黑龙江省牡丹江、鸡西地区朝鲜族学校2020年中考数学试题

合集下载

黑龙江省牡丹江、鸡西地区朝鲜族学校2020年中考数学试题(原卷版)

黑龙江省牡丹江、鸡西地区朝鲜族学校2020年中考数学试题(原卷版)

牡丹江、鸡西地区朝鲜族学校2020年初中毕业学业考试数学试卷一、选择题(每小题 3分,共 36分)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个2.下列运算正确的是( )A. (a +b )(a -2b )=a 2-2b 2B. C. -2(3a -1)=-6a +1 D. (a +3)(a -3)=a 2-93.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A. B. C. D.4.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )A. B. C. D. 5.一组数据4,4,x ,8,8有唯一的众数,则这组数据的平均数是( )A. B. 或5 C.或 D. 56.如图,在△ABC 中,sinB=,tanC=2,AB=3,则AC 的长为()A. B. C. D. 27.如图,点在圆上,若弦倍,则的度数是().2211()24a a -=-1349352328532528532513,,A B S AB ASB ∠A. 22.5°B. 30°C. 45°D. 60°8.若是二元一次方程组解,则x +2y 的算术平方根为( )A. 3 B. 3,-3 C. D.9.如图,在菱形OABC 中,点B在x 轴上,点A 的坐标为(2,),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为()A. 或B.C.D. 或10.若关于x的分式方程有正整数解,则整数m 的值是( )A. 3 B. 5 C. 3或5 D. 3或411.如图,A ,B 是双曲线上的两个点,过点A 作AC ⊥x 轴,交OB 于点D ,垂足为C ,若△ODC 的面积为1,D 为OB 的中点,则k 的值为( )A. B. 2 C. 4 D. 812.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴为,且经过点(2,0). 下列说法:①abc<0;②-2b+c=0;③4a+2b+c<0;④若,是抛物线上的两点,则y 1<y 2;的21a b =⎧⎨=⎩3522ax by ax by ⎧+=⎪⎨⎪-=⎩(2--,2)-(2,(2,-(2--,(2,21m x x =-k y x=3412x =15()2y -,25()2y⑤b>m (am+b ) (其中m ≠).其中说法正确的是()A. ①②④⑤B. ①②④C. ①④⑤D. ③④⑤二、填空题(每小题3分,共24分)13.一周时间有604800秒,604800用科学记数法表示为______.14.如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件____,使四边形ABCD 是平行四边形(填一个即可).15.在函数x 的取值范围是_______.16.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是____元.17.将抛物线y =(x -1)2-5关于y 轴对称,再向右平移3个单位长度后顶点的坐标是_____.18.如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是___个.19.⊙O 中,弦AB 垂直于弦CD ,垂足为P ,AB=CD=4,则S △ACP =______.20.正方形ABCD 中,点E 在边AD 上,点F 在边CD 上,若∠BEF=∠EBC ,AB=3AE ,则下列结论:①DF=FC ;②AE+DF=EF ;③∠BFE=∠BFC ;④∠ABE+∠CBF=45°;⑤∠DEF+∠CBF=∠BFC ;⑥ DF:DE:EF=3:4:5;⑦ BF:EF=:5.其中结论正确的序号有_____.1412y =三、解答题(共60分)21.先化简,再求值: 其中x =1-2tan45°.22.已知抛物线y=a (x -2)2+c 经过点A(-2,0)和点C(0,),与x 轴交于另一点B ,顶点为D .(1)求抛物线的解析式,并写出顶点D 的坐标;(2)如图,点E ,F 分别在线段AB ,BD 上(点E 不与点A ,B 重合),且∠DEF=∠DAB ,DE=EF ,直接写出线段BE 的长.23.等腰三角形ABC 中,AB=AC=4,∠BAC=45º,以AC 为腰作等腰直角三角形ACD ,∠CAD 为90º,请画出图形,并直接写出点B 到CD 的距离.24.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B 类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.2221699332x x x x x x x++--÷-+9425.A ,B 两城市之间有一条公路相连,公路中途穿过C 市,甲车从A 市到B 市,乙车从C 市到A 市,甲车的速度比乙车的速度慢20千米/时,两车距离C 市的路程y (单位:千米)与驶的时间t (单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN 所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C 市路程之和是460千米.26.∆ABC 中,点D 在直线AB 上.点E 在平面内,点F 在BC 的延长线上,∠E=∠BDC ,AE=CD ,∠EAB+∠DCF=180º.的的(1)如图①,求证AD+BC=BE ;(2)如图②、图③,请分别写出线段AD ,BC ,BE 之间数量关系,不需要证明;(3)若BE ⊥BC ,tan ∠BCD=,CD=10,则AD=______.27.某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40 000元购进A 型号电脑的数量与用30 000元购进B 型号电脑的数量相同,请解答下列问题:(1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2 500元,每台B 型号电脑售价为1 800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36 000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.28.如图,在平面直角坐标系中,四边形OABC 边OC 在x 轴上,OA 在y 轴上.O 为坐标原点,AB//OC ,线段OA ,AB 的长分别是方程x 2-9x +20=0的两个根(OA<AB ), tan ∠OCB=.(1)求点B ,C 的坐标;(2)P 为OA 上一点,Q 为OC 上一点,OQ=5,将∆POQ 翻折,使点O 落在AB 上的点处,双曲线的一个分支过点.求k 的值;(3)在(2)的条件下,M 为坐标轴上一点,在平面内是否存在点N ,使以,Q ,M ,N 为顶点四边形为矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.的的3443O 'k y x=O 'O '。

(中考精品卷)黑龙江省牡丹江、鸡西地区朝鲜族学校中考数学真题(解析版)

(中考精品卷)黑龙江省牡丹江、鸡西地区朝鲜族学校中考数学真题(解析版)

2022年初中毕业学业考试数学试卷注意事项:1.考试时间是120分钟. 2.总共3个大题,总分120分. 一、选择题(每小题3分,共30分.)1. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为( ) A. 31.610⨯吨B. 41.610⨯吨C. 51.610⨯吨D.61.610⨯吨【答案】C 【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数, 确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:16万吨=160000吨=51.610⨯吨. 故选:C .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2. 下列图形中是轴对称图形但不是中心对称图形的是( )A. B. C. D.【答案】B 【解析】【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A 、此图形不是中心对称图形,也不是轴对称图形,选项错误; B 、此图形不是中心对称图形,是轴对称图形,选项正确; C 、此图形是中心对称图形,也是轴对称图形,选项错误; D 、此图形中心对称图形,不是轴对称图形,选项错误. 故选B .是【点睛】本题考查轴对称图形和中心对称图形.3. 左下图是一些完全相同的小正方体搭成的几何体的三视图 .这个几何体只能是( )A.B. C. D.【答案】A 【解析】【详解】试题分析:根据几何体的主视图可判断C 不合题意;根据左视图可得B 、D 不合题意,因此选项A 正确,故选A . 考点:几何体的三视图4. 一组数据13,10,10,11,16的中位数和平均数分别是( ) A. 11,13 B. 11,12C. 13,12D. 10,12【答案】B 【解析】【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:把这组数据按从小到大的顺序排列是:10,10,11,13,16, ∴这组数据的中位数是11, 平均数=1310101116125++++=.故选:B .【点睛】本题考查了中位数的定义和平均数的求法,解题的关键是牢记定义,此题比较简单,易于掌握.5. 下列方程没有实数根的是( ) A. 2410x x += B. 23830x x +-= C. 2230x x -+= D. ()()2312x x --=【答案】C【解析】【分析】通过题目可知这几个方程都是一元二次方程,因此可以通过24b ac ∆=-来确定有没有实数根,即可求解【详解】解:A 、△=2441(10)560-⨯⨯-=>,有两个不相等的实数根; B 、△=2843(3)1000-⨯⨯-=>,故有两个不相等的实数根; C 、△=2(2)41380<--⨯⨯=-,故没有实数根;D 、△=2-5-41-6=490()()>⨯⨯,故有两个不相等的实数根故选C6. 若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点( ) A. (2,4) B. (-2,-4) C. (-4,2) D. (4,-2) 【答案】A 【解析】【详解】根据点在曲线上,点的坐标满足方程的关系,将P (-2,4)代入2y ax =,得()2421a a =-⇒=,∴二次函数解析式为2y x =.∴所给四点中,只有(2,4)满足2y x =.故选A .7. 函数y x 的取值范围是【 】 A. x≥1且x≠3 B. x≥1C. x≠3D. x >1且x≠3 【答案】A 【解析】【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须x 10x 1{{x 1x 30x 3-≥≥⇒⇒≥-≠≠且x 3≠.故选A . 考点:函数自变量的取值范围,二次根式和分式有意义的条件.8. 王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是()组别 A 型 B 型 C 型 O 型 频率 0.40.350.10.15A. 16人B. 14人C. 4人D. 6人【答案】A 【解析】【详解】根据频数、频率和总量的关系:频数=总量×频率,得本班A 型血的人数是: 40×0.4 =16(人).故选A .9. 袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是( ) A.12B.712C.58D.34【答案】C 【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案. 【详解】画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况, ∴抽取的两个球数字之和大于6的概率是:105=168. 故选C .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10. 小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )A. (600-米B. 250)米C. (350+米D.【答案】B 【解析】【详解】解:如答图,∵BE :AE=5:12,∴可设BE=5k ,AE=12k , ∵AB=1300米,∴在Rt △ABE 中,由勾股定理,得AE 2+BE 2=AB 2, 即()()2221251300k k +=,解得k=100. ∴AE=1200米,BE=500米. 设EC=x 米,∵∠DBF=60°,∴米.又∵∠DAC=30°,∴.∴),解得x=600﹣∴750.∴250(米).∴山高CD 为(250)米. 故选B .【点睛】本题考查解直角三角形的应用(仰角俯角和坡度坡角问题);勾股定理;锐角三角函数定义;特殊角的三角函数值;待定系数法的应用.二、填空题:(每小题3分,共30分.)11. 分解因式:2x 2x -=___. 【答案】()x x 2-.【解析】【分析】直接提取公因式x 即可 【详解】解:()2x 2x x x 2-=-.故答案为: ()x x 2-12. 若两个连续的整数a 、b满足a b <<,则1ab的值为__________ . 【答案】112【解析】a ,b ,进而求得1ab的值.【详解】∵9<13<16,,即34,∵a b <<, ∴3a =,4b =, ∴1113412ab ==⨯, 故答案为:112【点睛】本题考查了估算无理数的大小,属于基础题,熟练掌握“夹逼法”的应用是解答本题的关键.13. 已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为________ 【答案】26+10π##10π+26 【解析】【详解】解∶∵圆锥的底面半径是5,高是12, 根据勾股定理得:圆锥的母线长为13,∴这个圆锥的侧面展开图的周长=2×13+2π×5=26+10π. 故答案为26+10π.【点睛】本题考查了圆锥相关计算,应熟知圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线长,扇形的弧长是圆锥底面圆的周长.14. 在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中的任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是___. 【答案】59【解析】【详解】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵数的总个数有9个,绝对值不大于2的数有﹣2,﹣1,0,1,2共5个, ∴任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是59. 15. 把二次函数y=2x 2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________.【答案】224y x x =+或22(1)2y x =+-(答出这两种形式中任意一种均得分) 【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y=2x 2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为y=2(x+1)2﹣2. 考点:二次函数图象与几何变换.16. 如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D ,若⊙O 的半径为2,则弦AB 的长为______.【答案】【解析】【详解】解:如图,连接OA ,由AB 垂直平分OC ,得到OD=12OC=1,∵OC⊥AB,∴D为AB的中点.∴AB=2AD===.故答案为:17. 在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=_______.【答案】3.【解析】【详解】试题分析:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴10==,∵AD平分∠CAB,∴CD=DE,∴S△ABC=12AC•CD+12AB•DE=12AC•BC,即12×6•CD+12×10•CD=12×6×8,解得CD=3.考点:1.角平分线的性质,2.勾股定理18. 如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线___上.【答案】OC【解析】【详解】解∶∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…∴每六个一循环.∵2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样.∴所描的第2013个点在射线OC上.故答案为:OC19. 某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x 个,可列方程为___________.【答案】40050010 x x=+【解析】【分析】设乙车间每天生产x个,根据甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务可列出方程.【详解】解:设乙车间每天生产x个,则40050010x x=+.故答案为:40050010x x=+.【点睛】本题考查理解题意的能力,关键设出生产个数,以时间作为等量关系列分式方程.20. 下列图形是将等边三角形按一定规律排列,则第5个图形中所以等边三角形的个数是__________.【答案】485 【解析】【详解】解: 由图可以看出:第一个图形中5个正三角形, 第二个图形中5×3+2=17个正三角形, 第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形, 第五个图形中161×3+2=485个正三角形. 故答案为:485三、解答题:(共60分.)21. 先化简,再求值:23224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.【答案】28x +,10. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】原式=(()()()()2322422x x x x x x x x +---⋅-+=()()()()()242222x x x x x x x+-+⋅-+=2(x +4) =2x +8当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.22. 如图,在边长为1个单位长度小正方形组成的网格中,△ABC 与△DEF 关于点O 成的中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置;(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1;(3)在网格中画出格点M ,使A 1M 平分∠B 1A 1C 1【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;【解析】【分析】(1)连接对应点B 、F ,对应点C 、E ,其交点即为旋转中心的位置;(2)利用网格结构找出平移后的点的位置,然后顺次连接即可;(3)根据网格结构的特点作出即可.【详解】解:(1)如图所示,连接BF ,CE 交于点O ,点O 即为所求.(2)如图所示,△A 1B 1C 1为所求;(3)如图所示,点M 即为所求.理由:连接11,B M C M ,根据题意得:111111A B A C B M C M ===== ∴四边形111A B MC 菱形,∴A 1M 平分∠B 1A 1C 1.23. 如图,已知抛物线()()12y x x a a=-+(a >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (﹣2,﹣2),求实数a 的值;(2)在(1)的条件下,解答下列问题;①求出△BCE 的面积;②在抛物线的对称轴上找一点H ,使CH +EH 的值最小,直接写出点H 的坐标.【答案】(1)a =4;(2)①6;②(﹣1,32-) 【解析】【详解】解:(1)将M (﹣2,﹣2)代入抛物线解析式得:()()12222a a ---+=-, 解得:a =4.(2)①由(1)抛物线解析式()()1244y x x =-+, 当y =0时,得:()()12404x x -+=,解得:122,4x x ==-. ∵点B 在点C 的左侧,∴B (﹣4,0),C (2,0).当x =0时,得:y =﹣2,∴E (0,﹣2).∴S △BCE =12×6×2=6. ②∵()()()2211119242144244y x x x x x =-+=+-=+-, ∴抛物线对称轴为直线x =﹣1.连接BE ,与对称轴交于点H ,即为所求.设直线BE 解析式为y =kx +b ,将B (﹣4,0)与E (0,﹣2)代入得:402k b b -+=⎧⎨=-⎩,解得:122k b ⎧=-⎪⎨⎪=-⎩. ∴直线BE 解析式为122y x =--. 将x =﹣1代入得:13222y =-=-, ∴H (﹣1,32-). 24. 某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:男、女观众对“课战”题材电视剧的喜爱情况统计图男观众对“谍战”题材电视剧的喜爱情况统计图请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?【答案】(1)60%(2)300人,图见解析 (3)600人【解析】【分析】(1)先求出接受调查的女观众的总人数,再由图可知表示“不喜欢”的女观众有90人,然后用90除以总人数即可;(2)用男观众中喜欢“谍战”题材电视剧的人数直接除以60%即可解答;(3)利用样本估计总体的方法,用总人数乘以男观众喜欢看“谍战”题材电视剧的百分比即可.【小问1详解】 解:90100%60%904020⨯=++ . 答:女观众中“不喜欢”所占的百分比是60%;【小问2详解】解:()()90180110%300+÷-=(人) .答:这次调查的男观众有300人 .300-90-180=30人,补全条形统计图,如图所示,【小问3详解】解:1801000600300⨯=(人).答:喜欢看“谍战”题材电视剧的男观众约有600人.【点睛】本题考查了条形统计图和扇形统计图以及用样本估计总体的思想,解题的关键是弄清题意,读懂统计图.25. 2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了___小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?【答案】(1)1.9 (2)270(3)按图象所表示的走法符合约定,理由见解析【解析】【分析】(1)由于线段AB 与x 轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时.(2)观察图象可知点B 的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,从而求得直线EF 和直线BD 的解析式,即可求出B 点的坐标.(3)由图象可知:甲、乙两组第一次相遇后在B 和D 相距最远,在两点处时, y y -甲乙,分别同25比较即可.【小问1详解】4.9-3=1.9小时;故答案为:1.9【小问2详解】设直线EF 的解析式为y 乙=kx +b ,∵点E (1.25,0)、点F (7.25,480)均在直线EF 上,∴1.250{7.25480k b k b +=+=,解得80{100k b ==-. ∴直线EF 的解析式是y 乙=80x ﹣100.∵点C 在直线EF 上,且点C 的横坐标为6,∴点C 的纵坐标为80×6﹣100=380.∴点C 的坐标是(6,380).设直线BD 的解析式为y 甲=mx +n ;∵点C (6,380)、点D (7,480)在直线BD 上,∴6380{7480m n m n +=+=,解得80{100k b ==-. ∴BD 的解析式是y 甲=100x ﹣220.∵B 点在直线BD 上且点B 的横坐标为4.9,代入y 甲得B (4.9,270),∴甲组在排除故障时,距出发点的路程是270千米.【小问3详解】符合约定.理由如下:由图象可知:甲、乙两组第一次相遇后在B 和D 相距最远,在点B 处有y 乙﹣y 甲=80×4.9﹣100﹣(100×4.9﹣220)=22千米<25千米,在点D 有y 甲﹣y 乙=100×7﹣220﹣(80×7﹣100)=20千米<25千米,∴按图象所表示的走法符合约定.26. 在菱形ABCD 和正三角形BGF 中,60ABC ∠=︒,P 是DF 的中点,连接PG 、PC .(1)如图1,当点G 在BC 边上时,写出PG 与PC 的数量关系 .(不必证明)(2)如图2,当点F 在AB 的延长线上时,线段PC 、PG 有怎样的数量关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,线段PC 、PG 又有怎样的数量关系,写出你的猜想(不必证明).【答案】(1)PG =(2)PG =,证明见解析(3)PG =【解析】【分析】(1)延长GP 交DC 于点E ,利用()PED PGF SAS △≌△,得出PE PG =,DE FG =,得到CE CG =,CP 是EG 的中垂线,在Rt CPG 中,60PCG ∠=︒,利用正切函数即可求解;(2)延长GP 交DA 于点E ,连接EC ,GC ,先证明()DPE FPG ASA △≌△,再证明()CDE CBG SAS △≌△,利用在Rt CPG 中,60PCG ∠=︒,即可求解; (3)延长GP 到H ,使PH PG =,连接CH ,CG ,DH ,作FE ∥DC ,先证GFP HDP △≌△,再证HDC GBC ≌△△,利用在Rt CPG 中,60PCG ∠=︒,即可求解.【小问1详解】解:如图1,延长GP 交DC 于点E ,∵P 是DF 的中点,∴PD=PF ,∵BGF 是正三角形,∴60BGF ∠=︒,∵60ABC ∠=︒,∴BGF ABC ∠=∠,∴AB GF ,∵四边形ABCD 是菱形,∴AB CD ,∴CD GF ∥,∴CDP PFG ∠=∠,PED V 和PGF 中,DPE FPG DP PFCDP PFG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()PED PGF SAS △≌△,∴PE PG =,DE FG =,∵BGF 是正三角形,∴FG BG =,∵四边形ABCD 是菱形,∴CD CB =,CE CG ∴=,CP ∴是EG 的中垂线,在Rt CPG 中,60PCG ∠=︒,tan tan 60PG PCG PC PC ∴=∠⋅=︒⋅= .【小问2详解】解:PG =,理由如下:在如图2,延长GP 交DA 于点E ,连接EC ,GC ,60ABC ∠=︒ ,BGF 正三角形,∴GF BC AD ,EDP GFP ∴∠=∠,在DPE 和FPG 中,EDP GFPDP FP DPE FPG∠=∠⎧⎪=⎨⎪∠=∠⎩()DPE FPG ASA ∴△≌△PE PG ∴=,DE FG BG ==,60CDE CBG ∠=∠=︒ ,CD CB =,在CDE △和CBG 中,60CD CBCDE CBG CD CB=⎧⎪∠=∠=︒⎨⎪=⎩()CDE CBG SAS ∴△≌△CE CG ∴=,DCE BCG ∠=∠,120ECG DCB ∴∠=∠=︒,PE PG =Q ,CP PG ∴⊥,1602PCG ECG ∠=∠=︒PG ∴= .【小问3详解】解:猜想:PG = .证明:如图3,延长GP 到H ,使PH PG =,连接CH ,CG ,DH ,作FE DC ,P 是线段DF 的中点,FP DP ∴=,GPF HPD ∠=∠ ,GFP HDP ∴△≌△,GF HD ∴=,GFP HDP ∠=∠,120GFP PFE ∠+∠=︒ ,PFE PDC ∠=∠,120CDH HDP PDC ∴∠=∠+∠=︒,四边形ABCD 是菱形,CD CB ∴=,60ADC ABC ∠=∠=︒,点A 、B 、G 又在一条直线上,120GBC ∴∠=︒,四边形BEFG 是菱形,GF GB ∴=,HD GB ∴=,HDC GBC ∴△≌△,CH CG ∴=,DCH BCG ∠=∠,120DCH HCB BCG HCB ∴∠+∠=∠+∠=︒,即120HCG ∠=︒CH CG = ,PH PG =,PG PC ∴⊥,60GCP HCP ∠=∠=︒,PG ∴= .【点睛】本题主要考查了等边三角形的性质、菱形的性质、全等三角形的判定和性质、解直角三角形.27. 为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表: 运动鞋价格 甲 乙进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【答案】(1)m=10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润【解析】【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可.(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答.(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】解:(1)依题意得,30002400m m20=-,去分母得,3000(m﹣20)=2400m,解得m=100.经检验,m=100是原分式方程的解.∴m=100.(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,()()()()240100x16080(200x)21700{240100x16080(200x)22300 -+--≥-+--≤①②,解不等式①得,x≥95,解不等式②得,x≤105,∴不等式组的解集是95≤x≤105.∵x是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,∴当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.的②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样.③当60<a<70时,60﹣a<0,W随x的增大而减小,∴当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.28. 如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.【答案】(1)C(0,6).(2)y=34-x+6.(3)P1(4,3),P2(325455-,)P3(32655,),P4(256422525-,).【解析】【详解】试题分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.试题解析:(1)解方程x2-14x+48=0得x1=6,x2=8∵OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根∴OC=6,OA=8∴C(0,6)(2)设直线MN的解析式是y=kx+b(k≠0)由(1)知,OA=8,则A(8,0)∵点A、C都在直线MN上∴解得,∴直线MN的解析式为y=-x+6(3)∵A(8,0),C(0,6)∴根据题意知B(8,6)∵点P在直线MN y=-x+6上∴设P(a,--a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(-a+6-6)2=64解得,a=±,则P2(-,),P3(,)③当PB=BC时,(a-8)2+(-a+6-6)2=64解得,a=,则-a+6=-∴P4(,)综上所述,符合条件的点P有:P1(4,3),P2(-,),P3(,),P4(,-)考点:一次函数综合题。

