悬臂梁模态分析实验报告
悬臂梁的振动模态实验报告

实验 等截面悬臂梁模态测试实验一、 实验目的1. 熟悉模态分析原理;2. 掌握悬臂梁的测试过程。
二、 实验原理1. 模态分析基本原理理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。
简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。
这就是说梁可以用一种“模态模型”来描述其动态响应。
模态分析的实质,是一种坐标转换。
其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。
这一坐标系统的每一个基向量恰是振动系统的一个特征向量。
也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。
多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数H i (ω),从而得到频率响应函数矩阵中的一行频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。
2. 激励方法为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。
传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示在[]∑==Nr iN ri ri r H H H 121...[]Nr r r Nr rr r irk c j m ϕϕϕωωϕ (2112)∑=++-=[]{}[]Tr ir Nr r iN i i Y H H H ϕϕ∑==121...j点作用单位力时,在i点所引起的响应。
要得到i和j点之间的传递导纳,只要在j点加一个频率为ω的正弦的力信号激振,而在i点测量其引起的响应,就可得到计算传递函数曲线上的一个点。
如果ω是连续变化的,分别测得其相应的响应,就可以得到传递函数曲线。
根据模态分析的原理,我们要测得传递函数矩阵中的任一行或任一列,由此可采用不同的测试方法。
模态分析实验报告

《机械工程测试技术》综合实验报告实验项目名称:机械结构固有模态实验班级:机械32实验小组成员姓名(学号):张豪47 张唯48赵亮49 景世钊33王汝之42 朱金格28实验小组组长:张豪实验报告日期: 15/12/12实验目的:针对机械结构(简支梁、悬臂梁、圆盘)的固有模态进行分析,了解几种常用的结构动态特性激励方法,掌握机械结构固有模态的测试系统设计、测试系统搭建、数据采集及信号分析方法和技术。
实验原理:模态分析方法及其应用:模态分析方法是把复杂的实际结构简化成模态模型,来进行系统的参数识别(系统识别),从而大大地简化了系统的数学运算。
通过实验测得实际响应来寻示相应的模型或调整预想的模型参数,使其成为实际结构的最佳描述。
主要应用有:用于振动测量和结构动力学分析。
可测得比较精确的固有频率、模态振型、模态阻尼、模态质量和模态刚度。
可用模态实验结果去指导有限元理论模型的修正,使计算模型更趋完善和合理。
用来进行结构动力学修改、灵敏度分析和反问题的计算。
用来进行响应计算和载荷识别。
模态分析基本原理:工程实际中的振动系统都是连续弹性体,其质量与刚度具有分布的性质,只有掌握无限多个点,在每瞬时的运动情况,才能全面描述系统的振动。
因此,理论上它们都属于无限多自由度的系统,需要用连续模型才能加以描述。
但实际上不可能这样做,通常采用简化的方法,归结为有限个自由度的模型来进行分析,即将系统抽象为由一些集中质块和弹性元件组成的模型。
模态分析是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”,是一种参数识别的方法。
模态分析的实质,是一种坐标转换。
其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。
这一坐标系统的每一个基向量恰是振动系统的一个特征向量。
也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。
ansys实验报告

