光伏制绒知识总结

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

第一章清洗各步骤原理 (1)

1.1超声波清洗 (1)

1.1.1 超声波清洗的原理 (1)

1.1.3 影响超声清洗效果的因素 (2)

1.2制绒工艺 (2)

1.2.1 硅片表面机械损伤层的腐蚀 (3)

1.2.2 制绒腐蚀的原理 (3)

1.2.3 角锥体形成的原理 (4)

1.2.4 陷光原理 (7)

1.2.5 制绒的因素分析 (9)

1.2.6 化学清洗原理 (12)

第二章清洗设备及操作 (13)

2.1超声清洗槽分布列表 (13)

2.2制绒槽的分布列表及添加液 (13)

2.3NAOH添加量与硅片厚度的关系 (16)

第三章清洗出现的问题 (17)

第一章清洗各步骤原理

1.1 超声波清洗

1.1.1超声波清洗的原理

超声波清洗机理是:换能器将功率超声频源的声能转换成机械振动并通过清洗槽壁向槽子中的清洗液辐射超声波,槽内液体中的微气泡在声波的作用下振动,当声压或声强达到一定值时,气泡迅速增长,然后突然闭合,在气泡闭合的瞬间产生冲击波使气泡周围产生1012-1013pa的压力及局部调温,这种超声波空化所产生的巨大压力能破坏不溶性污物而使他们分化于溶液中,蒸汽型空化对污垢的直接反复冲击,一方面破坏污物与清洗件表面的吸附,另一方面能引起污物层的疲劳破坏而被驳离,气体型气泡的振动对固体表面进行擦洗,污层一旦有缝可钻,气泡立即“钻入”振动使污层脱落,由于空化作用,两种液体在界面迅速分散而乳化,当固体粒子被油污裹着而粘附在清洗件表面时,油被乳化、固体粒子自行脱落,超声在清洗液中传播时会产生正负交变的声压,形成射流,冲击清洗件,同时由于非线性效应会产生声流和微声流,而超声空化在固体和液体界面会产生高速的微射流,所有这些作用,能够破坏污物,除去或削弱边界污层,增加搅拌、扩散作用,加速可溶性污物的溶解,强化化学清洗剂的清洗作用。由此可见,凡是液体能浸到且声场存在的地方都有清洗作用,尤其是采用这一技术后,可减少化学溶剂的用量,从而大大降低环境污染。

1.1.2超声清洗的优越性

高精度:由于超声波的能量能够穿透细微的缝隙和小孔,故可以应用与任何零部件或装配件清洗。被清洗件为精密部件或装配件时,超声清洗往往成为能满足其特殊技术要求的唯一的清洗方式;

快速:超声清洗相对常规清洗方法在工件除尘除垢方面要快得多。装配件无须拆卸即可清洗。超声清洗可节省劳动力的优点往往使其成为最经济的清洗方式;

一致:无论被清洗件是大是小,简单还是复杂,单件还是批量或在自动流水线上,使用超声清洗都可以获得手工清洗无可比拟的均一的清洁度。

1.1.3影响超声清洗效果的因素

1.清洗时间:清洗时间是影响超声波清洗效果的一个主要因素,清洗时间取决于工件的污染程度以及清洁度要求,典型的清洗时间是2-10 分钟,只有少数工件能够在很短的时间里面清洗干净。

2.清洗液温度:一般来说,超声波在30℃-40℃时的空化效果最好。清洗剂则温度越高,作用越显著。通常实际应用超声波时,采用50℃-70℃的工作温度。

3.采用的清洗液:考虑到清洗液的物理特性对超声清洗的影响,其中蒸汽压、表面张力、黏度以及密度应为最显着的影响因素。温度能影响这些因素,所以它也会影响空化作用的效率。

4.工件的设计外形

5.超声波频率:超声波频率越低,在液体中产生的空化越容易,产生的力度大,作用也越强,适用于工件(粗、脏)初洗。频率高则超声波方向性强,适用于精细的物件清洗。

6.超声功率密度:功率密度=发射功率(W)/发射面积(cm2)通常≥0.3W/cm2,超声波的功率密度越高,空化效果越强,速度越快,清洗效果越好。但对于精密的、表面光洁度甚高的物件,采用长时间的高功率密度清洗会对物件表面产生“空化”腐蚀。

