln )(ln 1)0f x f a a a a a=-=+-<. 设()ln 1g x x x x =+-,0x >,则由'()2ln g x x =+知()g x 在2(0,)e -上递减,在2(,)e -+∞上递增.故当01x <<时,()(1)ln 0g x x x x =-+<;由()g x 在(1,)+∞上递增知当1x ≥时,()(1)0g x g ≥=. 故不等式()0g x <的解集为(0,1),即a 的取值范围为(0,1).另解:由2()20x x xf x ae ae e x =+--=得22x x x e x a e e +=+. 设函数22()x x xe x g x e e +=+,则222(21)()(21)(1)'()x x x x x x x x x x x e e e xe e e e x g x e e e e +-+--++-==++. 设函数()1xh x e x =+-,则()h x 递增,且(0)0h =,故在(,0)-∞上'()0g x >,在(0,)+∞上'()0g x <. 故()g x 在(,0)-∞上递增,在(0,)+∞上递减.又由于(0)1g =,且当0x >时,有()0g x >,因此要使方程()0g x =有两个实根,需有01a <<,即a 的取值范围为(0,1).21.已知函数2()()x x f x e e a a x =--.(1)讨论()f x 的单调性;(2)若()0f x ≥恒成立,求a 的取值范围.解:(1)由题意可得22'()2()x x f x e ae a =--(2)()x x e a e a =+-.①当0a =时,'()0f x >,故()f x 在R 上递增.②当0a >时,20x e a +>,由0x e a -=得ln x a =,故()f x 在(,ln )a -∞上递减,在(ln ,)a +∞上递增.③当0a <时,0x e a ->,由20x e a +=得ln()2ax =-,故()f x 在(,ln())2a -∞-上递减,在(ln(),)2a -+∞上递增.(2)①当0a =时,2()0x f x e =>显然成立.②当0a >时,由(1)知2min ()(ln )ln 0f x f a a a ==-≥,故01a <≤.③当0a <时,由(1)知22min 3()(ln())ln()0242a a f x f a a =-=--≥,故3420e a -≤<. 综上可知,实数a 的取值范围为3421e a -≤≤.21.已知函数2()ln f x ax ax x x =--,且()0f x ≥.(1)求a 的值;(2)证明:函数()f x 存在唯一的极大值点0x ,且220()2e f x --<<.解:(1)由2()ln (ln )0f x ax ax x x x ax a x =--=--≥,及0x >可得ln 0ax a x --≥. 设函数()ln g x ax a x =--,则原问题等价于()0g x ≥,再由1'()g x a x=-可知: ①当0a ≤时,'()0g x <,故()g x 在(0,+)∞上递减,再由(1)0g =知0a ≤不合题意; ②当0a >时,由1'()g x a x =-得()g x 在1(0,)a 上递减,在1(,)a +∞上递增,故min 1()()0g x g a=≥,即是有1ln 0a a -+≥. 设()1ln h x x x =-+,则由1'()x h x x-=知()h x 在(0,1)上递增,在(1,)+∞上递减,故max ()(1)0h x h ==,即是有1ln 0a a -+≤.从而1ln 0a a -+=,即1a =.综上可知,1a =.(2)由(1)知2()ln f x x x x x =--,且'()22ln f x x x =--. 由1''()2f x x=-知'()f x 在1(0,)2上递减,在1(,)2+∞上递增. 再由'()f x 在(0,)+∞上的图像是连续的,且1'()02f <,2'()0f e ->,'(1)0f =可知'()f x 在1(0,)2上有唯一的零点0x 01(0)2x <<,在1(,)2+∞上有唯一的零点1. 由于函数'()f x 在1(0,)2上递减,在1(,)2+∞上递增,因此有:当0(0,)x x ∈时,'()0f x >;当0(,1)x x ∈时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.故0x 是()f x 唯一的极大值点.由000'()22ln 0f x x x =--=可得00ln 22x x =-,故000()(1)f x x x =-.由0102x <<知201()24f x -<=;由0x 是()f x 唯一的极大值点知120()()f x f e e -->=. 综上可知,函数()f x 存在唯一的极大值点0x ,且220()2e f x --<<.21.已知函数2()(1)xf x x e =-,(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.解:(1)由2'()(12)0x f x x x e =--=可得11x =-21x =-,故()f x 在(,1-∞--上递减,在(11---+上递增,在(1)-++∞上递减.(2)设函数()1()g x ax f x =+-,其中0x ≥,则'()'()g x a f x =-.由2''()(14)0x f x x x e =---<知'()f x 在[0,)+∞上递减,故'()'(0)1f x f ≤=.①当1a ≥时,'()'()0g x a f x =-≥,故()g x 在[0,)+∞上递增,再由(0)0g =知1a ≥符合题意; ②当1a <时,由'()f x 在[0,)+∞上递减,'(0)1f =知存在0x 0(0)x >使得0'()0g x =. 由于当0(0,)x x ∈时,'()0g x <,因此()g x 在0(0,)x 上递减,即当0(0,)x x ∈时,()(0)0g x g <=. 此时,不符合题意.综上可知,实数a 的取值范围为1a ≥.。
考点21 求和方法(第1课时)讲解(原卷版) 【2021年高考数学复习一轮复习笔记】