ansys实验报告ANSYS实验报告一、引言ANSYS是一款广泛应用于工程领域的有限元分析软件,它能够模拟和分析各种结构和物理现象。
本实验旨在通过使用ANSYS软件,对一个具体的工程问题进行模拟和分析,以探究其性能和行为。
二、实验目的本次实验的主要目的是通过ANSYS软件对一个简单的悬臂梁进行分析,研究其在不同加载条件下的应力和变形情况,并进一步了解悬臂梁的力学行为。
三、实验步骤1. 准备工作:安装并启动ANSYS软件,并导入悬臂梁的几何模型。
2. 材料定义:选择适当的材料,并设置其力学性质,如弹性模量和泊松比。
3. 约束条件:定义悬臂梁的边界条件,包括支撑点和加载点。
4. 加载条件:施加适当的力或压力到加载点,模拟实际工程中的加载情况。
5. 分析模型:选择适当的分析方法,如静力学分析或模态分析,对悬臂梁进行计算。
6. 结果分析:根据计算结果,分析悬臂梁在不同加载条件下的应力和变形情况,并进行比较和讨论。
四、实验结果经过计算和分析,我们得到了悬臂梁在不同加载条件下的应力和变形情况。
在静力学分析中,我们观察到加载点附近的应力集中现象,并且应力随着加载的增加而增大。
在模态分析中,我们研究了悬臂梁的固有频率和振型,并发现了一些共振现象。
五、讨论与分析根据实验结果,我们可以得出一些结论和讨论。
首先,悬臂梁在加载点附近容易发生应力集中,这可能导致结构的破坏和失效。
因此,在实际工程中,我们需要采取适当的措施来减轻应力集中的影响,如增加结构的刚度或改变加载方式。
其次,悬臂梁的固有频率和振型对结构的稳定性和动态响应有重要影响。
通过模态分析,我们可以确定悬臂梁的主要振动模态,并根据需要进行结构优化。
六、结论通过本次实验,我们成功地使用ANSYS软件对一个悬臂梁进行了模拟和分析。
通过对悬臂梁的应力和变形情况的研究,我们深入了解了悬臂梁的力学行为,并得出了一些有价值的结论和讨论。
在实际工程中,这些研究结果可以为设计和优化结构提供参考和指导。
悬臂梁模态分析实验报告

悬臂梁模态分析实验报告一、实验目的通过对悬臂梁进行模态分析实验,了解悬臂梁在不同振动模态下的固有频率和振型,并验证计算模态分析结果的准确性。
二、实验原理悬臂梁是一种常见的结构形式,其在振动过程中会出现不同的振动模态,每个振动模态对应一个固有频率和振型。
模态分析是通过实验或计算的方法,确定一个结构在振动中的固有频率和振型的过程。
在本实验中,我们选择一根长度为L的悬臂梁,将其固定在一个支撑架上。
在悬臂梁上施加一个外力,使梁发生振动。
利用振动传感器测量悬臂梁不同位置处的振动加速度,并通过信号处理来得到悬臂梁的模态信息。
三、实验器材和仪器1.悬臂梁:长度为L、直径为d的悬臂梁2.支撑架:用来支撑悬臂梁的架子3.外力施加装置:用来在悬臂梁上施加外力的装置4.振动传感器:用来测量悬臂梁不同位置的振动加速度5.信号处理器:用来对振动信号进行处理和分析的设备四、实验步骤1.将悬臂梁固定在支撑架上,并调整支撑架的角度和高度,使悬臂梁处于水平状态。
2.在悬臂梁上选择一个合适的位置,安装振动传感器,并将传感器连接到信号处理器上。
3.利用外力施加装置,在悬臂梁上施加一个单一方向的外力。
4.启动信号处理器,并进行振动信号的采集和处理。
5.分析处理后的振动信号数据,得到悬臂梁的固有频率和振型。
五、实验结果及讨论根据实验数据,我们得到了悬臂梁的固有频率和振型,并与理论计算值进行比较。
整个实验过程中,我们进行了多次实验,分别在不同的外力大小下进行了振动测试。
通过对比实验数据和计算结果,验证了模态分析方法的准确性。
六、实验结论通过模态分析实验,我们成功地确定了悬臂梁在不同振动模态下的固有频率和振型,并验证了计算模态分析结果的准确性。
这对于进一步研究和应用悬臂梁的振动特性具有重要的意义。
七、实验心得通过本次实验,我深刻了解了悬臂梁的振动特性和模态分析的原理和方法。
实验过程中,我学会了如何正确选择和安装振动传感器,以及如何对振动信号进行分析处理。
悬臂梁实验报告

悬臂梁实验报告实验目的本实验旨在通过对悬臂梁的实验研究,探究其在不同条件下的变形和破坏情况,了解悬臂梁的受力特性以及工程中的应用。
实验原理悬臂梁是一种常见的结构形式,其上部只有一个端点支撑,另一端悬挑出来。