2020年黑龙江省牡丹江市中考数学试卷

2020年黑龙江省牡丹江市中考数学试卷

2020年黑龙江省牡丹江市中考数学试卷一、填空题(每小题3分,满分24分)1.(3分)新冠肺炎疫情期间,全国各地约42000名医护人员驰援湖北.请将数42000用科学记数法表示为 .2.(3分)如图,在四边形ABCD 中,连接AC ,∠ACB =∠CAD .请你添加一个条件 ,使AB =CD .(填一种情况即可)3.(3分)若一组数据21,14,x ,y ,9的众数和中位数分别是21和15,则这组数据的平均数为 .4.(3分)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.5.(3分)AB 是⊙O 的弦,OM ⊥AB ,垂足为M ,连接OA .若△AOM 中有一个角是30°,OM =2,则弦AB 的长为 .36.(3分)将抛物线y =ax 2+bx ﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a ﹣4b ﹣11的值是 .7.(3分)如图,在Rt △ABC 中,∠C =90°,点E 在AC 边上.将∠A 沿直线BE 翻折,点A 落在点A '处,连接A 'B ,交AC 于点F .若A 'E ⊥AE ,cos A ,则 . =45A 'FBF=8.(3分)如图,在Rt △ABC 中,CA =CB ,M 是AB 的中点,点D 在BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为E ,F ,连接EM .则下列结论中: ①BF =CE ; ②∠AEM =∠DEM ; ③AE ﹣CE ME ;=2④DE 2+DF 2=2DM 2;⑤若AE 平分∠BAC ,则EF :BF :1;=2⑥CF •DM =BM •DE ,正确的有 .(只填序号)二、选择题(每小题3分,满分36分) 9.(3分)下列运算正确的是( ) A .a 2•a 5=a 10 B .(a ﹣2)2=a 2﹣4 C .a 6÷a 2=a 3D .(﹣a 2)4=a 810.(3分)下列图形是中心对称图形的是( )A .B .C .D .11.(3分)在函数y 中,自变量x 的取值范围是( ) =x ‒3A .x ≠3B .x ≥0C .x ≥3D .x >312.(3分)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是( )A .6B .5C .4D .313.(3分)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为( ) A .B .C .D .14231331614.(3分)如图,四边形ABCD 内接于⊙O ,连接BD .若,∠BDC =50°,则∠ADC AC =BC 的度数是( )A .125°B .130°C .135°D .140°15.(3分)一列数1,5,11,19…按此规律排列,第7个数是( ) A .37B .41C .55D .7116.(3分)如图,点A 在反比例函数y 1(x >0)的图象上,过点A 作AB ⊥x 轴,垂=18x足为B ,交反比例函数y 2(x >0)的图象于点C .P 为y 轴上一点,连接PA ,PC .则=6x△APC 的面积为( )A .5B .6C .11D .1217.(3分)若关于x 的方程0的解为正数,则m 的取值范围是( ) m x +1‒2x=A .m <2 B .m <2且m ≠0 C .m >2 D .m >2且m ≠418.(3分)如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,AD ∥x 轴且AD =4,∠A =60°,将菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C 的对应点的坐标是( )A .(0,2)B .(2,﹣4)3C .(2,0)D .(0,2)或(0,﹣2)33319.(3分)如图,在矩形ABCD 中,AB =3,BC =10,点E 在BC 边上,DF ⊥AE ,垂足为F .若DF =6,则线段EF 的长为( )A .2B .3C .4D .520.(3分)如图,抛物线y =ax 2+bx +c 与x 轴正半轴交于A ,B 两点,与y 轴负半轴交于点C .若点B (4,0),则下列结论中,正确的个数是( ) ①abc >0; ②4a +b >0;③M (x 1,y 1)与N (x 2,y 2)是抛物线上两点,若0<x 1<x 2,则y 1>y 2;④若抛物线的对称轴是直线x =3,m 为任意实数,则a (m ﹣3)(m +3)≤b (3﹣m );⑤若AB ≥3,则4b +3c >0.A .5B .4C .3D .2三、解答题(满分60分) 21.(5分)先化简,再求值:(1),其中x =﹣tan45°.-4x 2÷x 2‒2x x 222.(6分)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为P .已知B (1,0),C (0,﹣3).请解答下列问题: (1)求抛物线的解析式,并直接写出点P 的坐标;(2)抛物线的对称轴与x 轴交于点E ,连接AP ,AP 的垂直平分线交直线PE 于点M ,则线段EM 的长为 .注:抛物线y =ax 2+bx +c (a ≠0)的对称轴是直线x ,顶点坐标是(,=-b 2a -b 2a 4ac ‒b 24a).23.(6分)在△ABC中,AB=AC,BC=6,S△ABC=6.以BC为边作周长为18的矩形BCDE,M,N分别为AC,CD的中点,连接MN.请你画出图形,并直接写出线段MN 的长.24.(7分)某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表项目人数A排球6B篮球mC毽球10D羽毛球4E跳绳18(1)本次抽样调查的学生有 人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?25.(8分)在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是 千米1时,B,C两地的路程为 千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.26.(8分)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF= .27.(10分)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A 种书包的个数是用450元购进B 种书包个数的2倍,A 种书包每个标价是90元,B 种书包每个标价是130元.请解答下列问题: (1)A ,B 两种书包每个进价各是多少元?(2)若该商场购进B 种书包的个数比A 种书包的2倍还多5个,且A 种书包不少于18个,购进A ,B 两种书包的总费用不超过5450元,则该商场有哪几种进货方案? (3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B 种书包各有几个?28.(10分)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程x 2﹣7x ﹣18=0的一个根,OB OA .请解答下列问题: =12(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,OE =6,反比例函数y 图象的一支经过点C ,求k 的值; =kx(3)在(2)的条件下,过点C 作CD ⊥OE ,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.2020年黑龙江省牡丹江市中考数学试卷参考答案与试题解析一、填空题(每小题3分,满分24分)1.(3分)新冠肺炎疫情期间,全国各地约42000名医护人员驰援湖北.请将数42000用科学记数法表示为 4.2×104 . 【解答】解:42000=4.2×104, 故答案为:4.2×104.2.(3分)如图,在四边形ABCD 中,连接AC ,∠ACB =∠CAD .请你添加一个条件 AD =BC ,使AB =CD .(填一种情况即可)【解答】解:添加的条件:AD =BC ,理由是: ∵∠ACB =∠CAD , ∴AD ∥BC , ∵AD =BC ,∴四边形ABCD 是平行四边形, ∴AB =CD .故答案为:AD =BC .3.(3分)若一组数据21,14,x ,y ,9的众数和中位数分别是21和15,则这组数据的平均数为 16 .【解答】解:∵一组数据21,14,x ,y ,9的中位数是15, ∴x 、y 中必有一个数是15,又∵一组数据21,14,x ,y ,9的众数是21, ∴x 、y 中必有一个数是21, ∴x 、y 所表示的数为15和21, ∴16,x =21+14+15+21+95=故答案为:16.4.(3分)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 8 折. 【解答】解:设商店打x 折,依题意,得:180120=120×20%, ×x10‒解得:x =8. 故答案为:8.5.(3分)AB 是⊙O 的弦,OM ⊥AB ,垂足为M ,连接OA .若△AOM 中有一个角是30°,OM =2,则弦AB 的长为 12或4 . 3【解答】解:∵OM ⊥AB , ∴AM =BM , 若∠OAM =30°,则tan ∠OAM , =OM AM =23AM =33∴AM =6, ∴AB =2AM =12;若∠AOM =30°, 则tan ∠AOM , =AM OM =AM23=33∴AM =2, ∴AB =2AM =4.故答案为:12或4.6.(3分)将抛物线y =ax 2+bx ﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a ﹣4b ﹣11的值是 ﹣5 .【解答】解:将抛物线y =ax 2+bx ﹣1向上平移3个单位长度后, 表达式为:y =ax 2+bx +2,∵经过点(﹣2,5),代入得:4a ﹣2b =3,则8a ﹣4b ﹣11=2(4a ﹣2b )﹣11=2×3﹣11=﹣5, 故答案为:﹣5.7.(3分)如图,在Rt △ABC 中,∠C =90°,点E 在AC 边上.将∠A 沿直线BE 翻折,点A 落在点A '处,连接A 'B ,交AC 于点F .若A 'E ⊥AE ,cos A ,则 . =45A 'F BF =13【解答】解:∵∠C =90°,cos A ,=45∴,设AC =4x ,AB =5x ,则BC =3x , AC AB =45∵AE ⊥AE ′,∴∠AEA ′=90°,A ′E ∥BC , 由于折叠,∴∠A ′EB =∠AEB =(360﹣90)÷2=135°,且△A ′EF ∽△BCF , ∴∠BEC =45°,即△BCE 为等腰直角三角形, ∴EC =3x ,∴AE =AC ﹣EC =x =A ′E , ∴, A 'E BC =A 'F BF =x 3x =13故答案为:.138.(3分)如图,在Rt △ABC 中,CA =CB ,M 是AB 的中点,点D 在BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为E ,F ,连接EM .则下列结论中: ①BF =CE ; ②∠AEM =∠DEM ;③AE ﹣CE ME ;=2④DE 2+DF 2=2DM 2;⑤若AE 平分∠BAC ,则EF :BF :1;=2⑥CF •DM =BM •DE , 正确的有 ①②③④⑤⑥ .(只填序号)【解答】解:∵∠ACB =90°,∴∠BCF +∠ACE =90°,∵∠BCF +∠CBF =90°,∴∠ACE =∠CBF ,又∵∠BFD =90°=∠AEC ,AC =BC ,∴△BCF ≌△CAE (AAS ),∴BF =CE ,故①正确;由全等可得:AE =CF ,BF =CE ,∴AE ﹣CE =CF =CE =EF ,连接FM ,CM ,∵点M 是AB 中点,∴CM AB =BM =AM ,CM ⊥AB , =12在△BDF 和△CDM 中,∠BFD =∠CMD ,∠BDF =∠CDM ,∴∠DBF =∠DCM ,又BM =CM ,BF =CE ,∴△BFM ≌△CEM (SAS ),∴FM =EM ,∠BMF =∠CME ,∵∠BMC =90°,∴∠EMF =90°,即△EMF 为等腰直角三角形,∴EF EM =AE ﹣CE ,故③正确,∠MEF =∠MFE =45°,=2∵∠AEC =90°,∴∠MEF =∠AEM =45°,故②正确,设AE 与CM 交于点N ,连接DN ,∵∠DMF =∠NME ,FM =EM ,∠DFM =∠DEM =∠AEM =45°,∴△DFM ≌△NEM (ASA ),∴DF =EN ,DM =MN ,∴△DMN 为等腰直角三角形,∴DN DM ,而∠DEA =90°,=2∴DE 2+DF 2=DN 2=2DM 2,故④正确;∵AC =BC ,∠ACB =90°,∴∠CAB =45°,∵AE 平分∠BAC ,∴∠DAE =∠CAE =22.5°,∠ADE =67.5°,∵∠DEM =45°,∴∠EMD =67.5°,即DE =EM ,∵AE =AE ,∠AED =∠AEC ,∠DAE =∠CAE ,∴△ADE ≌△ACE (ASA ),∴DE =CE ,∵△MEF 为等腰直角三角形,∴EF EM , =2∴,故⑤正确; EF BF =EF CE =EF DE =2EM DE=2∵∠CDM =∠ADE ,∠CMD =∠AED =90°,∴△CDM ∽ADE ,∴, CD AD =CM AE =DM DE∵BM =CM ,AE =CF ,∴, BM CF =DM DE∴CF •DM =BM •DE ,故⑥正确;故答案为:①②③④⑤⑥.二、选择题(每小题3分,满分36分)9.(3分)下列运算正确的是( )A.a2•a5=a10B.(a﹣2)2=a2﹣4C.a6÷a2=a3D.(﹣a2)4=a8【解答】解:A、a2•a5=a7,故选项错误;B、(a﹣2)2=a2﹣4a+4,故选项错误;C、a6÷a2=a4,故选项错误;D、(﹣a2)4=a8,故选项正确;故选:D.10.(3分)下列图形是中心对称图形的是( )A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不合题意;.故选:C.11.(3分)在函数y中,自变量x的取值范围是( )=x‒3A.x≠3B.x≥0C.x≥3D.x>3【解答】解:由题意得,x﹣3≥0,解得x≥3.故选:C.12.(3分)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是( )A .6B .5C .4D .3【解答】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故选:D .13.(3分)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为( )A .B .C .D . 142313316【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种可能出现的结果,其中“和为5”的有4种,∴P (和为5). =412=13故选:C .14.(3分)如图,四边形ABCD 内接于⊙O ,连接BD .若,∠BDC =50°,则∠ADC AC =BC 的度数是( )A .125°B .130°C .135°D .140°【解答】解:连接OA ,OB ,OC ,∵∠BDC =50°,∴∠BOC =2∠BDC =100°,∵,AC =BC ∴∠BOC =∠AOC =100°,∴∠ABC ∠AOC =50°, =12∴∠ADC =180°﹣∠ABC =130°.