7.清洗装夹方式:工件的清洗载入方式,在清洗设备的设计阶段。必须充分考虑工件清洗时候的载入方式,一些较大的工件,内部比较难以清洗的工件(例如一些铸造件),一个原则是只能载入清洗液的一半重量的工件清洗,在大多数案例中,分两次载入较少的工件清洗比一次载入较大的工件清洗效果要好得多。

1.2 制绒工艺

太阳电池的表面反射率是影响太阳电池光电转换效率的重要因素之一。通过制绒,在太阳电池表面织构化可以有效降低太阳电池的表面反射率,入射光在电池表面多次反射延长了光程,增加了对红外光子的吸收,而且有较多的光子在p-n结附近产生光生载流子,从而增加了光生载流子的收集几率;另外同样尺寸的基片,绒面电池的p-n结面积较大,可以提高

短路电流,效率也有相应的提高。

1.2.1硅片表面机械损伤层的腐蚀

由于硅片在切割过程中表面留有大约10~20μm的锯后损伤层,对制绒有很大影响,若损伤层去除不足可能会残留切割时所遗留的杂质,在制绒的时候也会因为损伤层的缘故而导致金字塔的无法出现,而且会在后续工序中继续破坏硅片表面,导致电池各类参数不符合要求。因此在制绒前必须将其除去。

在去除损伤层(粗抛)的时候,一般采用浓度为20%的NaOH溶液在80~90℃的条件下腐蚀,在高浓度的碱溶液的腐蚀速率可以达到6~10um/min,由于此时的腐蚀速度过快,所以在达到去除损伤层的基础上尽量减短初抛时间,以防硅片被腐蚀过薄。

在初抛过程中产生的Na2SiO3的热导性很差。一般硅酸钠超过一定的量时,腐蚀产生的热量超过从溶液表面和容器侧面所散发的热量,使溶液的温度持续升高。所以初抛液必须定期更换或排出部分溶液。

1.2.2制绒腐蚀的原理

硅腐蚀技术是硅微机械加工中最基础、最关键的技术,它通常有两种:干法腐蚀和湿法腐蚀。根据腐蚀剂的不同,硅的湿法腐蚀又可分为各向同性腐蚀和各向异性腐蚀。各向同性腐蚀主要用于多晶硅绒面制备,各向异性腐蚀主要用于单晶硅绒面制备。

1、各向同性腐蚀(酸腐蚀)

通常应用的硅的腐蚀液包含氧化剂(如硝酸)和络和剂(如氢氟酸)两部分。

酸腐蚀的原理是一方面通过氧化剂与硅的作用在硅的表面生成二氧化硅,另一方面通过氢氟酸对于二氧化硅的络和剂作用生成可溶性的络和物,在硅片表面留下了具有一定深度的腐蚀坑。从而完成对硅的腐蚀过程。

多晶硅片由于晶向复杂,不能像单晶硅一样用碱性溶液腐蚀产生金字塔型的绒面结构。因此大多采用氢氟酸/硝酸体系进行绒面的制备。硅和这种溶液反应的速度与晶向无关,是各向同性的,因此可以腐蚀出椭圆形的凹坑,入射光在凹坑中多次入射,从而起到陷光效果。

2.各向异性腐蚀(碱腐蚀)

由于不同晶向的单晶硅在碱性溶液中腐蚀的速率不同,利用这种差异可以用碱性溶液在(100)晶向的硅片上腐蚀出类似金字塔不规则排列的绒面结构。入射光可以在金字塔的侧面上形成两次或两次以上入射,从而大大降低了硅片的反射率。

制溶液通常用低浓度(1. 5 - 2wt%)的氢氧化钠溶液混合((3--10 vol%)的异丙醇(或乙醇)配制成,在70C。-80C。温度范围内对(100)晶向的硅片表面进行各向异性腐蚀,便可以得到由(111)面包围形成的角锥体分布在表面上构成的“绒面”。

硅在碱溶液中的腐蚀现象,可以用电化学腐蚀的微电池理论进行解释。实现电化学腐蚀应具备的三个条件如下:

相关文档
最新文档