在实验中,我们通过在悬臂梁上加载,观察悬臂梁的变形和破坏情况,从而探究其受力特性。
悬臂梁的受力分析可以基于弹性力学的理论进行,根据悬臂梁的几何形状和材料特性,可以通过静力学的原理计算出悬臂梁在不同位置的应力和位移。
在实验中,我们使用悬臂梁测力传感器,可以实时监测悬臂梁上的应力和变形情况。
实验装置与步骤实验装置包括悬臂梁、加载装置和测量仪器等。
具体的实验步骤如下:1.调整加载装置使其稳固地连接到悬臂梁上;2.使用测力传感器测量悬臂梁的初始载荷;3.逐步增加载荷,记录悬臂梁的变形情况;4.当载荷接近悬臂梁的破坏载荷时,停止加载,并记录破坏载荷;5.对实验数据进行处理和分析。
结果与讨论在实验中,我们记录了不同载荷下悬臂梁的变形情况,得出如下结果:载荷(N)变形(mm)100 0.2200 0.6300 1.2400 2.0500 3.0600 4.5从实验数据可以看出,随着载荷的增加,悬臂梁的变形也逐渐增大。
在低载荷下,悬臂梁的变形比较小,呈线性关系。
随着载荷的增加到一定程度,悬臂梁的变形开始非线性增加,并且出现明显的弯曲变形。
当载荷达到约600N时,悬臂梁发生破坏。
在破坏前,悬臂梁表现出明显的弯曲变形,并且载荷与变形呈现非线性关系。
破坏时,悬臂梁发生断裂,载荷突然下降。
通过对实验数据的分析,我们可以得出悬臂梁的一些特性。
首先,悬臂梁的承载能力随着载荷的增加而增加。
其次,随着载荷的增大,悬臂梁的变形逐渐增大,并呈现出非线性的关系。
最后,悬臂梁在破坏前会发生明显的弯曲变形,载荷与变形呈现非线性关系。
结论本实验通过对悬臂梁的实验研究,得出了一系列结论。
悬臂梁在受力时会发生变形,随着载荷的增加,悬臂梁的变形逐渐增大。
悬臂梁实验报告

实验报告悬臂梁的模态实验姓名: xxx学号: xxx专业: xxx系别: xxx一、试验装置二、实验原理本实验采用锤击法测定悬臂梁的频响函数,将第S 点沿坐标X S 方向作用的锤击力和第r 点沿X r 方向的响应分别由相应的传感器转换为电信号,在由动态分析仪,按照随机振动理论,运算得出r,s 两点间的频响函数rs H ~,∑=+-==ni i i i k i s i r s r rs i k F X H 12)()()(0)21(~~λζλϕϕ (1) 又由于响应信号是加速度,同时圆频率为ω,位移函数,sin t X x ω=其加速度为,sin 22x t X a ωωω-=-=用复数表示后,参照(1)可得到加速度频响函数为:∑=+--=-=ni i i i k i s i r s r a rs i kF X H 12)()()(202)21(~~λζλϕϕωω (2) 由公式(2)可知,当k ωω=时,1=k λ,此时式(2)可近似写为:,22)(~)()()()()()(2kk k s k r k k k sk r k k a rs m i k i H ζϕϕζϕϕωωω-=-== (3) 它对应频响函数a rs H ~的幅频曲线的第k 个峰值,其中在上面(3),k m kk k 2()(ω)式中=为各阶主质量...n k ,3,2,1=。
改变s 点的位置,在不同点激振,可以得到不同点与点r之间的频响函数,当s=r 时,就可得到点r 处的原点频响函数,表示为:∑=+--=ni i i i i i r i r a rr i k H 12)()()(2)21(~λζλϕϕω (4) 它的第k 个峰值为:,2)(~)()()(2kk k r k r k k a rr k i H ζϕϕωωω-== (5)由(3)/(5)得到:(6)若另1)(=k rϕ,就可得到:(7)由(7)式,另s=1,2,3,......n,就可得到第k 阶主振型的各个元素。
悬臂梁实验报告

实验报告
实验名称:悬臂梁固有频率测试
实验目的:
1)熟悉基于Labview的数据采集过程
2)掌握时频域的信号分析
实验仪器设备:
1)悬臂梁实验模型:钢尺(宽:mm,厚:mm);涡流传感器;前置放大电路及电源
2)数据采集卡,计算机,示波器,改锥等
3)基于Labview的数据采集程序及分析程序
实验过程:
1)准备工作:接好涡流传感器,加合适激励观察示波器输出波形;连接采样系统的硬件部分后,应用计算机中的采集程序观测输出波形是否正常。