考点21 求和方法(第一课时)【思维导图】【常见考法】考点一:裂项相消1.已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a =.(1)求数列{}n a 的通项公式;(2)设()12n n n c a a =+,数列{}n c 的前n 项和为n T ,求n T .2.已知数列{}n a 满足,()()*32111N 232n a a a a n n n n +++⋅⋅⋅+=+∈. (1)求1a ,2a 的值(2)求数列{}n a 的通项公式;(3)设121n n n n b a a ++=,数列{}n b 的前n 项和为n S ,求证:*N n ∀∈,314n S ≤<.3.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .4.已知n S 是数列{}n a 的前n 项和,已知11a =且()12n n nS n S +=+,*n N ∈.(1)求数列{}n a 的通项公式;(2)设()()*24141n n n a b n N n =-∈-,数列{}n b 的前n 项和为n P ,若112020n P +<,求正整数n 的最小值.5.记n S 为等比数列{}n a 的前n 项的和,且{}n a 为递增数列.已知24a =,314S =.(1)求数列{}n a 的通项公式;(2)设()221211log log n n n n n b a a ++=-⋅,求数列{}n b 的前2n 项之和2n T .6.已知数列{}n a 的前n 项和n S 满足()*23n n S na n n N-=∈,且25a =.(1)证明数列{}n a 为等差数列,并求{}n a 的通项公式;(2)设n b =n T 为数列{}n b 的前n项和,求使n T >成立的最小正整数n 的值.7.已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2n n n b a =.(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n n n n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.考点二:错位相减法1.已知等差数列{}n a 公差不为零,且满足:12a =,1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)设3n n n b a =,求数列{}n b 的前n 项和.2.在数列{}n a 中,首项112a =前n 项和为n S ,且1)21(n n S a n N *+=-∈ (1)求数列{}n a 的通项;(2)若31()2n n n b n a =+⨯⋅,求数列{}n b 的前n 项和n T .3.已知n S 是数列{}n a 的前n 项和,21n S n =+.等比数列{}n b 中39b =,公比为3.(1)求数列{}n a 和{}n b 的通项公式,以及数列{}n b 的前n 项和n T ;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n P .4.在数列{}n a 中,任意相邻两项为坐标的点()1,n n P a a +均在直线2y x k =+上,数列{}n b 满足条件:12b =,()*1n n n b a a n N +=-∈.(1)求数列{}n b 的通项公式;(2)若21log n n nc b b =⋅,求数列{}n c 的前n 项和n S .考点三:分组求和1.已知正项数列{}n a 的前n 项和为n S ,22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)令113n a n n n b a a -+=+,求数列{}n b 的前n 项和.2.在公差不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,数列{}n b 满足*2,21,()2,2,n a n n n k b k N a n k ⎧=-⎪=∈⎨=⎪⎩. (1)求数列{}n a 的通项公式;(2)求数列{}n b 的前2n 项和2n T .3.设数列{}n a 满足12a =,且点()()*1,n n P a a n N +∈在直线2y x =+上,数列{}n b 满足:13b =,13n n b b +=. (1)数列{}n a 、{}n b 的通项公式;(2)设数列()(){}1n n n a b ⋅--的前n 项和为n T ,求n T .4.已知数列{}n a 的前n 项和为n S ,11a =,0n a >,且()2114n n S a =+. (1)求{}n a 的通项公式;(2)令1n n n c a a +=,求数列1n n a c ⎧⎫+⎨⎬⎩⎭前n 项和n T .5.已知数列{}n a 的前n 项和为2(*)2n n n S n N +=∈ (1)求数列{}n a 的通项公式;(2)设2(1)n a n n n n b a a =+-⋅,求数列{}n b 的前2n 项和2n T .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年新高考数学ⅰ卷第21题解法荟萃
2021年的新高考卷之一就是数学卷,其中最重要的题目之一就是第21题,它是最具挑战性也最让考生头疼的一道题。
本文就是以2021年新高考数学卷第21题解法荟萃为题,旨在介绍该题目如何分析及解答。
首先,该题目属于多选题,其中要求考生从给出的五个选项中选出“正确”的选项。
针对这一要求,考生需要根据题干的内容进行思考,分析每个选项的含义,结合题目的内容,从而排除错误的选项,最终选出正确答案。
其次,该题中还有一些关于函数的内容,考生需要准确定义函数,以及求出函数的定义域、值域等参数。
在此之前,考生还要对函数的解析式和图像进行更深入的理解,以便给出准确的解答。
再次,在解答该题时,考生需要结合现实情况,把函数的解析式、值域等内容与现实生活联系起来,理解函数的实际意义。
这样,考生就不但能够给出正确的答案,而且能够培养自己对数学的热爱之心。
最后,在解答该题时,考生还需要辅以一定的计算手段,结合科学的计算工具,将函数的解析式及其他参数转化为可计算的形式,然后再对结果进行对比,得出正确答案。
以上就是2021年新高考数学卷第21题解法荟萃的基本内容,从考生思考到计算,它都包含了数学学习的种种基本要素。
在实际解答该题时,考生不应只把它当做一道普通多选题,而应系统地学习数学知识,学会使用科学的思维方式,以便在考试中更加熟练地解答该题。