故选:B .15.(3分)一列数1,5,11,19…按此规律排列,第7个数是( )A .37B .41C .55D .71【解答】解:1=1×2﹣1,5=2×3﹣1,11=3×4﹣1,19=4×5﹣1,…第n 个数为n (n +1)﹣1,则第7个数是:55.故选:C .16.(3分)如图,点A 在反比例函数y 1(x >0)的图象上,过点A 作AB ⊥x 轴,垂=18x足为B ,交反比例函数y 2(x >0)的图象于点C .P 为y 轴上一点,连接PA ,PC .则=6x△APC 的面积为( )A .5B .6C .11D .12【解答】解:连接OA 和OC ,∵点P 在y 轴上,则△AOC 和△APC 面积相等,∵A 在上,C 在上,AB ⊥x 轴, y 1=18x y 2=6x∴S △AOC =S △OAB ﹣S △OBC =6,∴△APC 的面积为6,故选:B .17.(3分)若关于x 的方程0的解为正数,则m 的取值范围是( ) m x +1‒2x=A .m <2 B .m <2且m ≠0 C .m >2 D .m >2且m ≠4【解答】解:∵解方程, m x +1‒2x=0去分母得:mx ﹣2(x +1)=0,整理得:(m ﹣2)x =2,∵方程有解,∴, x =2m ‒2∵分式方程的解为正数,∴, 2m ‒2>0解得:m >2,而x ≠﹣1且x ≠0,则,, 2m ‒2≠‒12m ‒2≠0解得:m ≠0,综上:m 的取值范围是:m >2.故选:C .18.(3分)如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是( )3A.(0,2)B.(2,﹣4)333 C.(2,0)D.(0,2)或(0,﹣2)【解答】解:根据菱形的对称性可得:当点D在x轴上时,A、B、C均在坐标轴上,如图,∵∠BAD=60°,AD=4,∴∠OAD=30°,∴OD=2,∴AO OC,=42‒22=23=∴点C的坐标为(0,),-23同理:当点C旋转到y轴正半轴时,点C的坐标为(0,),23∴点C的坐标为(0,)或(0,),23-23故选:D.19.(3分)如图,在矩形ABCD中,AB=3,BC=10,点E在BC边上,DF⊥AE,垂足为F.若DF=6,则线段EF的长为( )A .2B .3C .4D .5【解答】解:∵四边形ABCD 为矩形,∴AB =CD =3,BC =AD =10,AD ∥BC ,∴∠AEB =∠DAF ,∴△AFD ∽△EBA ,∴, AF BE =AD AE =DF AB∵DF =6,∴AF , =102‒62=8∴, 8BE =10AE =63∴AE =5,∴EF =AF ﹣AE =8﹣5=3.故选:B .20.(3分)如图,抛物线y =ax 2+bx +c 与x 轴正半轴交于A ,B 两点,与y 轴负半轴交于点C .若点B (4,0),则下列结论中,正确的个数是( )①abc >0;②4a +b >0;③M (x 1,y 1)与N (x 2,y 2)是抛物线上两点,若0<x 1<x 2,则y 1>y 2;④若抛物线的对称轴是直线x =3,m 为任意实数,则a (m ﹣3)(m +3)≤b (3﹣m );⑤若AB ≥3,则4b +3c >0.A .5B .4C .3D .2【解答】解:如图,抛物线开口向下,与y 轴交于负半轴,对称轴在y 轴右侧,∴a <0,c <0,,∴b >0, -b 2a>0∴abc >0,故①正确;如图,∵抛物线过点B (4,0),点A 在x 轴正半轴,∴对称轴在直线x =2右侧,即, -b 2a >2∴,又a <0,∴4a +b >0,故②正确; 2+b 2a =4a +b 2a<0∵M (x 1,y 1)与N (x 2,y 2)是抛物线上两点,0<x 1<x 2,可得:抛物线y =ax 2+bx +c 在上,y 随x 的增大而增大, 0<x <‒b 2a 在上,y 随x 的增大而减小, x >-b 2a∴y 1>y 2不一定成立,故③错误;若抛物线对称轴为直线x =3,则,即b =﹣6a , -b 2a=3则a (m ﹣3)(m +3)﹣b (3﹣m )=a (m ﹣3)2≤0,∴a (m ﹣3)(m +3)≤b (3﹣m ),故④正确;∵AB ≥3,则点A 的横坐标大于0或小于等于1,当x =1时,代入,y =a +b +c ≥0,当x =4时,16a +4b +c =0,∴a , =4b +c ‒16则,整理得:4b +5c ≥0,则4b +3c ≥﹣2c ,又c <0, 4b +c ‒16+b +c ≥0﹣2c >0,∴4b +3c >0,故⑤正确,故正确的有4个.故选:B .三、解答题(满分60分)21.(5分)先化简,再求值:(1),其中x =﹣tan45°.-4x 2÷x 2‒2x x 2【解答】解:(1) -4x 2÷x 2‒2x x 2=x 2‒4x 2⋅x 2x (x ‒2)=(x +2)(x ‒2)x (x ‒2), =x +2x当x =﹣tan45°=﹣1时,原式1. =‒1+2‒1=‒22.(6分)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为P .已知B (1,0),C (0,﹣3).请解答下列问题:(1)求抛物线的解析式,并直接写出点P 的坐标;(2)抛物线的对称轴与x 轴交于点E ,连接AP ,AP 的垂直平分线交直线PE 于点M ,则线段EM 的长为 . 32注:抛物线y =ax 2+bx +c (a ≠0)的对称轴是直线x ,顶点坐标是(,=-b 2a -b 2a 4ac ‒b 24a).【解答】解:(1)∵抛物线经过,代入得:, {0=1+b +c ‒3=c 解得:,{b =2c =‒3∴抛物线表达式为:y =x 2+2x ﹣3=(x +1)2﹣4,∴顶点P 的坐标为(﹣1,﹣4);(2)∵直线PE 为抛物线对称轴,∴E (﹣1,0),∵B (1,0),∴A (﹣3,0),∴AP , =(‒2)2+(‒4)2=25∵MN 垂直平分AP ,∴AN =NP ,∠PNM =90°,=5∵∠APE =∠MPN ,∴△PMN ∽△PAE ,∴,即, PM PA =PN PE =MN AE PM 25=54=MN 2解得:PM , =52∴EM =PE ﹣PM =4, -52=32故答案为:. 3223.(6分)在△ABC 中,AB =AC ,BC =6,S △ABC =6.以BC 为边作周长为18的矩形BCDE ,M ,N 分别为AC ,CD 的中点,连接MN .请你画出图形,并直接写出线段MN 的长.【解答】解:∵BC =6,S △ABC =6,∴△ABC 中BC 边上的高为6×2÷6=2,而矩形 的周长为18,BC =6,∴BE =CD =18÷2﹣6=3,当矩形BCDE 和△ABC 在BC 同侧时,过A 作AF ⊥BC ,垂足为F ,与ED 交于G ,连接AD ,可知AF =2,DG BC =3, =12∴AG =GF ﹣AF =3﹣2=1,∴AD ,=32+12=10∵M ,N 分别为AC 和CD 中点,∴MN AD ; =12=102当矩形BCDE 和△ABC 在BC 异侧时,过A 作AF ⊥ED ,垂足为F ,与BC 交于G ,连接AD ,可知BG =CG ,AG =2,GF =3,F 为ED 中点,∴AF =5,DF =3,∴AD ,=52+32=34∵M ,N 分别为AC 和CD 中点,∴MN AD , =12=342综上:MN 的长为或. 10234224.(7分)某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表项目人数 A 排球6 B 篮球m C 毽球10 D 羽毛球4 E 跳绳18(1)本次抽样调查的学生有 50 人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?【解答】解:(1)6÷12%=50(人),m =50﹣18﹣4﹣10﹣6=12(人),故答案为:50;补全条形统计图如图所示:(2)360°72°, ×1050=答:喜欢“毽球”所在的圆心角的度数为72°;(3)1800648(人), ×1850=答:全校1800名学生中喜欢跳绳活动的有648人.25.(8分)在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是 60 千米1时,B ,C 两地的路程为 360 千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.【解答】解:(1)由题意可得:F (10,600),∴甲车的行驶速度是:600÷10=60千米/时,M 的纵坐标为360,∴B ,C 两地之间的距离为360千米,故答案为:60;360;(2)∵甲车比乙车晚1.5小时到达C 地,∴点E (8.5,0),乙的速度为360×2÷(10﹣0.5﹣1.5)=90千米/小时,则360÷90=4,∴M (4,360),N (4.5,360),设NE 表达式为y =kx +b ,将N 和E 代入,,解得:,{0=8.5k +b 360=4.5k +b {k =-90b =765∴y (千米)与x (小时)之间的函数关系式为:;(3)设出发x 小时,行驶中的两车之间的路程是15千米,①在乙车到B 地之前时,600﹣S 甲﹣S 乙=15,即600﹣60x ﹣90x =15,解得:x , =3910②∵(600﹣360)÷60=4小时,360÷90=4小时,∴甲乙同时到达B 地,当乙在B 地停留时,15÷60+4小时; =174③当乙车从B 地开始往回走,追上甲车之前,15÷(90﹣60)+4.5=5小时;④当乙车追上甲车并超过15km 时,(30+15)÷(90﹣60)+4.5=6小时;⑤当乙车回到C 地时,甲车距离C 地15千米时,(600﹣15)÷60小时. =394综上:行驶中的两车之间的路程是15千米时,出发时间为小时或小时或5小时或63910174小时或小时. 39426.(8分)在等腰△ABC 中,AB =BC ,点D ,E 在射线BA 上,BD =DE ,过点E 作EF ∥BC ,交射线CA 于点F .请解答下列问题:(1)当点E 在线段AB 上,CD 是△ACB 的角平分线时,如图①,求证:AE +BC =CF ;(提示:延长CD ,FE 交于点M .)(2)当点E 在线段BA 的延长线上,CD 是△ACB 的角平分线时,如图②;当点E 在线段BA 的延长线上,CD 是△ACB 的外角平分线时,如图③,请直接写出线段AE ,BC ,CF 之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE =2AE =6,则CF = 18或6 .【解答】解:(1)如图①,延长CD ,FE 交于点M .∵AB =BC ,EF ∥BC ,∴∠A =∠BCA =∠EFA ,∴AE =EF ,∴MF ∥BC ,∴∠MED=∠B,∠M=∠BCD,又∵∠FCM=∠BCM,∴∠M=∠FCM,∴CF=MF,又∵BD=DE,∴△MED≌△CBD(AAS),∴ME=BC,∴CF=MF=ME+EF=BC+AE,即AE+BC=CF;(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,BC=AE+CF,如图②,延长CD,EF交于点M.由①同理可证△MED≌△CBD(AAS),∴ME=BC,由①证明过程同理可得出MF=CF,AE=EF,∴BC=ME=EF+MF=AE+CF;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,AE=CF+BC.如图③,延长CD交EF于点M,由上述证明过程易得△MED≌△CBD(AAS),BC=EM,CF=FM,又∵AB=BC,∴∠ACB=∠CAB=∠FAE,∵EF∥BC,∴∠F=∠FCB,∴EF=AE,∴AE=FE=FM+ME=CF+BC;(3)CF=18或6,当DE=2AE=6时,图①中,由(1)得:AE=3,BC=AB=BD+DE+AE=15,∴CF=AE+BC=3+15=18;图②中,由(2)得:AE=AD=3,BC=AB=BD+AD=9,∴CF=BC﹣AE=9﹣3=6;图③中,DE小于AE,故不存在.故答案为18或6.27.(10分)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?【解答】解:(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,依题意,得:2, 700x =×450x +20解得:x =70,经检验,x =70是原方程的解,且符合题意,∴x +20=90.答:每个A 种书包的进价为70元,每个B 种书包的进价为90元.(2)设该商场购进m 个A 种书包,则购进(2m +5)个B 种书包,依题意,得:,{m ≥1870m +90(2m +5)≤5450解得:18≤m ≤20.又∵m 为正整数,∴m 可以为18,19,20,∴该商场有3种进货方案,方案1:购买18个A 种书包,41个B 种书包;方案2:购买19个A 种书包,43个B 种书包;方案3:购买20个A 种书包,45个B 种书包.(3)设销售利润为w 元,则w =(90﹣70)m +(130﹣90)(2m +5)=100m +200. ∵k =100>0,∴w 随m 的增大而增大,∴当m =20时,w 取得最大值,此时2m +5=45.设赠送的书包中B 种书包有a 个,样品中B 种书包有b 个,则赠送的书包中A 种书包有(5﹣a )个,样品中A 种书包有(4﹣b )个,依题意,得:90×[20﹣(5﹣a )﹣(4﹣b )]+0.5×90(4﹣b )+130(45﹣a ﹣b )+0.5×130b ﹣70×20﹣90×45=1370,∴b =10﹣2a .∵a ,b ,(5﹣a ),(4﹣b )均为正整数,∴.{a =4b =2答:赠送的书包中B 种书包有4个,样品中B 种书包有2个.28.(10分)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程x 2﹣7x ﹣18=0的一个根,OB OA .请解答下列问题: =12(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF的中点,OE =6,反比例函数y 图象的一支经过点C ,求k 的值; =k x(3)在(2)的条件下,过点C 作CD ⊥OE ,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【解答】解:(1)∵线段 的长是方程 的一个根,解得:x =9或﹣2(舍),而点A 在x 轴正半轴,∴A (9,0),∵OB OA , =12∴B (0,), 92(2)∵OE =6,∴E (﹣6,0),设直线AB 的表达式为y =kx +b ,将点A 和B 的坐标代入,得:,解得:, {0=9k +b 92=b {k =-12b =92∴AB 的表达式为:, y =-12x +92∵点C 是EF 的中点, ∴点C 的横坐标为﹣3,代入AB 中,y =6,则C (﹣3,6),∵反比例函数经过点C , y =k x则k =﹣3×6=﹣18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y =x +3上,联立:,{y =x +3y =‒12x +92解得:,{x =1y =4∴M (1,4),∴P 3(1,0),同理可得:P 2(9,﹣12),P 4(﹣7,4),P 5(﹣15,0). 故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形, 点P 的坐标为P 1(9,12),P 2(9,﹣12),P 3(1,0),P 4(﹣7,4),P 5(﹣15,0).。