2)调节悬臂梁实验模型即钢尺的长度(20cm,24cm,28cm),三个不同长度上加入两种激励方式(冲激、阶跃),应用采集系统采集两种激励方式下的涡流传感器输出数据,存储。
冲激:应用改锥敲击实现;阶跃:应用手按动实现。
3)应用数据分析软件进行数据分析。
实验结果及分析:
1)不同长度不同激励方式下采集的数据如下:
图a1钢尺长度:20cm,改锥敲击
图a2钢尺长度:20cm,手按动
图b1钢尺长度:24cm,改锥敲击
图b2钢尺长度:24cm,手按动
图c1钢尺长度:28cm,改锥敲击
图c2钢尺长度:28cm,手按动
2)数据分析及思考
思考题:
1)总结在实验和数据处理操作时需要注意的问题?
2)不同激励方式造成测试结果的误差有多大?哪种最好?
3)在上面实验中,最高能够找到第几阶固有频率?
4)比较悬臂梁频率测量的理论值和实验值,分析误差及来源?
5)查找一篇相关文献,该文献的测试对象以悬臂梁为原型,简要总结它的测试方案。
梁模态分析实验报告

一、实验目的1. 通过实验了解梁的模态特性,包括固有频率和振型;2. 掌握梁模态分析的基本方法,包括激振、信号采集、数据处理等;3. 熟悉实验设备的操作和调试,提高实验技能。
二、实验原理梁的模态分析是研究结构振动特性的重要手段。
本实验采用共振法进行梁的模态分析,即通过激振使梁产生振动,通过信号采集和数据处理得到梁的固有频率和振型。
三、实验设备与材料1. 实验设备:激振器、加速度传感器、信号采集系统、数据采集卡、计算机等;2. 实验材料:一根等截面简支梁。
四、实验步骤1. 将梁固定在实验台上,确保梁的支承条件符合简支梁的要求;2. 将加速度传感器粘贴在梁上,用于采集梁的振动信号;3. 连接信号采集系统和数据采集卡,确保信号采集系统与计算机正常连接;4. 开启激振器,进行激振实验;5. 采集梁的振动信号,并对信号进行预处理,如滤波、去噪等;6. 利用信号处理软件对采集到的信号进行频谱分析,得到梁的固有频率和振型。
五、实验结果与分析1. 实验数据(1)梁的几何参数:长度L=1000mm,宽度b=50mm,高度h=100mm;(2)材料参数:弹性模量E=2.06×10^5 MPa,密度ρ=7850 kg/m^3;(3)实验得到的固有频率和振型。
2. 实验结果分析(1)固有频率:根据实验数据,得到梁的前三阶固有频率分别为f1=50Hz、f2=120Hz、f3=180Hz;(2)振型:通过频谱分析,得到梁的前三阶振型如图1所示。
图1 梁的前三阶振型从实验结果可以看出,梁的固有频率和振型与理论计算值基本吻合,说明本实验所采用的模态分析方法具有较高的精度。
六、实验总结1. 通过本次实验,掌握了梁的模态分析基本方法,提高了实验技能;2. 熟悉了实验设备的操作和调试,为今后进行类似实验奠定了基础;3. 实验结果表明,本实验所采用的模态分析方法具有较高的精度,为工程实际提供了参考。
七、实验建议1. 在实验过程中,注意激振器的激振频率应与梁的固有频率接近,以提高实验精度;2. 信号采集时,应确保传感器粘贴牢固,避免信号干扰;3. 在数据处理过程中,注意滤波、去噪等预处理步骤,以提高数据质量;4. 实验过程中,应仔细观察梁的振动现象,以便及时发现问题并进行调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悬臂梁各阶固有频率及主振形的测定试验
一、实验目的
1、用共振法确定悬臂梁横向振动时的前五阶固有频率;
2、熟悉和了解悬臂梁振动的规律和特点;
3、观察和测试悬臂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。
二、仪器和设备
悬臂梁固定支座;脉冲锤1个;圆形截面悬臂钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。
三、实验基本原理
瞬态信号可以用三种方式产生,分述如下:
一是快速正弦扫频法.将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频.从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率围接近随机信号.