2020年黑龙江省牡丹江市朝鲜族学校中考数学试卷

2020年黑龙江省牡丹江市朝鲜族学校中考数学试卷

2020年黑龙江省牡丹江市朝鲜族学校中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.下列图形中,既是轴对称图形,又是中心对称图形的个数有()A. 1个B. 2个C. 3个D. 4个2.下列运算正确的是()A. (a+b)(a-2b)=a2-2b2B. (a-)2=a2-C. -2(3a-1)=-6a+1D. (a+3)(a-3)=a2-93.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A. B.C. D.4.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是()A. B. C. D.5.一组数据4,4,x,8,8有唯一的众数,则这组数据的平均数是()A. B. 或5 C. 或 D. 56.如图,在△ABC中,sin B=,tan C=2,AB=3,则AC的长为()A. B. C. D. 27.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是()A. 22.5°B. 30°C. 45°D.60°8.若是二元一次方程组的解,则x+2y的算术平方根为()A. 3B. 3,-3C.D. ,-9.如图,在菱形OABC中,点B在x轴上,点A的坐标为(2,2),将菱形绕点O旋转,当点A落在x轴上时,点C的对应点的坐标为()A. (-2,-2)或(2,-2)B. (2,2)C. (-2,2)D. (-2,-2)或(2,2)10.若关于x的分式方程=有正整数解,则整数m的值是()A. 3B. 5C. 3或5D. 3或411.如图,A,B是双曲线y=上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为点C.若△ODC的面积为1,D为OB的中点,则k的值为()A.B.C. 4D. 812.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:①abc<0;②-2b+c=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).其中说法正确的是()A. ①②④⑤B. ①②④C. ①④⑤D. ③④⑤二、填空题(本大题共8小题,共24.0分)13.一周时间有604800秒,604800用科学记数法表示为______.14.图,在四边形ABCD中,AD∥BC,在不添加任何辅助线的情况下,请你添加一个条件______,使四边形ABCD是平行四边形(填一个即可).15.在函数y=中,自变量x的取值范围是______.16.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是______元.17.将抛物线y=(x-1)2-5关于y轴对称,再向右平移3个单位长度后顶点的坐标是______.18.如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是______个.19.在半径为的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP=______.20.如图,正方形ABCD中,点E在边AD上,点F在边CD上,若∠BEF=∠EBC,AB=3AE,则下列结论:①DF=FC;②AE+DF=EF;③∠BFE=∠BFC;④∠ABE+∠CBF=45°;⑤∠DEF+∠CBF=∠BFC;⑥DF:DE:EF=3:4:5;⑦BF:EF=3:5.其中结论正确的序号有______.三、解答题(本大题共8小题,共60.0分)21.先化简,再求值:-÷,其中x=1-2tan45°.22.已知抛物线y=a(x-2)2+c经过点A(-2,0)和点C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.23.等腰三角形ABC中,AB=AC=4,∠BAC=45°,以AC为腰作等腰直角三角形ACD,∠CAD为90°,请画出图形,并直接写出点B到CD的距离.24.为了解本校学生对新闻(A)、体育(B)、动画(C)、娱乐(D)、戏曲(E)五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查,并根据调查结果绘制了两幅不完整的统计图,请根据统计图解答下列问题:(1)本次接受问卷调查的学生有______名;(2)补全条形统计图;(3)扇形统计图中,B类节目所对应的扇形圆心角的度数为______度;(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生数.25.A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是______千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.26.△ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180°;(1)如图①,求证AD+BC=BE;(2)如图②、图③,请分别写出线段AD,BC,BE之间的数量关系,不需要证明;(3)若BE⊥BC,tan∠BCD=,CD=10,则AD=______.27.某商场准备购进A、B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40000元购进A型号电脑的数量与用30000元购进B型号电脑的数量相同,请解答下列问题:(1)A,B型号电脑每台进价各是多少元?(2)若每台A型号电脑售价为2500元,每台B型号电脑售价为1800元,商场决定同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式,若商场用不超过36000元购进A,B两种型号电脑,A型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,请直接写出捐赠A,B型号电脑总数最多是多少台.28.如图,在平面直角坐标系中,四边形OABC的边OC在x轴上,OA在y轴上.O为坐标原点,AB∥OC,线段OA,AB的长分别是方程x2-9x+20=0的两个根(OA<AB),tan∠OCB=.(1)求点B,C的坐标;(2)P为OA上一点,Q为OC上一点,OQ=5,将△POQ翻折,使点O落在AB 上的点O′处,双曲线y=的一个分支过点O′.求k的值;(3)在(2)的条件下,M为坐标轴上一点,在平面内是否存在点N,使以O′,Q,M,N为顶点四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:既是轴对称图形,又是中心对称图形的图形是第一个图形和第三个图形,共2个,故选:B.根据轴对称图形和中心对称图形的定义逐个判断即可.本题考查了轴对称图形和中心对称图形的定义,能熟记轴对称图形好中心对称图形的定义的内容是解此题的关键.2.【答案】D【解析】解:A.(a+b)(a-2b)=a2-2ab+ab-2b2=a2-ab-2b2,选项错误;B.(a-)2=a2-a+,选项错误;C.-2(3a-1)=-6a+2,选项错误;D.(a+3)(a-3)=a2-9,选项正确.故选:D.根据整式的乘法法则或乘法公式进行计算便可.本题主要考查了整式的乘法运算和乘法公式,关键是熟记运算法则和运算公式.3.【答案】A【解析】解:从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列,主视图是.故选:A.先细心观察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列,结合四个选项选出答案.本题考查了由三视图判断几何体及简单组合体的三视图,重点考查几何体的三视图及空间想象能力.4.【答案】B【解析】解:用列表法表示所有可能出现的结果情况如下:共有9种可能出现的结果,其中“两球颜色相同”的有4种,∴P(两球颜色相同)=.故选:B.用列表法列举出所有可能出现的结果,从中找出“两球颜色相同”的结果数,进而求出概率.本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.5.【答案】C【解析】解:因为一组数据4,4,x,8,8有唯一的众数,所以x=4或x=8,当x=4时,==,当x=8时,==,故选:C.根据众数的意义,可得出x=4或x=8,分两种情况求平均数即可.本题考查众数、平均数的意义和计算方法,求出x的值是求出平均数的前提.6.【答案】B【解析】解:过A作AD⊥BC于D,则∠ADC=∠ADB=90°,∵tan C=2=,sin B==,∴AD=2DC,AB=3AD,∵AB=3,∴AD=1,DC=,在Rt△ADC中,由勾股定理得:AC===,故选:B.过A作AD⊥BC于D,则∠ADC=∠ADB=90°,根据已知求出AD=2DC,AB=3AD,求出AD、CD的长,根据勾股定理求出AC即可.本题考查了解直角三角形,勾股定理,锐角三角函数的定义等知识点,能熟记锐角三角函数的定义是解此题的关键.7.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为O,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【答案】C【解析】解:把代入方程组得:,①+②得:5x=7,解得:x=,把x=代入②得:y=,∴x+2y=+=3,则3的算术平方根为.故选:C.把a与b的值代入方程组计算求出x与y的值,即可求出所求.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9.【答案】D【解析】解:∵菱形OABC中,点B在x轴上,点A的坐标为(2,2),∴AO==4,OB=4,∴菱形的边长为4,△AOB是等边三角形,分两种情况讨论:如图所示,当点A在x轴正半轴上时,过C作CD⊥AO于D,则OD=CO=2,CD=,∴点C的坐标为(-2,-2);如图所示,当点A在x轴负半轴上时,过C作CD⊥AO于D,则OD=CO=2,CD=,∴点C的坐标为(2,2);综上所述,点C的对应点的坐标为(-2,-2)或(2,2),故选:D.依据菱形的性质即可得到菱形的边长为4,△AOB是等边三角形,再分两种情况进行讨论,依据OD=CO=2,CD=,即可得到点C的对应点的坐标.本题主要考查了菱形的性质以及旋转变换的运用,解题时注意:菱形的四条边都相等;菱形的两条对角线互相垂直.10.【答案】D【解析】解:解分式方程,得x=,经检验,x=是分式方程的解,因为分式方程有正整数解,则整数m的值是3或4.故选:D.解分式方程,得x=,因为分式方程有正整数解,进而可得整数m的值.本题考查了分式方程的解,解决本题的关键是准确求出分式方程的整数解.11.【答案】D【解析】【分析】过点B作BE⊥x轴于点E,根据反比例函数系数k的几何意义,可知S△BOE=k,由D为OB的中点,CD∥BE,可知CD是△OBE的中位线,CD=BE,,S△ODC=S△BOE=k=1,即可求出k的值.本题考查的是反比例函数系数k的几何意义,熟知反比例函数y=图象中任取一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|且保持不变,是解答此题的关键.【解答】解:过点B作BE⊥x轴于点E,则S△BOE=k.∵D为OB的中点,CD∥BE,∴CD是△OBE的中位线,CD=BE,,∴S△ODC=S△BOE=k=1,∴k=8.故选:D.12.【答案】A【解析】解:①∵抛物线开口向下,∴a<0,∵抛物线对称轴为x=-=,∴b=-a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵对称轴为x=,且经过点(2,0),∴抛物线与x轴的另一个交点为(-1,0),∴=-1×2=-2,∴c=-2a,∴-2b+c=2a-2a=0-所以②正确;③∵抛物线经过(2,0),∴当x=2时,y=0,∴4a+2b+c=0,所以③错误;④∵点(-,y1)离对称轴要比点(,y2)离对称轴远,∴y1<y2,所以④正确;⑤∵抛物线的对称轴x=,∴当x=时,y有最大值,∴a+b+c>am2+bm+c(其中m≠).∵a=-b,∴b>m(am+b)(其中m≠),所以⑤正确.所以其中说法正确的是①②④⑤.故选:A.①根据抛物线开口向下,可得a<0,根据抛物线对称轴为x=-=,可得b=-a>0,根据抛物线与y轴的交点在x轴上方,可得c>0,进而可以判断;②根据对称轴为x=,且经过点(2,0),可得抛物线与x轴的另一个交点为(-1,0),③根据抛物线经过(2,0),可得当x=2时,y=0,即4a+2b+c=0,进而可以判断;④根据点(-,y1)离对称轴要比点(,y2)离对称轴远,可得y1<y2,进而可以判断;⑤根据抛物线的对称轴x=,可得当x=时,y有最大值,即a+b+c>am2+bm+c(其中m≠).根据a=-b,即可进行判断.本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征,解决本题的关键是掌握二次函数的图象和性质.13.【答案】6.048×105【解析】解:将604800用科学记数法表示为6.048×105,故答案是:6.048×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】AB∥CD(答案不唯一)【解析】解:根据平行四边形的判定,可再添加一个条件:AB∥CD.故答案为:AB∥CD(答案不唯一).可再添加一个条件AB∥CD,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.15.【答案】x>0.5【解析】解:根据题意得:2x-1>0,解得:x>0.5.故答案为:x>0.5.根据二次根式的被开方数是非负数,以及分母不等于0,就可以求出x的范围.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.【答案】80【解析】解:设该书包的进价为x元,根据题意得:130×80%-x=30%x,整理得:1.3x=104,解得:x=80,则该书包的进价是80元.故答案为:80.设该书包的进价为x元,根据售价×80%-进价=进价×利润率列出方程,求出方程的解即可得到结果.此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.17.【答案】(2,-5)【解析】解:∵抛物线y=(x-1)2-5的顶点坐标是(1,-5),将抛物线y=(x-1)2-5关于y轴对称,∴顶点坐标是(-1,-5),∴再向右平移3个单位长度后的抛物线的顶点坐标为(2,-5).故答案为:(2,-5).先求出抛物线的顶点坐标,再求得关于y轴对称的抛物线的顶点坐标,再根据向右平移横坐标加,求出平移后的抛物线的顶点坐标即可.考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,解题的关键是求得新抛物线的顶点坐标.18.【答案】92【解析】解:因为第1个图形中一共有1×(1+1)+2=4个圆,第2个图形中一共有2×(2+1)+2=8个圆,第3个图形中一共有3×(3+1)+2=14个圆,第4个图形中一共有4×(4+1)+2=22个圆;可得第n个图形中圆的个数是n(n+1)+2;所以第9个图形中圆的个数9×(9+1)+2=92.故答案为:92.根据图形得出第n个图形中圆的个数是n(n+1)+2进行解答即可.考查图形的变换规律;根据图形的排列规律得到下面圆的个数等于图形的序号与序号数多1数的积,上面圆的个数为2是解决本题的关键.19.【答案】或或【解析】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,则AE=BE=AB=2,DF=CF=CD=2,如图1,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴PA=PC=1,∴S△APC==;同理:S△APC==;如图3,同理:S△APC==;故答案为:或或.如图1,作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE=AB=2,DF=CF=CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到PA=PC=1,根据三角形面积公式求得即可.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.20.【答案】①②③④⑤⑥⑦【解析】解:如图,过点B作BH⊥EF于H.∵四边形ABCD是正方形,∴∠A=∠C=∠D=∠ABC=90°,AB=AD=CD=BC,AD∥CB,∴∠AEB=∠EBC,∵∠FEB=∠EBC,∴∠AEB=∠BEF,∵BA⊥AE,BH⊥EF,∴AB=BH=BC,∵∠A=∠BHE=∠BHF=∠C=90°,BE=BE,BF=BF,∴Rt△ABE≌Rt△HBE(HL),Rt△BFH≌Rt△BFC(HL),∴AE=EH,FH=CF,∠BFE=∠BFC,故③正确,∴AE+CF=EH+HF=EF,∴∠ABE=∠HBE,∠FBH=∠FBC,∴∠ABE+∠CBF=45°,故④正确,∵∠DEF+∠AEH=180°,∠AEH+∠ABH=180°,∴∠DEF=∠ABH,∴∠DEF+∠FBC=∠ABH+∠FBH=∠ABF,∴∠ABF=∠BFC,∴∠DEF+∠CBF=∠BFC,故⑤正确,∵AB=3AE,∴可以假设AE=a,则AB=AD=CD=3a,DE=2a,设DF=x,则FH=CF=3a-x,EF=a+3a-x=4a-x,∵EF2=DE2+DF2,∴(4a-x)2=(2a)2+x2解得x=a,∴DF=CF,故①正确,∴AE+DF=EF,故②正确,∴DF=a,DE=2a,EF=a,∴DF:DE:EF=3:4:5,故⑥正确,∵BF===a,∴BF+EF=a:a=3:5,故⑦正确.故答案为①②③④⑤⑥⑦.如图,过点B作BH⊥EF于H.利用角平分线的性质定理证明BA=BH,再利用HL证明Rt△ABE≌Rt△HBE(HL),Rt△BFH≌Rt△BFC(HL),利用全等三角形的性质,一一判断即可得出③④⑤正确,设AE=a.则AB=BC=CD=AD=3a,DE=2a,设DF=x,则CF=3a-x,利用勾股定理求出x即可判断①②⑥⑦正确.本题考查正方形的性质,全等三角形的判定和性质,角平分线的性质定理,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考常考题型.21.【答案】解:原式=-•=-==-,当x=1-2tan45°=1-2=-1,原式=-=-.【解析】直接利用分式的混合运算法则化简进而把x的值代入求出答案.此题主要考查了分式的化简求值,正确化简分式是解题关键.22.【答案】解:(1)将点A(-2,0),C(0,)代入y=a(x-2)2 +c,得:,解得:,∴抛物线的解析式为y=-(x-2)2+3,即y=-x2+x+;∴顶点D的坐标为(2,3);(2)当y=0时,-(x-2)2+3=0,解得:x1=-2,x2=6,∴A(-2,0),B(6,0),∵∠DEB=∠DEF+∠BEF=∠DAB+∠ADE,∠DEF=∠DAB,∴∠ADE=∠BEF,∵AD==5,BD==5,∴AD=BD,∴∠DAE=∠EBF,∵DE=EF,∴△ADE≌△BEF(AAS),∴BE=AD=5.【解析】(1)利用待定系数法,转化为解方程组即可解决问题.(2)根据y=0,解方程可得A和B两点的坐标,根据两点的距离公式可得AD=BD=5,证明△ADE≌△BEF(AAS),可得结论.本题属于二次函数综合题,考查了待定系数法,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会用方程的思想解决问题.23.【答案】解:本题有两种情况:如图1,过点A作AE⊥CD于点E,∵△ACD等腰直角三角形,∴∠ACD=45°,∴∠ACD=∠BAC,∴AB∥CD,∴点B到CD的距离等于点A到CD的距离,∴AE=AC•sin45°=4×=2,∴点B到CD的距离为:2;如图2,AB、CD交于点E,∵△ACD等腰直角三角形,∴∠ACD=∠BAC=45°,∴∠AEC=90°,∴BE=AB-AE=4-2.∴点B到CD的距离为4-2.综上所述:点B到CD的距离为2或4-2.【解析】根据题意画出图形,分两种情况根据等腰直角三角形的性质即可求得点B到CD的距离.本题考查了作图-复杂作图、等腰直角三角形,解决本题的关键是掌握等腰直角三角形的性质.24.【答案】100 72【解析】解:(1)本次接受问卷调查的学生有:36÷36%═100(名),故答案为:100;(2)喜爱C类的有:100-8-20-36-6=30(名),补全的条形统计图如右图所示;(3)扇形统计图中B类节目对应扇形的圆心角的度数为:360°×=72°,故答案为:72;(4)2000×=160(名),答:估计该校最喜爱新闻节目的学生有160名.(1)根据D类的人数和所占的百分比可以求得本次调查的学生人数;(2)求出C类的人数,即可将条形统计图补充完整;(3)根据条形统计图中的数据可以求得扇形统计图中B类节目对应扇形的圆心角的度数;(4)根据统计图中的数据可以求得该校最喜爱新闻节目的学生人数.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25.【答案】60【解析】解:(1)由题意,甲的速度为=60千米/小时.乙的速度为80千米/小时,=6(小时),4+6=10(小时),∴图中括号内的数为10.故答案为:60.(2)设线段MN所在直线的解析式为y=kt+b(k≠0).把点M(4,0),N(10,480)代入y=kt+b,得:,∴线段MN所在直线的函数解析式为y=80t-320.(3)(480-460)=20,20÷60=(小时),或60t-480+80(t-4)=460,解得t=9,答:甲车出发小时或9小时时,两车距C市的路程之和是460千米.(1)利用图中信息解决问题即可.(2)利用待定系数法解决问题即可.(3)分两种情形分别求解即可解决问题.本题考查一次函数的应用,待定系数法等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.26.【答案】14-6或2+6【解析】解:(1)证明:∵∠EAB+∠DCF=180°,∠BCD+∠DCF=180°,∴∠EAB=∠BCD,∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD,AB=BC,∴AD+BC=AD+AB=BD=BE;(2)①图②结论:BC-AD=BE,证明:∵∠EAB+∠DCF=180°,∠BCD+∠DCF=180°,∴∠EAB=∠BCD,∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD,AB=BC,∴BC-AD=AB-AD=BD=BE;②图③结论:AD-BC=BE;证明:∵∠EAB+∠DCF=180°,∠BCD+∠DCF=180°,∴∠EAB=∠BCD,∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB(ASA),∴BE=BD,AB=BC,∴AD-BC=AD-AB=BD=BE;(3)①如图2,过点D作DG⊥BC于G,在Rt△CGD中,tan∠BCD=,∴,设DG=3x,CG=4x,根据勾股定理得,DG2+CG2=CD2,∴x=2(舍去负值),∴CG=8,DG=6,由(2)①知,△EAB≌△DCB,∴∠ABE=∠CBD,∵BE⊥BC,∴∠CBE=90°,∴∠CBD=45°=∠BDG,∴BG=DG=6,BD=6,∴BC=BG+CG=14,由(2)①知,BC-AD=BD,∴AD=BC-BD=14-6;②如图3,过点D作DG⊥BC于G,同①的方法得,CF=8,BG=DG=6,BD=6,∴BC=CG-CG=2,由(2)②知,AD-BC=BD,∴AD=BC+BD=2+6;故答案为:14-6或 2+6.(1)先利用互补判断出∠EAB=∠BCD,进而判断出△EAB≌△DCB,得出BE=BD,AB=BC,即可得出结论;(2)同(1)的方法即可得出结论;(3)先利用三角函数和勾股定理求出CG=8,DG=6,再求出BG=DG=6,BD=6,进而得出BC=BG+CG=14或BC=CG-BG=2,最后借助(2)的结论即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,锐角三角函数,勾股定理,判断出△EAB≌△DCB是解本题的关键.27.【答案】解:(1)设每台A型号电脑进价为a元,每台B型号电脑进价为(a-500)元,由题意,得,解得:a=2000,经检验a=2000是原方程的解,且符合题意.∴2000-500=1500(元).答:每台A型号电脑进价为2000元,每台B型号电脑进价为1500元;(2)由题意,得y=(2500-2000)x+(1800-1500)(20-x)=200x+6000,∵2000x+1500(20-x)≤36 000,∴x≤12.又∵x≥10,∴10≤x≤12,∵x是整数,∴x=10,11,12,∴有三种方案;(3)∵y=200x+6000是一次函数,y随x的增大而增大,∴当x=12时,y有最大值=12×200+6000=8400元,设再次购买的A型电脑b台,B型电脑c台,∴2000b+1500c≤8400,且b,c为非负整数,∴b=0,c=5或b=1,c=4或b=2,c=2或b=3,c=1或b=4,c=0,∴捐赠A,B型号电脑总数最多是5台.【解析】(1)设每台A型号电脑进价为a元,每台B型号电脑进价为(a-500)元,由“用40000元购进A型号电脑的数量与用30000元购进B型号电脑的数量相同”列出方程即可求解;(2)所获的利润=A型电脑利润+B型电脑利润,可求y与x关系,由“用不超过36000元购进A,B两种型号电脑,A型号电脑至少购进10台”列出不等式,即可求解;(3)由一次函数的性质可求最大利润,设再次购买的A型电脑b台,B型电脑c台,可得2000b+1500c≤8400,可求整数解,即可求解.本题考查了一次函数的应用,分式方程的应用,二元一次方程的应用,一元一次不等式组的应用,分析题意,找到合适的数量关系是解决问题的关键.28.【答案】解:(1)解方程:x2-9x+20=0,(x-4)(x-5)=0,得x1=4,x2=5,∵OA<AB,∴OA=4,AB=5,如图1,过点B作BD⊥OC于点D,∵tan∠OCB=,BD=OA=4,∴CD=3,∵OD=AB=5,∴OC=8,∴点B的坐标为(5,4),点C的坐标为(8,0);(2)如图2,∵AB∥OC,OQ=AB=5,∠AOQ=90°,∴四边形AOQB为矩形.∴BQ=OA=4,由翻折,得OQ=O'Q=5,∴O'B===3,∴AO'=2,∴O'(2,4),∴k=2×4=8;(3)存在.分四种情况:①如图3,M在x轴的正半轴上,四边形NO'MQ是矩形,此时N与B重合,则N(5,4);②如图4,M在x轴的负半轴上,四边形NMO'Q是矩形,过O'作O'D⊥x轴于D,过N 作NH⊥x轴于H,∵四边形NMO'Q是矩形,∴MN=O'Q=5,MN∥O'Q,∴∠NMO=∠DQO',∵∠NHM=∠QDO'=90°,∴△NHM≌△O'DQ(AAS),∴NH=O'D=4,DQ=MH=3,由(2)知:AO'=2,设PO=x,则O'P=x,AP=4-x,在Rt△APO'中,由勾股定理得:AP2+AO'2=O'P2,即x2=22+(4-x)2,解得:x=,∴P(0,),设PQ'的解析式为:y=kx+b,则,解得:,∴PQ'的解析式为:y=x+,当y=0时,x+=0,∴x=-,∴OM=,∴OH=OM-MH=-3=,∴N(-,-4);③如图5,M在y轴的正半轴上,四边形MNQO'是矩形,由②知:M(0,),O'(2,4),Q(5,0),∴N(3,-);④如图6,M在y轴的负半轴上,四边形MNO'Q是矩形,过O'作O'D⊥x轴于D,∵∠MOQ=∠QDO',∠OMQ=∠DQO',∴△MOQ∽△QDO',∴,即,∴OM=,∴M(0,-),∵O'(2,4),Q(5,0),∴N(-3,),综上,点N的坐标为:N(5,4)或(-,-4)或(3,-)或(-3,).【解析】(1)先利用因式分解法解方程x2-9x+20=0可得到OA=4,AB=5,作辅助线,构建直角三角形,根据已知三角函数定义可解答;(2)先证明四边形OABQ是矩形,根据翻折和矩形的性质,勾股定理计算O'(2,4),可得k的值;(3)确定M为坐标轴上一点,画出符合条件的矩形,根据三角形全等,相似或平移的规律求点N的坐标.本题考查了四边形的综合题:熟练掌握矩形的性质,三角形全等的性质和判定,三角形相似的性质和判定,一次函数图象上点的坐标特征;会运用待定系数法求一次函数和反比例函数解析式;理解坐标与图形性质,会利用平移的规律求矩形中一个顶点的坐标,学会运用分类讨论的思想解决数学问题.。

2020年黑龙江省牡丹江市中考数学试卷及答案

2020年黑龙江省牡丹江市中考数学试卷及答案

2020年⿊龙江省牡丹江市中考数学试卷及答案2020年⿊龙江省牡丹江市中考数学试卷⼀、填空题(每⼩题3分,满分24分)1.(3分)新冠肺炎疫情期间,全国各地约42000名医护⼈员驰援湖北.请将数42000⽤科学记数法表⽰为.2.(3分)如图,在四边形ABCD中,连接AC,∠ACB=∠CAD.请你添加⼀个条件,使AB=CD.(填⼀种情况即可)3.(3分)若⼀组数据21,14,x,y,9的众数和中位数分别是21和15,则这组数据的平均数为.4.(3分)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.5.(3分)AB是⊙O的弦,OM⊥AB,垂⾜为M,连接OA.若△AOM中有⼀个⾓是30°,OM=2√3,则弦AB的长为.6.(3分)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b ﹣11的值是.7.(3分)如图,在Rt△ABC中,∠C=90°,点E在AC边上.将∠A沿直线BE翻折,点A落在点A'处,连接A'B,交AC于点F.若A'E⊥AE,cos A=45,则A′FBF=.8.(3分)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂⾜分别为E,F,连接EM.则下列结论中:①BF=CE;②∠AEM=∠DEM;③AE﹣CE=√2ME;④DE2+DF2=2DM2;⑤若AE 平分∠BAC ,则EF :BF =√2:1;⑥CF ?DM =BM ?DE ,正确的有.(只填序号)⼆、选择题(每⼩题3分,满分36分) 9.(3分)下列运算正确的是() A .a 2?a 5=a 10 B .(a ﹣2)2=a 2﹣4 C .a 6÷a 2=a 3D .(﹣a 2)4=a 810.(3分)下列图形是中⼼对称图形的是()A .B .C .D .11.(3分)在函数y =√x ?3中,⾃变量x 的取值范围是() A .x ≠3B .x ≥0C .x ≥3D .x >312.(3分)由⼀些⼤⼩相同的⼩正⽅体搭成的⼏何体的主视图和左视图如图所⽰,则搭成该⼏何体的⼩正⽅体的个数最少是()A .6B .5C .4D .313.(3分)在⼀个不透明的⼝袋中有四个完全相同的⼩球,把它们分别标号为1,2,3,4.若随机摸出⼀个⼩球后不放回,再随机摸出⼀个⼩球,则两次取出⼩球标号的和等于5的概率为() A .14B .23C .13D .31614.(3分)如图,四边形ABCD 内接于⊙O ,连接BD .若AC ?=BC ?,∠BDC =50°,则∠ADC 的度数是()A.125°B.130°C.135°D.140°15.(3分)⼀列数1,5,11,19…按此规律排列,第7个数是()A.37B.41C.55D.7116.(3分)如图,点A在反⽐例函数y1=18x(x>0)的图象上,过点A作AB⊥x轴,垂⾜为B,交反⽐例函数y2=6x(x>0)的图象于点C.P为y轴上⼀点,连接P A,PC.则△APC的⾯积为()A.5B.6C.11D.1217.(3分)若关于x的⽅程mx+12x=0的解为正数,则m的取值范围是()A.m<2B.m<2且m≠0C.m>2D.m>2且m≠4 18.(3分)如图,在平⾯直⾓坐标系中,O是菱形ABCD对⾓线BD的中点,AD∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是()A.(0,2√3)B.(2,﹣4)C.(2√3,0)D.(0,2√3)或(0,﹣2√3)19.(3分)如图,在矩形ABCD中,AB=3,BC=10,点E在BC边上,DF⊥AE,垂⾜为F.若DF=6,则线段EF的长为()A.2B.3C.4D.520.(3分)如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是()①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.A.5B.4C.3D.2三、解答题(满分60分)21.(5分)先化简,再求值:(1?4x2)÷x2?2xx2,其中x=﹣tan45°.22.(6分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为P.已知B(1,0),C(0,﹣3).请解答下列问题:(1)求抛物线的解析式,并直接写出点P的坐标;(2)抛物线的对称轴与x轴交于点E,连接AP,AP的垂直平分线交直线PE于点M,则线段EM的长为.注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=?b2a,顶点坐标是(?b2a,4ac?b24a).23.(6分)在△ABC中,AB=AC,BC=6,S△ABC=6.以BC为边作周长为18的矩形BCDE,M,N分别为AC,CD的中点,连接MN.请你画出图形,并直接写出线段MN的长.24.(7分)某中学为了了解本校学⽣对排球、篮球、毽球、⽻⽑球和跳绳五项“⼤课间”活动的喜欢情况,随机抽查了部分学⽣进⾏问卷调查(每名学⽣只选择⼀项),将调查结果整理并绘制成如图所⽰不完整的统计图表.请结合统计图表解答下列问题:抽样调查学⽣喜欢⼤课间活动⼈数的统计表项⽬⼈数A排球6B篮球mC毽球10D⽻⽑球4E跳绳18(1)本次抽样调查的学⽣有⼈,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学⽣⼈数所对应圆⼼⾓的度数;(3)全校有学⽣1800⼈,估计全校喜欢跳绳活动的学⽣⼈数是多少?25.(8分)在⼀条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时⼄车从C地出发驶向B地,到达B地停留0.5⼩时后,按原路原速返回C地,两车匀速⾏驶,甲车⽐⼄车晚1.5⼩时到达C地.两车距各⾃出发地的路程y(千⽶)与时间x(⼩时)之间的函数关系如图所⽰.请结合图象信息解答下列问题:(1)甲车⾏驶速度是千⽶1时,B,C两地的路程为千⽶;(2)求⼄车从B地返回C地的过程中,y(千⽶)与x(⼩时)之间的函数关系式(不需要写出⾃变量x的取值范围);(3)出发多少⼩时,⾏驶中的两车之间的路程是15千⽶?请你直接写出答案.26.(8分)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的⾓平分线时,如图①,求证:AE+BC=CF;(提⽰:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的⾓平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外⾓平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=.27.(10分)某商场准备购进A,B两种书包,每个A种书包⽐B种书包的进价少20元,⽤700元购进A种书包的个数是⽤450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数⽐A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费⽤不超过5450元,则该商场有哪⼏种进货⽅案?(3)该商场按(2)中获利最⼤的⽅案购进书包,在销售前,拿出5个书包赠送给某希望⼩学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有⼏个?28.(10分)如图,已知直线AB与x轴交于点A,与y轴交于点B,线段OA的长是⽅程x2﹣7x﹣18=0的⼀个根,OB=12OA.请解答下列问题:(1)求点A,B的坐标;(2)直线EF交x轴负半轴于点E,交y轴正半轴于点F,交直线AB于点C.若C是EF的中点,OE=6,反⽐例函数y=kx图象的⼀⽀经过点C,求k的值;(3)在(2)的条件下,过点C作CD⊥OE,垂⾜为D,点M在直线AB上,点N在直线CD上.坐标平⾯内是否存在点P,使以D,M,N,P为顶点的四边形是正⽅形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.2020年⿊龙江省牡丹江市中考数学试卷参考答案与试题解析⼀、填空题(每⼩题3分,满分24分)1.(3分)新冠肺炎疫情期间,全国各地约42000名医护⼈员驰援湖北.请将数42000⽤科学记数法表⽰为 4.2×104.【解答】解:42000=4.2×104,故答案为:4.2×104.2.(3分)如图,在四边形ABCD中,连接AC,∠ACB=∠CAD.请你添加⼀个条件AD =BC,使AB=CD.(填⼀种情况即可)【解答】解:添加的条件:AD=BC,理由是:∵∠ACB=∠CAD,∴AD∥BC,∵AD=BC,∴四边形ABCD是平⾏四边形,∴AB=CD.故答案为:AD=BC.3.(3分)若⼀组数据21,14,x,y,9的众数和中位数分别是21和15,则这组数据的平均数为16.【解答】解:∵⼀组数据21,14,x,y,9的中位数是15,∴x、y中必有⼀个数是15,⼜∵⼀组数据21,14,x,y,9的众数是21,∴x、y中必有⼀个数是21,∴x、y所表⽰的数为15和21,∴x=21+14+15+21+95=16,故答案为:16.4.(3分)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打8折.【解答】解:设商店打x折,依题意,得:180×x10120=120×20%,解得:x=8.故答案为:8.5.(3分)AB是⊙O的弦,OM⊥AB,垂⾜为M,连接OA.若△AOM中有⼀个⾓是30°,OM=2√3,则弦AB的长为12或4.【解答】解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=OMAM=2√3AM=√33,∴AM=6,∴AB=2AM=12;若∠AOM=30°,则tan∠AOM=AMOM=AM23=√33,∴AM=2,∴AB=2AM=4.故答案为:12或4.6.(3分)将抛物线y =ax 2+bx ﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a ﹣4b ﹣11的值是﹣5 .【解答】解:将抛物线y =ax 2+bx ﹣1向上平移3个单位长度后,表达式为:y =ax 2+bx +2,∵经过点(﹣2,5),代⼊得:4a ﹣2b =3,则8a ﹣4b ﹣11=2(4a ﹣2b )﹣11=2×3﹣11=﹣5,故答案为:﹣5.7.(3分)如图,在Rt △ABC 中,∠C =90°,点E 在AC 边上.将∠A 沿直线BE 翻折,点A 落在点A '处,连接A 'B ,交AC 于点F .若A 'E ⊥AE ,cos A =45,则A′F BF=13.【解答】解:∵∠C =90°,cos A =45,∴AC AB=45,设AC =4x ,AB =5x ,则BC =3x ,∵AE ⊥AE ′,∴∠AEA ′=90°,A ′E ∥BC ,由于折叠,∴∠A ′EB =∠AEB =(360﹣90)÷2=135°,且△A ′EF ∽△BCF ,∴∠BEC =45°,即△BCE 为等腰直⾓三⾓形,∴EC =3x ,∴AE =AC ﹣EC =x =A ′E ,∴A′E BC=A′F BF =x 3x=13,故答案为:13.8.(3分)如图,在Rt △ABC 中,CA =CB ,M 是AB 的中点,点D 在BM 上,AE ⊥CD ,BF ⊥CD ,垂⾜分别为E ,F ,连接EM .则下列结论中:①BF =CE ;②∠AEM =∠DEM ;③AE﹣CE=√2ME;④DE2+DF2=2DM2;⑤若AE平分∠BAC,则EF:BF=√2:1;⑥CF?DM=BM?DE,正确的有①②③④⑤⑥.(只填序号)【解答】解:∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,⼜∵∠BFD=90°=∠AEC,AC=BC,∴△BCF≌△CAE(AAS),∴BF=CE,故①正确;由全等可得:AE=CF,BF=CE,∴AE﹣CE=CF=CE=EF,连接FM,CM,∵点M是AB中点,∴CM=12AB=BM=AM,CM⊥AB,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,⼜BM=CM,BF=CE,∴△BFM≌△CEM(SAS),∴FM=EM,∠BMF=∠CME,∵∠BMC=90°,∴∠EMF=90°,即△EMF为等腰直⾓三⾓形,∴EF=√2EM=AE﹣CE,故③正确,∠MEF=∠MFE=45°,∵∠AEC =90°,∴∠MEF =∠AEM =45°,故②正确,设AE 与CM 交于点N ,连接DN ,∵∠DMF =∠NME ,FM =EM ,∠DFM =∠DEM =∠AEM =45°,∴△DFM ≌△NEM (ASA ),∴DF =EN ,DM =MN ,∴△DMN 为等腰直⾓三⾓形,∴DN =√2DM ,⽽∠DEA =90°,∴DE 2+DF 2=DN 2=2DM 2,故④正确;∵AC =BC,∠ACB =90°,∴∠CAB =45°,∵AE 平分∠BAC ,∴∠DAE =∠CAE =22.5°,∠ADE =67.5°,∵∠DEM =45°,∴∠EMD =67.5°,即DE =EM ,∵AE =AE ,∠AED =∠AEC ,∠DAE =∠CAE ,∴△ADE ≌△ACE (ASA ),∴DE =CE ,∵△MEF 为等腰直⾓三⾓形,∴EF =√2EM ,∴EF BF=EF CE=EF DE=√2EMDE=√2,故⑤正确;∵∠CDM =∠ADE ,∠CMD =∠AED =90°,∴△CDM ∽ADE ,∴=CM AE=DM DE,∵BM =CM ,AE =CF ,∴BM CF=DM DE,∴CF ?DM =BM ?DE ,故⑥正确;故答案为:①②③④⑤⑥.⼆、选择题(每⼩题3分,满分36分)9.(3分)下列运算正确的是()A.a2?a5=a10B.(a﹣2)2=a2﹣4C.a6÷a2=a3D.(﹣a2)4=a8【解答】解:A、a2?a5=a7,故选项错误;B、(a﹣2)2=a2﹣4a+4,故选项错误;C、a6÷a2=a4,故选项错误;D、(﹣a2)4=a8,故选项正确;故选:D.10.(3分)下列图形是中⼼对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中⼼对称图形,不合题意;B、是轴对称图形,不是中⼼对称图形,不合题意;C、是中⼼对称图形,符合题意;D、不是中⼼对称图形,不合题意;.故选:C.11.(3分)在函数y=√x?3中,⾃变量x的取值范围是()A.x≠3B.x≥0C.x≥3D.x>3【解答】解:由题意得,x﹣3≥0,解得x≥3.故选:C.12.(3分)由⼀些⼤⼩相同的⼩正⽅体搭成的⼏何体的主视图和左视图如图所⽰,则搭成该⼏何体的⼩正⽅体的个数最少是()A .6B .5D .3【解答】解:仔细观察物体的主视图和左视图可知:该⼏何体的下⾯最少要有2个⼩正⽅体,上⾯最少要有1个⼩正⽅体,故该⼏何体最少有3个⼩正⽅体组成.故选:D .13.(3分)在⼀个不透明的⼝袋中有四个完全相同的⼩球,把它们分别标号为1,2,3,4.若随机摸出⼀个⼩球后不放回,再随机摸出⼀个⼩球,则两次取出⼩球标号的和等于5的概率为() A .14B .23C .13D .316【解答】解:⽤列表法表⽰所有可能出现的结果情况如下:共有12种可能出现的结果,其中“和为5”的有4种,∴P (和为5)=412=13.故选:C .14.(3分)如图,四边形ABCD 内接于⊙O ,连接BD .若AC ?=BC ?,∠BDC =50°,则∠ADC 的度数是()A .125°B .130°C .135°D .140°【解答】解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵AC=BC,∴∠BOC=∠AOC=100°,∴∠ABC=12∠AOC=50°,∴∠ADC=180°﹣∠ABC=130°.故选:B.15.(3分)⼀列数1,5,11,19…按此规律排列,第7个数是()A.37B.41C.55D.71【解答】解:1=1×2﹣1,5=2×3﹣1,11=3×4﹣1,19=4×5﹣1,…第n个数为n(n+1)﹣1,则第7个数是:55.故选:C.16.(3分)如图,点A在反⽐例函数y1=18x(x>0)的图象上,过点A作AB⊥x轴,垂⾜为B,交反⽐例函数y2=6x(x>0)的图象于点C.P为y轴上⼀点,连接P A,PC.则△APC的⾯积为()A.5B.6C.11D.12【解答】解:连接OA和OC,∵点P在y轴上,则△AOC和△APC⾯积相等,∵A在y1=18x上,C在y2=6x上,AB⊥x轴,∴S△AOC=S△OAB﹣S△OBC=6,∴△APC的⾯积为6,故选:B.17.(3分)若关于x的⽅程mx+12x=0的解为正数,则m的取值范围是()A.m<2B.m<2且m≠0C.m>2D.m>2且m≠4【解答】解:∵解⽅程mx+1?2x=0,去分母得:mx﹣2(x+1)=0,整理得:(m﹣2)x=2,∵⽅程有解,∴x=2m?2,∵分式⽅程的解为正数,∴2m?2>0,解得:m>2,⽽x≠﹣1且x≠0,则2m?2≠?1,2m?2≠0,解得:m≠0,综上:m的取值范围是:m>2.故选:C.18.