二是脉冲激励.用脉冲锤敲击试件,产生近似于半正弦的脉冲信号.信号的有效频率取决于脉冲持续时间τ,τ越小则频率围越大.
三是阶跃激励.在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加力,使其产生初始变形,然后突然切断力弦,相当于给该结构施加一个负的阶跃激振力.
用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗.
四、实验结果记录
前五阶固有频率表
阶数固有频率(Hz)
1 8.491
2 54.216
3 154.607
4 304.354
5 494.691
实验测得的前五阶振型图如下:
1阶振型图
2阶振型图
3阶振型图
4阶振型图
5阶振型图
五、理论计算悬臂梁固有频率
圆截面悬臂钢梁有关参数可取:Pa E 11101.2⨯=,7850=ρkg/3
m 。
用直尺测
量悬臂梁的梁长L=1000mm 、梁直径D=12mm 。
计算简支梁一、二、三、四阶固有频率和相应的振型,并将理论计算结果填入表。
悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。
对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析 模型称为欧拉-伯努利梁。
运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程
1 L Lch cos -=ββ (5-1)
式中:L ——悬臂梁的长度。
梁各阶固有频率为
(5-2)
034.22516.3222
1==ββ
....)5,4,3()2
1
(=-≈i i i π
β657.199912.120623
.6125242
3===βββ
471.2106785064
1012101.221
216
-2
12
-411
*=⨯⨯⨯⨯⨯⨯
⨯==
πππ
ρπ
A EI f
687.8470.2516.3*2
11=⨯==f f β 445.54471.2034.22*222=⨯==f f β
270.152471.2623.61*2
33=⨯==f f β
774.298471.2912.120*2
44=⨯==f f β
260.547741.2657.1992
55=⨯==*f f β
六、ANSYS 有限元模拟仿真结果 6.1 前五阶固有频率仿真数据
6.2 振型仿真图
1阶振型仿真图
2阶振型仿真图
3阶振型仿真图
4阶振型仿真图
5阶振型仿真图
七、结果误差分析
悬臂梁理论计算固有频率理论值、有限元仿真值与实测值表 梁几何尺寸 梁长 L=1m 梁直径D=12mm 固有频率(Hz ) 1f
2f 3f 4f 5f
实验值 8.491 54.216 154.607 304.354 494.691 理论值
8.687
54.445 152.270 298.774 547.260 有限元仿真值 8.475 53.089
148.54
290.74
479.92
误差原因:
(1) 实验试件在并非是十分标准,5阶实验计算模态存在误差;
(2) 有限元法分析一般包括四个步骤:物理模型的简化、数学模型的程序化、计算模型的数值化和计算结果的分析。
每一个步骤在操作过程中都或多或少地引入了误差,这些误差的累积最终可能会对计算结果造成误差;
(3) 实验基座刚度有限:Z 方向上刚度基本上满足,但水平方向上即使两边夹紧也只能靠一根螺栓提供切向刚度,刚度有限。
即便如此,由实验结果可得出各阶的振型还是很准确的,频率误差也在可接受的围。