(3分)如图,在平⾯直⾓坐标系中,O是菱形ABCD对⾓线BD的中点,AD∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是()A.(0,2√3)B.(2,﹣4)C.(2√3,0)D.(0,2√3)或(0,﹣2√3)【解答】解:根据菱形的对称性可得:当点D在x轴上时,A、B、C均在坐标轴上,如图,∵∠BAD=60°,AD=4,∴∠OAD=30°,∴OD=2,∴AO=√42?22=2√3=OC,∴点C的坐标为(0,?2√3),同理:当点C旋转到y轴正半轴时,点C的坐标为(0,2√3),∴点C的坐标为(0,2√3)或(0,?2√3),故选:D.19.(3分)如图,在矩形ABCD中,AB=3,BC=10,点E在BC边上,DF⊥AE,垂⾜为F.若DF=6,则线段EF的长为()A.2B.3C.4D.5【解答】解:∵四边形ABCD为矩形,∴AB=CD=3,BC=AD=10,AD∥BC,∴∠AEB=∠DAF,∴△AFD∽△EBA,∴AFBE =ADAE=DFAB,∵DF=6,∴AF=√102?62=8,∴8BE =10AE=63,∴AE=5,∴EF=AF﹣AE=8﹣5=3.故选:B.20.(3分)如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是()①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.A.5B.4C.3D.2【解答】解:如图,抛物线开⼝向下,与y轴交于负半轴,对称轴在y轴右侧,∴a <0,c <0,?b2a>0,∴b >0,∴abc >0,故①正确;如图,∵抛物线过点B (4,0),点A 在x 轴正半轴,∴对称轴在直线x =2右侧,即?b2a>2,∴2+b2a =4a+b2a <0,⼜a <0,∴4a +b >0,故②正确;∵M (x 1,y 1)与N (x 2,y 2)是抛物线上两点,0<x 1<x 2,可得:抛物线y =ax 2+bx +c 在0<x <?b2a 上,y 随x 的增⼤⽽增⼤,在x >?b2a上,y 随x 的增⼤⽽减⼩,∴y 1>y 2不⼀定成⽴,故③错误;若抛物线对称轴为直线x =3,则?b2a =3,即b =﹣6a ,则a (m ﹣3)(m +3)﹣b (3﹣m )=a (m ﹣3)2≤0,∴a (m ﹣3)(m +3)≤b (3﹣m ),故④正确;∵AB ≥3,则点A 的横坐标⼤于0或⼩于等于1,当x =1时,代⼊,y =a +b +c ≥0,当x =4时,16a +4b +c =0,∴a =4b+c16,则4b+c ?16+b +c ≥0,整理得:4b +5c ≥0,则4b +3c ≥﹣2c ,⼜c <0,﹣2c >0,∴4b +3c >0,故⑤正确,故正确的有4个.故选:B .三、解答题(满分60分)21.(5分)先化简,再求值:(1?4x 2)÷x 2?2xx 2,其中x =﹣tan45°.【解答】解:(1?4x 2)÷x 2?2x x 2=x 2?4x2?x 2x(x?2)=(x+2)(x?2)x(x?2)。

黑龙江省牡丹江、鸡西地区2020年数学中考试题及答案

黑龙江省牡丹江、鸡西地区2020年数学中考试题及答案

牡丹江、鸡西地区2020年数学中考试题一、选择题(每小题 3分,共 36分)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个2.下列运算正确的是( ) A. (a +b )(a -2b )=a 2-2b 2 B. 2211()24a a -=-C. -2(3a -1)=-6a +1D. (a +3)(a -3)=a 2-93.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A. B. C. D.4.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( ) A.13B.49C.35D.235.一组数据4,4,x ,8,8有唯一的众数,则这组数据的平均数是( ) A.285B.325或5 C.285或325 D. 56.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A.2B.5 C.5 D. 27.如图,点,,A B S 在圆上,若弦AB 2倍,则ASB ∠的度数是( ).A. 22.5°B. 30°C. 45°D. 60°8.若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A. 3 B. 3,-3 C. 3 D. 3,-39.如图,在菱形OABC中,点B在x轴上,点A的坐标为(2,23),将菱形绕点O旋转,当点A落在x 轴上时,点C的对应点的坐标为()A. (22)3--,或(23,2)- B. (2,23)C. (2,23)- D. (22)3--,或(2,23)10.若关于x的分式方程21mx x=-有正整数解,则整数m的值是()A. 3B. 5C. 3或5D. 3或411.如图,A,B是双曲线kyx=上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为C,若△ODC的面积为1,D为OB的中点,则k的值为()A.34B. 2C. 4D. 812.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为12x=,且经过点(2,0). 下列说法:①abc<0;②-2b+c=0;③4a+2b+c<0;④若15()2y-,,25()2y,是抛物线上的两点,则y1<y2;⑤14b>m(am+b) (其中m ≠12).其中说法正确的是( )A. ①②④⑤B. ①②④C. ①④⑤D. ③④⑤二、填空题(每小题3分,共24分)13.一周时间有604800秒,604800用科学记数法表示为______.14.如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件____,使四边形ABCD 是平行四边形(填一个即可).15.在函数21y x =-中,自变量x 的取值范围是_______. 16.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是____元. 17.将抛物线y =(x -1)2-5关于y 轴对称,再向右平移3个单位长度后顶点的坐标是_____.18.如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是___个.19.5O 中,弦AB 垂直于弦CD ,垂足为P ,AB=CD=4,则S △ACP =______.20.正方形ABCD 中,点E 在边AD 上,点F 在边CD 上,若∠BEF=∠EBC ,AB=3AE ,则下列结论:①DF=FC ;②AE+DF=EF ;③∠BFE=∠BFC ;④∠ABE+∠CBF=45°;⑤∠DEF+∠CBF=∠BFC ;⑥ DF:DE:EF=3:4:5;⑦ BF:EF=35.其中结论正确的序号有_____.三、解答题(共60分)21.先化简,再求值:2221699332x x xx x x x++--÷-+其中x=1-2tan45°.22.已知抛物线y=a(x-2)2+c经过点A(-2,0)和点C(0,94),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.23.等腰三角形ABC中,AB=AC=4,∠BAC=45º,以AC为腰作等腰直角三角形ACD,∠CAD为90º,请画出图形,并直接写出点B到CD的距离.24.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.25.A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市路程之和是460千米.26.∆ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180º.(1)如图①,求证AD+BC=BE ;(2)如图②、图③,请分别写出线段AD ,BC ,BE 之间的数量关系,不需要证明; (3)若BE ⊥BC ,tan ∠BCD=34,CD=10,则AD=______. 27.某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40 000元购进A 型号电脑的数量与用30 000元购进B 型号电脑的数量相同,请解答下列问题: (1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2 500元,每台B 型号电脑售价为1 800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36 000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.28.如图,在平面直角坐标系中,四边形OABC 的边OC 在x 轴上,OA 在y 轴上.O 为坐标原点,AB//OC ,线段OA ,AB 的长分别是方程x 2-9x +20=0的两个根(OA<AB ), tan ∠OCB=43.(1)求点B ,C 的坐标;(2)P 为OA 上一点,Q 为OC 上一点,OQ=5,将∆POQ 翻折,使点O 落在AB 上的点O '处,双曲线k y x=的一个分支过点O '.求k 的值;(3)在(2)的条件下,M 为坐标轴上一点,在平面内是否存在点N ,使以O ',Q ,M ,N 为顶点四边形为矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.参考答案1.B2.D3.A4.B5.C6.B7.C8.C9.D10.D11.D12.A13.56.04810⨯14.AD=BC(答案不唯一)15.12 x>16.8017.(2,-5)18.9219.12或32或9220.①②③④⑤⑥⑦.21.解:2221699 332x x xx x x x++--÷-+=21(3)23(3)(3)(3)x xx x x x x+-⨯-++-=12 33x x---=12+33x x --=33x -,当x=1-2tan45°=-1时,原式=34.22.(1)将点A(-2,0),C(0,94)代入y = a(x - 2)2 + c,得:160944a ca c+=⎧⎪⎨+=⎪⎩,解得:3163ac⎧=-⎪⎨⎪=⎩.∴抛物线的解析式为y=316-(x-2)2+3 .∴顶点D的坐标为(2,3).(2)∵A,B两点为抛物线与x轴两交点,D为坐标顶点,∴DA=DB,故∠DAB=∠DBA,∵DE=EF,∴∠EDF=∠EFD.∵∠EFD=∠FEB+∠EBD,∠DEF=∠DAB,∴∠EDF=∠FEB+∠DEF,∴∠BDE=∠BED,故BD=BE.∵A(-2,0),D(2,3),∴利用对称性可得B(6,0),经计算BD=5,故BE=5.23.本题有两种情况:(1)如图,∵ACD △是等腰直角三角形,90CAD ∠=︒, ∴45ACD ∠=︒, ∵45BAC ∠=︒, ∴//AB CD ,∴点B 到CD 的距离等于点A 到CD 的距离, 过点A 作AE CD ⊥, ∵4AB AC ==, ∴222AE ==, ∴点B 到CD 的距离为22; (2)如图:∵ACD △是等腰直角三角形,90CAD ∠=︒, ∴45ACD ∠=︒, ∵45BAC ∠=︒, ∴90AEC ∠=︒,∴点B 到CD 的距离即BE 的长, ∵4AB AC ==,∴222AE ==, ∴422BE AB AE =-=-,即点B 到CD 的距离为422-. 24.(1)本次接受问卷调查的学生有:3636%100÷=(名), 故答案为100;(2)喜爱C 的有:10082036630----=(人), 补全的条形统计图如右图所示;(3)扇形统计图中B 类节目对应扇形的圆心角的度数为:2036072100︒︒⨯=, 故答案为72︒; (4)82000160100⨯=(人), 答:该校最喜爱新闻节目的学生有160人.25.(1)由图象可知甲车在8t =时行驶到C 市,此时行驶的路程为480km ,故速度为48060km/h 8=, ∴乙车的行驶速度为:602080km/h +=, ∴乙车由C 市到A 市需行驶4806h 80=, ∴图中括号内的数为4610+=, 故答案为:60,10;(2)设线段MN 所在直线的解析式为 y = kt + b ( k ≠ 0 ) .把点M (4,0),N (10,480)代入y = kt + b ,得:4010480k b k b +=⎧⎨+=⎩,解得:80320k b =⎧⎨=-⎩,∴线段MN 所在直线的函数解析式为y = 80t -320.(3)若在乙车出发之前,即4t <时,则48060460t -=,解得13t =; 若乙车出发了且甲车未到C 市时,即48t <<时,则()48060804460t t -+-=,解得17t =(舍); 若乙车出发了且甲车已到C 市时,即8t >时,则()60480804460t t -+-=,解得9t =; 综上,甲车出发13小时或9小时时,两车距C 市的路程之和是460千米. 26.(1)证明:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD ,∵∠E=∠BDC ,AE=CD ,∴△EAB ≌△DCB ,∴BE=BD , AB=BC ,∴AD+BC=AD+AB=BD=BE.(2)图②结论:BC -AD = BE ,证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD ,∵∠E=∠BDC ,AE=CD ,∴△EAB ≌△DCB ,∴BE=BD , AB=BC ,∴BA -AD=BC -AD= BE ,即BC -AD=BE图③结论:AD -BC = BE.证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD ,∵∠E=∠BDC ,AE=CD ,∴△EAB ≌△DCB ,∴BE=BD , AB=BC ,∴AD -AB=AD -BC= BD=BE ,即AD -AB=BE(3)如图②所示,作DG BC ⊥于G由(2)知△EAB ≌△DCB ,∴EBA ABC ∠=∠∵BE BC ⊥∴45EBA ABC ︒∠=∠=在Rt DCG 中,CD=10,3tan 4DG BCD GC ∠==,∴6,8,14DG GC BC === 在Rt BDG 中,6BG DG ==,62BD =∴1462AD AB BD BC BD =-=-=-如图③所示,作DH BC ⊥于H由(2)知△EAB ≌△DCB ,∴DBC EBA ∴DBE CBA HBD ∠=∠=∠∵BE BC ⊥∴45HBD DBE ︒∠=∠=在Rt DCH 中,CD=10,3tan 4DH BCD HC ∠==,∴6,8DH HC == 在Rt BDH 中,6BH DH ==,62BD = ∴8662262AD AB BD BC BD =+=+=-+=+综上所述:AD 的长度为14-2或 227.(1)设每台A 型号电脑进价为a 元.,则每台B 型号电脑进价为()500a -元, 由题意,得4000030000500a a =-,解得:a =2000, 经检验a =2000是原方程的解,且符合题意,2000-500=1500(元).答:每台A 型号电脑进价为2000元,每台B 型号电脑进价为1500元. (2)由题意,得 y =(2500-2000)x +(1800-1500)(20-x )=200x +6000,∵()20001500203600010x x x +-≤⎧⎪⎨≥⎪⎩,解得1012x ≤≤, ∵x 是整数,∴x =10,11,12,∴有三种方案.(3)∵利润2006000y x =+,随x 的增大而增大,∴当12x =时可获得最大利润,最大利润为2001260008400⨯+=(元),若要使捐赠A ,B 型号电脑总数尽可能多,则优先购买B 型号电脑,可购买5台, 所以捐赠A ,B 型号电脑总数最多5台.28.(1)解方程:x 2-9x +20=0,得x 1=4, x 2=5,∵OA <AB ,∴OA =4, AB =5,过点B 作BD ⊥OC 于点D ,∵tan ∠OCB =43,BD =OA =4,OD =AB =5, ∴CD =3,∴OC =8,∴点B 的坐标为(5,4),点C 的坐标为(8,0);(2)∵AB //OC , OQ =AB =5,∠AOQ =90º,∴四边形AOQB 为矩形,∴BQ =OA =4,由翻折,得OQ =O Q '=5,∴O B '=,∴A O '=2,∴O '(2, 4),∴248k =⨯=;(3)存在.①以O ',Q 为边时,点M 的坐标为50,2M ⎛⎫ ⎪⎝⎭或10,03M ⎛⎫- ⎪⎝⎭或150,4M ⎛⎫- ⎪⎝⎭,当点M 的坐标为50,2M ⎛⎫ ⎪⎝⎭时,点N 的坐标为13(3)2N -,;当点M 的坐标为10,03M ⎛⎫- ⎪⎝⎭时,点N 的坐标为21(4)3N --,;当点M 的坐标为150,4M ⎛⎫-⎪⎝⎭时,点N 的坐标为31(3)4N -,; ②以O ',Q 为对角线时,点M 的坐标为()2,0M ,此时点N 的坐标为4(5)N ,4,综上所述,点N 的坐标为:13(3)2N -,,21(4)3N --,,31(3)4N -,,4(5)N ,4.。

黑龙江省鸡西市2020版中考数学试卷C卷

黑龙江省鸡西市2020版中考数学试卷C卷

黑龙江省鸡西市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·西城期末) 有理数a,b在数轴上的对应点的位置如图所示,则下列式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a-b>a+b。

A . ①②B . ①④C . ②③D . ③④2. (2分)下列运算正确的是()A . (ab)3=a3bB .C . a6÷a2=a3D . (a+b)2=a2+b23. (2分) (2018八上·天台月考) 医学研究发现一种新病毒的直径约为0.000043毫米,这个数用科学记数法表示为()A . 0.43×10-4B . 0.43×104C . 4.3×10-5D . 4.3×1054. (2分)某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A . 0B .C .D . 15. (2分) (2019七上·咸阳月考) 下面几何体的表面不能展开成平面的是()A . 正方体B . 圆柱C . 圆锥D . 球6. (2分)(2017·龙华模拟) 据报道,深圳今年4 月2 日至4 月8 日每天的最高气温变化如图所示.则关于这七天的最高气温的数据,下列判断中错误的是()A . 平均数是26B . 众数是26C . 中位数是27D . 方差是7. (2分)(2017·罗平模拟) 在同一平面直角坐标系中,函数y=2x+a与y= (a≠0)的图象可能是()A .B .C .D .8. (2分) (2019八下·新密期中) 下列四幅图片,是中心对称图形的是()A .B .C .D .9. (2分)如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE ∥BC,下列结论中,一定正确的个数是()①△BDF是等腰三角形;②DE=BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.A . 1个B . 2个C . 3个D . 4个10. (2分)(2017·泾川模拟) 如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A . πB . πC . πD . π二、填空题 (共6题;共6分)11. (1分)因式分解x3+2x2y+xy2=________.12. (1分) (2018九上·和平期末) 三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是________.13. (1分)免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的某种土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:质量(克/袋)销售价(元/袋)包装成本费用(元/袋)甲400 4.80.5乙300 3.60.4丙200 2.50.3春节期间,这三种不同包装的土特产都销售了12000千克,那么本次销售中,这三种包装的土特产获得利润最大的是________。

2020年黑龙江省牡丹江市中考数学试卷(有详细解析)

2020年黑龙江省牡丹江市中考数学试卷(有详细解析)

2020年黑龙江省牡丹江市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共36.0分)1.下列运算正确的是()A. a2⋅a5=a10B. (a−2)2=a2−4C. a6÷a2=a3D. (−a2)4=a82.下列图形是中心对称图形的是()A. B. C. D.3.在函数y=√x−3中,自变量x的取值范围是()A. x>0B. x≥0C. x>3D. x≥34.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是()A. 6B. 5C. 4D. 35.在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()A. 14B. 23C. 13D. 3166.如图,四边形ABCD内接于⊙O,连接BD.若AC⏜=BC⏜,∠BDC=50°,则∠ADC的度数是()A. 125°B. 130°C. 135°D. 140°7.一列数1,5,11,19…按此规律排列,第7个数是()A. 37B. 41C. 55D. 718.如图,点A在反比例函数y1=18x(x>0)的图象上,过点A作AB⊥x轴,垂足为B,交反比例函数y2=6x(x>0)的图象于点C.P为y轴上一点,连接PA,PC.则△APC的面积为()A. 5B. 6C. 11D. 129.若关于x的方程mx+1−2x=0的解为正数,则m的取值范围是()A. m<2B. m<2且m≠0C. m>2D. m>2且m≠410. 如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,AD//x 轴且AD =4,∠A =60°,将菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C的对应点的坐标是( )A. (0,2√3)B. (2,−4)C. (2√3,0)D. (0,2√3)或(0,−2√3)11. 如图,在矩形ABCD 中,AB =3,BC =10,点E 在BC 边上,DF ⊥AE ,垂足为F.若DF =6,则线段EF的长为( )A. 2B. 3C. 4D. 512. 如图,抛物线y =ax 2+bx +c 与x 轴正半轴交于A ,B 两点,与y 轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是( )①abc >0;②4a +b >0;③M(x 1,y 1)与N(x 2,y 2)是抛物线上两点,若0<x 1<x 2,则y 1>y 2;④若抛物线的对称轴是直线x =3,m 为任意实数,则a(m −3)(m +3)≤b(3−m);⑤若AB ≥3,则4b +3c >0.A. 5B. 4C. 3D. 2二、填空题(本大题共8小题,共24.0分)13. 新冠肺炎疫情期间,全国各地约42000名医护人员驰援湖北.请将数42000用科学记数法表示为______.14. 如图,在四边形ABCD 中,连接AC ,∠ACB =∠CAD.请你添加一个条件______,使AB =CD.(填一种情况即可)15. 若一组数据21,14,x ,y ,9的众数和中位数分别是21和15,则这组数据的平均数为______.16. 某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打______折.17. AB 是⊙O 的弦,OM ⊥AB ,垂足为M ,连接OA.若△AOM 中有一个角是30°,OM =2√3,则弦AB 的长为______.18. 将抛物线y =ax 2+bx −1向上平移3个单位长度后,经过点(−2,5),则8a −4b −11的值是______.19. 如图,在Rt △ABC 中,∠C =90°,点E 在AC 边上.将∠A 沿直线BE 翻折,点A 落在点A′处,连接A′B ,交AC 于点F.若A′E ⊥AE ,cosA =45,则A′FBF =______.20. 如图,在Rt △ABC 中,CA =CB ,M 是AB 的中点,点D 在BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为E ,F ,连接EM.则下列结论中:①BF =CE ;②∠AEM=∠DEM;③AE−CE=√2ME;④DE2+DF2=2DM2;⑤若AE平分∠BAC,则EF:BF=√2:1;⑥CF⋅DM=BM⋅DE,正确的有______.(只填序号)三、解答题(本大题共8小题,共60.0分)21.先化简,再求值:(1−4x2)÷x2−2xx2,其中x=−tan45°.22.如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为P.已知B(1,0),C(0,−3).请解答下列问题:(1)求抛物线的解析式,并直接写出点P的坐标;(2)抛物线的对称轴与x轴交于点E,连接AP,AP的垂直平分线交直线PE于点M,则线段EM的长为______.注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=−b2a ,顶点坐标是(−b2a,4ac−b24a).23.在△ABC中,AB=AC,BC=6,S△ABC=6.以BC为边作周长为18的矩形BCDE,M,N分别为AC,CD的中点,连接MN.请你画出图形,并直接写出线段MN的长.24.某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表项目人数A排球6B篮球mC毽球10D羽毛球4E跳绳18(1)本次抽样调查的学生有______人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?25.在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是______千米1时,B,C两地的路程为______千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.26.在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF//BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=______.27.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?28.如图,已知直线AB与x轴交于点A,与y轴交于点B,线段OA的长是方程x2−7x−OA.请解答下列问题:18=0的一个根,OB=12(1)求点A,B的坐标;(2)直线EF交x轴负半轴于点E,交y轴正半轴于点F,交直线AB于点C.若C是EF的中点,OE=6,反比例函数y=k图象的一支经过点C,求k的值;x(3)在(2)的条件下,过点C作CD⊥OE,垂足为D,点M在直线AB上,点N在直线CD上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.答案和解析1.D解:A、a2⋅a5=a7,故选项错误;B、(a−2)2=a2−4a+4,故选项错误;C、a6÷a2=a4,故选项错误;D、(−a2)4=a8,故选项正确;2.C解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不合题意;.3.D解:由题意得,x−3≥0,解得x≥3.4.D解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.5.C解:用列表法表示所有可能出现的结果情况如下:共有12种可能出现的结果,其中“和为5”的有4种,∴P(和为5)=412=13.6.B解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵AC⏜=BC⏜,∴∠BOC=∠AOC=100°,∴∠ABC =12∠AOC =50°,∴∠ADC =180°−∠ABC =130°.7. C解:1=1×2−1,5=2×3−1,11=3×4−1,19=4×5−1,…第n 个数为n(n +1)−1,则第7个数是:55.8. B解:连接OA 和OC ,∵点P 在y 轴上,则△AOC 和△APC 面积相等,∵A 在y 1=18x 上,C 在y 2=6x 上,AB ⊥x 轴, ∴S △AOC =S △OAB −S △OBC =6,∴△APC 的面积为6,9. C解:∵解方程m x+1−2x =0,去分母得:mx −2(x +1)=0,整理得:(m −2)x =2,∵方程有解,∴x =2m−2,∵分式方程的解为正数,∴2m−2>0, 解得:m >2, 而x ≠−1且x ≠0,则2m−2≠−1,2m−2≠0,解得:m ≠0,综上:m的取值范围是:m>2.10.D解:根据菱形的对称性可得:当点D在x轴上时,A、B、C均在坐标轴上,如图,∵∠BAD=60°,AD=4,∴∠OAD=30°,∴OD=2,∴AO=√42−22=2√3=OC,∴点C的坐标为(0,−2√3),同理:当点C旋转到y轴正半轴时,点C的坐标为(0,2√3),∴点C的坐标为(0,2√3)或(0,−2√3),11.B解:∵四边形ABCD为矩形,∴AB=CD=3,BC=AD=10,AD//BC,∴∠AEB=∠DAF,∴△AFD∽△EBA,∴AFBE =ADAE=DFAB,∵DF=6,∴AF=√102−62=8,∴8BE =10AE=63,∴AE=5,∴EF=AF−AE=8−5=3.12.B解:如图,抛物线开口向下,与y轴交于负半轴,对称轴在y轴右侧,∴a<0,c<0,−b2a>0,∴b>0,∴abc>0,故①正确;如图,∵抛物线过点B(4,0),点A在x轴正半轴,∴对称轴在直线x=2右侧,即− b2a>2,∴2+b2a =4a+b2a<0,又a<0,∴4a+b>0,故②正确;∵M(x1,y1)与N(x2,y2)是抛物线上两点,0<x1<x2,可得:抛物线y=ax2+bx+c在0< x<−b2a上,y随x的增大而增大,在x>−b2a上,y随x的增大而减小,∴y1>y2不一定成立,故③错误;若抛物线对称轴为直线x=3,则− b2a=3,即b=−6a,则a(m−3)(m+3)−b(3−m)=a(m−3)2≤0,∴a(m−3)(m+3)≤b(3−m),故④正确;∵AB≥3,则点A的横坐标大于0或小于等于1,当x=1时,代入,y=a+b+c≥0,当x=4时,16a+4b+c=0,∴a=4b+c−16,则4b+c−16+b+c≥0,整理得:4b+5c≥0,则4b+3c≥−2c,又c<0,−2c>0,∴4b+3c>0,故⑤正确,故正确的有4个.13.4.2×104解:42000=4.2×104,14.AD=BC解:添加的条件:AD=BC,理由是:∵∠ACB=∠CAD,∴AD//BC,∵AD=BC,∴四边形ABCD是平行四边形,∴AB=CD.15.16解:∵一组数据21,14,x,y,9的中位数是15,∴x、y中必有一个数是15,又∵一组数据21,14,x,y,9的众数是21,∴x、y中必有一个数是21,∴x、y所表示的数为15和21,∴x−=21+14+15+21+95=16,16.8解:设商店打x折,依题意,得:180×x10−120=120×20%,解得:x=8.17.12或4解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=OMAM =2√3AM=√33,∴AM=6,∴AB=2AM=12;若∠AOM=30°,则tan∠AOM=AMOM =2√3=√33,∴AM=2,∴AB=2AM=4.18.−5解:将抛物线y=ax2+bx−1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(−2,5),代入得:4a−2b=3,则8a−4b−11=2(4a−2b)−11=2×3−11=−5,19.13解:∵∠C=90°,cosA=45,∴ACAB =45,设AC=4x,AB=5x,则BC=3x,∵AE⊥AE′,∴∠AEA′=90°,A′E//BC,由于折叠,∴∠A′EB=∠AEB=(360−90)÷2=135°,且△A′EF∽△BCF,∴∠BEC=45°,即△BCE为等腰直角三角形,∴EC=3x,∴AE=AC−EC=x=A′E,∴A′EBC =A′FBF=x3x=13,20.①②③④⑤⑥解:∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,又∵∠BFD=90°=∠AEC,AC=BC,∴△BCF≌△CAE(AAS),∴BF=CE,故①正确;由全等可得:AE=CF,BF=CE,∴AE−CE=CF=CE=EF,连接FM,CM,∵点M是AB中点,∴CM=12AB=BM=AM,CM⊥AB,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,又BM=CM,BF=CE,∴△BFM≌△CEM(SAS),∴FM=EM,∠BMF=∠CME,∵∠BMC=90°,∴∠EMF=90°,即△EMF为等腰直角三角形,∴EF=√2EM=AE−CE,故③正确,∠MEF=∠MFE=45°,∵∠AEC=90°,∴∠MEF=∠AEM=45°,故②正确,设AE与CM交于点N,连接DN,∵∠DMF=∠NME,FM=EM,∠DFM=∠DEM=∠AEM=45°,∴△DFM≌△NEM(ASA),∴DF=EN,DM=MN,∴△DMN为等腰直角三角形,∴DN=√2DM,而∠DEA=90°,∴DE2+DF2=DN2=2DM2,故④正确;∵AC=BC,∠ACB=90°,∴∠CAB=45°,∵AE平分∠BAC,∴∠DAE=∠CAE=22.5°,∠ADE=67.5°,∵∠DEM=45°,∴∠EMD=67.5°,即DE=EM,∵AE=AE,∠AED=∠AEC,∠DAE=∠CAE,∴△ADE≌△ACE(ASA),∴DE=CE,∵△MEF为等腰直角三角形,∴EF=√2EM,∴EFBF =EFCE=EFDE=√2EMDE=√2,故⑤正确;∵∠CDM=∠ADE,∠CMD=∠AED=90°,∴△CDM∽ADE,∴CDAD =CMAE=DMDE,∵BM=CM,AE=CF,∴BMCF =DMDE,∴CF⋅DM=BM⋅DE,故⑥正确;故答案为:①②③④⑤⑥.21.解:(1−4x2)÷x2−2xx2=x2−4x2⋅x2 x(x−2)=(x+2)(x−2)x(x−2)=x+2x,当x=−tan45°=−1时,原式=−1+2−1=−1.22.32解:(1)∵抛物线经过,代入得:{0=1+b +c −3=c, 解得:{b =2c =−3, ∴抛物线表达式为:y =x 2+2x −3=(x +1)2−4,∴顶点P 的坐标为(−1,−4);(2)∵直线PE 为抛物线对称轴,∴E(−1,0),∵B(1,0),∴A(−3,0), ∴AP =√(−2)2+(−4)2=2√5, ∵MN 垂直平分AP ,∴AN =NP =√5,∠PNM =90°,∵∠APE =∠MPN ,∴△PMN∽△PAE ,∴PMPA =PNPE =MN AE,即PM 2√5=√54=MN 2, 解得:PM =52,∴EM =PE −PM =4−52=32,23. 解:∵BC =6,S △ABC =6,∴△ABC 中BC 边上的高为6×2÷6=2,而矩形的周长为18,BC =6,∴BE =CD =18÷2−6=3,当矩形BCDE 和△ABC 在BC 同侧时,过A 作AF ⊥BC ,垂足为F ,与ED 交于G ,连接AD ,可知AF =2,DG =12BC =3,∴AG =GF −AF =3−2=1,∴AD =√32+12=√10,∵M ,N 分别为AC 和CD 中点,∴MN =12AD =√102; 当矩形BCDE 和△ABC 在BC 异侧时,过A 作AF ⊥ED ,垂足为F ,与BC 交于G ,连接AD ,可知BG =CG ,AG =2,GF =3,F 为ED 中点,∴AF =5,DF =3, ∴AD =√52+32=√34,∵M ,N 分别为AC 和CD 中点,∴MN =12AD =√342,综上:MN 的长为√102或√342.24. 50解:(1)6÷12%=50(人),m =50−18−4−10−6=12(人),故答案为:50;补全条形统计图如图所示:(2)360°×1050=72°,答:喜欢“毽球”所在的圆心角的度数为72°;(3)1800×1850=648(人),答:全校1800名学生中喜欢跳绳活动的有648人.25. 60 360解:(1)由题意可得:F(10,600),∴甲车的行驶速度是:600÷10=60千米/时,M 的纵坐标为360,∴B ,C 两地之间的距离为360千米,故答案为:60;360;(2)∵甲车比乙车晚1.5小时到达C 地,∴点E(8.5,0),乙的速度为360×2÷(10−0.5−1.5)=90千米/小时,则360÷90=4,∴M(4,360),N(4.5,360),设NE 表达式为y =kx +b ,将N 和E 代入,{0=8.5k +b 360=4.5k +b ,解得:{ k =−90b =765, ∴y(千米)与x(小时)之间的函数关系式为:;(3)设出发x 小时,行驶中的两车之间的路程是15千米,①在乙车到B 地之前时,600−S 甲−S 乙=15,即600−60x −90x =15,解得:x =3910,②∵(600−360)÷60=4小时,360÷90=4小时,∴甲乙同时到达B 地,当乙在B 地停留时,15÷60+4=174小时;③当乙车从B 地开始往回走,追上甲车之前,15÷(90−60)+4.5=5小时;④当乙车追上甲车并超过15km 时,(30+15)÷(90−60)+4.5=6小时;⑤当乙车回到C 地时,甲车距离C 地15千米时,(600−15)÷60=394小时.综上:行驶中的两车之间的路程是15千米时,出发时间为3910小时或174小时或5小时或6小时或394小时.26. 18或6解:(1)如图①,延长CD ,FE 交于点M .∵AB =BC ,EF//BC ,∴∠A =∠BCA =∠EFA ,∴AE =EF ,∴MF//BC ,∴∠MED =∠B ,∠M =∠BCD ,又∵∠FCM =∠BCM ,∴∠M =∠FCM ,∴CF =MF ,又∵BD =DE ,∴△MED≌△CBD(AAS),∴ME =BC ,∴CF=MF=ME+EF=BC+AE,即AE+BC=CF;(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,BC=AE+CF,如图②,延长CD,EF交于点M.由①同理可证△MED≌△CBD(AAS),∴ME=BC,由①证明过程同理可得出MF=CF,AE=EF,∴BC=ME=EF+MF=AE+CF;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,AE=CF+BC.如图③,延长CD交EF于点M,由上述证明过程易得△MED≌△CBD(AAS),BC=EM,CF=FM,又∵AB=BC,∴∠ACB=∠CAB=∠FAE,∵EF//BC,∴∠F=∠FCB,∴EF=AE,∴AE=FE=FM+ME=CF+BC;(3)CF=18或6,当DE=2AE=6时,图①中,由(1)得:AE=3,BC=AB=BD+DE+AE=15,∴CF=AE+BC=3+15=18;图②中,由(2)得:AE=AD=3,BC=AB=BD+AD=9,∴CF =BC −AE =9−3=6;图③中,DE 小于AE ,故不存在.故答案为18或6.27. 解:(1)设每个A 种书包的进价为x 元,则每个B 种书包的进价为(x +20)元, 依题意,得:700x =2×450x+20,解得:x =70,经检验,x =70是原方程的解,且符合题意,∴x +20=90.答:每个A 种书包的进价为70元,每个B 种书包的进价为90元.(2)设该商场购进m 个A 种书包,则购进(2m +5)个B 种书包,依题意,得:{m ≥1870m +90(2m +5)≤5450, 解得:18≤m ≤20.又∵m 为正整数,∴m 可以为18,19,20,∴该商场有3种进货方案,方案1:购买18个A 种书包,41个B 种书包;方案2:购买19个A 种书包,43个B 种书包;方案3:购买20个A 种书包,45个B 种书包.(3)设销售利润为w 元,则w =(90−70)m +(130−90)(2m +5)=100m +200. ∵k =100>0,∴w 随m 的增大而增大,∴当m =20时,w 取得最大值,此时2m +5=45.设赠送的书包中B 种书包有a 个,样品中B 种书包有b 个,则赠送的书包中A 种书包有(5−a)个,样品中A 种书包有(4−b)个,依题意,得:90×[20−(5−a)−(4−b)]+0.5×90(4−b)+130(45−a −b)+0.5×130b −70×20−90×45=1370,∴b =10−2a .∵a ,b ,(5−a),(4−b)均为正整数,∴{a =4b =2. 答:赠送的书包中B 种书包有4个,样品中B 种书包有2个.28. 解:(1)∵线段的长是方程的一个根,解得:x =9或−2(舍),而点A 在x 轴正半轴,∴A(9,0),∵OB =12OA , ∴B(0,92),(2)∵OE =6,∴E(−6,0),设直线AB 的表达式为y =kx +b ,将点A 和B 的坐标代入,得:{0=9k +b 92=b ,解得:{ k =−12b =92, ∴AB 的表达式为:y =−12x +92,∵点C 是EF 的中点,∴点C 的横坐标为−3,代入AB 中,y =6,则C(−3,6),∵反比例函数y =k x 经过点C ,则k =−3×6=−18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形, 如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y =x +3上,联立:{ y =x +3y =−12x +92, 解得:{x =1y =4, ∴M(1,4),∴P 3(1,0),同理可得:P 2(9,−12),P 4(−7,4),P 5(−15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形, 点P 的坐标为P 1(9,12),P 2(9,−12),P 3(1,0),P 4(−7,4),P 5(−15,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牡丹江、鸡西地区朝鲜族学校2020年初中毕业学业考试数学试卷注意事项: 1. 考试时间是120分钟。

2. 总共3个大题,总分120分。

题号 一 二 三 总分 核分人分数一、选择题(每小题 3分,共 36分。

)1、下列图形中,既是轴对称图形,又是中心对称图形的个数有 ( )2、下列运算正确的是( )A. (a +b )(a -2b )=a 2-2b 2B. 41)21(22-=-a aC. -2(3a -1)=-6a +1D. (a +3)(a -3)=a 2-93、如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是 ( )4、现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是 ( )本考场试卷序号 (由监考老师填写)A.1个B.2个C.3个D.4个1 2 11A .31B .94 C.53 D.32 5、一组数据4,4,x ,8,8有唯一的众数,则这组数据的平均数是 ( ) A .528 B .532或5 C .528或532 D .56、如图,在△ABC 中,sinB=31, tanC=2,AB=3,则AC 的长为 ( )A .2B .25 C .5D .27、如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径的2倍,则∠ASB 的度数是 ( )A .22.5ºB .30ºC .45ºD .60º8、若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( )A. 3B .3,-3C .3D .3,-39、如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23),将菱形绕点O 旋转,当点A 落在x 轴上时, 点C 的对应点的坐标为 ( ) A .(2,23)--或3,2)- B .(2,23) C .(2,23)-D .(2,3)--或(2,23)10、若关于x 的分式方程xmx =-12有正整数解,则整数m 的值是( ) A. 3B. 5C. 3或5D. 3或411、如图,A ,B 是双曲线xky =上的两个点,过点A 作 AC ⊥x 轴,交OB 于点D ,垂足为C ,若△ODC 的面ABC(第6题图)A BS(第7题图)y xAVB VCVOVyxA VOVCVBVD V(第9题图)积为1,D 为OB 的中点,则k 的值为 ( ) A.43 B .2 C .4 D .8(第11题图)12、如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴为12x =,且经过点(2,0). 下列说法:①abc<0;②-2b+c=0;③4a+2b+c<0; ④若15()2y -,,25()2y ,是抛物线上的两点,则y 1<y 2;⑤41b>m (am+b ) (其中m ≠21). 其中说法正确的是( ) A. ①②④⑤B. ①②④C. ①④⑤D. ③④⑤二、选择题:(每小题3分,共24分。

)13、一周时间有 604 800秒,604800用科学记数法表示为_________________. 14、如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的 情况下,请你添加一个条件__________________,使四边形 ABCD 是平行四边形(填一个即可). 15、在函数12-=x xy 中,自变量x 的取值范围是______________. 16、“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是__________元.17、将抛物线y =(x -1)2-5关于y 轴对称,再向右平移3个单位长度后顶点的坐标是______________.18、如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是___个。

19、在半径为5的⊙O 中,弦AB 垂直于弦CD ,垂足为P ,AB=CD=4,则S △ACP =__________.20、如图,正方形ABCD 中,点E 在边AD 上,点F 在边CD 上,若∠BEF=∠EBC ,AB=3AE ,数学试题 第3页(共12页) yxOx= 2 DAC21第1个图形第2个图形第3个图形第4个图形(第18题图)(第14题图)(第12题图)则下列结论:①DF=FC ;②AE+DF=EF ;③∠BFE=∠BFC ;④∠ABE+∠CBF=450; ⑤∠DEF+∠CBF=∠BFC ; ⑥ DF:DE:EF=3:4:5; ⑦ BF:EF =53:5.其中结论正确的序号有_____________.三、 解答题:(共60分。

)21、(本小题5分)先化简,再求值:xx x x x x x 2939631222-÷+++-- 其中x =1-2tan450.22、(本小题6分)已知抛物线y=a (x -2)2+c 经过点A (-2,0)和点C (0,49),与x 轴交于另一点B ,顶点为D.(1)求抛物线的解析式,并写出顶点D 的坐标;(2)如图,点E ,F 分别在线段AB ,BD 上(点E 不与点A ,B 重合),且∠DEF=∠DAB ,DE=EF ,直接写出线段BE 的长。

23、(本小题6分) 等腰三角形ABC 中,AB=AC=4,∠BAC=45º,以AC 为腰作等腰直角三角形ACD ,∠CAD 为90º,请画出图形,并直接写出点B 到CD 的距离。

xyAO EBFDC(第22题图)24、(本小题7分)为了解本校学生对新闻(A)、体育(B)、动画(C)、娱乐(D)、戏曲(E)五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查,并根据调查结果绘制了两幅不完整的统计图,请根据统计图解答下列问题:(1)本次接受问卷调查的学生有_______名; (2)补全条形统计图;(3)扇形统计图中,B 类节目所对应的扇形圆心角的度数为_______度; (4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生数.25、(本小题8分)A ,B 两城市之间有一条公路相连,公路中途穿过C 市,甲车从A 市到B市,乙车从C 市到A 市,甲车的速度比乙车的速度慢20千米/时,两车距离C 市的路程y (单位:千米)与驶的时间t (单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:A A E D CB 36%B C D E 010 20 30 40 人数820366(第24题图)(1)甲车的速度是________千米/时,在图中括号内填入正确的数;(2)求图象中线段MN 所在直线的函数解析式,不需要写出自变量的取值范围; (3)直接写出甲车出发后几小时,两车距C 市的路程之和是460千米.26、(本小题8分)∆ABC 中,点D 在直线AB 上.点E 在平面内,点F 在BC 的延长线上,∠E=∠BDC ,AE=CD ,∠EAB+∠DCF=180º; (1)如图①,求证AD+BC=BE ;(2)如图②、图③,请分别写出线段AD ,BC ,BE 之间的数量关系,不需要证明; (3)若BE ⊥BC ,tan ∠BCD=43,CD=10,则AD=__________.y /千米 O 48048( ) t /小时MEFND C ABFEDBC FAEABDCF图①图②图③(第26题图)数学试题 第5页(共12页)27、(本小题10分)某商场准备购进A、B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40 000元购进A型号电脑的数量与用30 000元购进B型号电脑的数量相同,请解答下列问题:(1)A,B型号电脑每台进价各是多少元?(2)若每台A型号电脑售价为2 500元,每台B型号电脑售价为1 800元,商场决定同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式,若商场用不超过36 000元购进A,B两种型号电脑,A型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,请直接写出捐赠A,B型号电脑总数最多是多少台.28、(本小题10分) 如图,在平面直角坐标系中,四边形OABC 的边OC 在x 轴上,OA在y 轴上.O 为坐标原点,AB//OC ,线段OA ,AB 的长分别是方程x 2-9x +20=0的两个根(OA<AB ), tan ∠OCB=34. (1)求点B ,C 的坐标;(2)P 为OA 上一点,Q 为OC 上一点,OQ=5,将∆POQ 翻折,使点O 落在AB 上的点O '处,双曲线xky =的一个分支过点O '.求k 的值; (3)在(2)的条件下,M 为坐标轴上一点,在平面内是否存在点N ,使以O ',Q ,M ,N 为顶点四边形为矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.OA xBC yO 'P Q(装订线内不要答题)牡丹江、鸡西地区朝鲜族学校2020年初中毕业学业考试数学试卷一、选择题(每小题3分,共36分.)1. B2. D3. A4. B5. C6. B7.C8. C9. D 10. D 11. D 12. A二、填空题(每小题3分,共24分.)13. 6.048×10514. AD=BC(等)15. 12x>16. 8017. (2,-5) 18. 92 19. 12或32或9220. ①②③④⑤⑥⑦三、解答题(共60分)(说明:解答方法不唯一,据实际情况,酌情给分)21.(本小题5分)解:原式=x-33,.................. .................................. ................... ......(3分)当x=1-2tan450=-1时,原式=43.........................................(5分)22.(本小题6分)解:(1)将点A(-2, 0),C(0,49)代入y = a(x - 2)2 + c,得:160944a ca c+=⎧⎪⎨+=⎪⎩,解得:3163ac⎧=-⎪⎨⎪=⎩.∴抛物线的解析式为y=163-(x-2)2+3. .................(3分)∴顶点D的坐标为(2,3)................................(4分)(2)BE=5 ................................(6分)23. (本小题6分)解:本题有两种情况:点B到CD的距离为22点B到CD的距离为4-22(每图正确得1分,每个答案正确得2分)DBACAB CD∵2000x +1500(20-x )≤36 000,∴x ≤12. 又 x ≥10,∴10≤x ≤12,∵x 是整数,∴x =10,11,12,∴有三种方案。

相关文档
最新文档