动态无功补偿装置

合集下载

svg动态无功补偿装置工作原理

svg动态无功补偿装置工作原理

svg动态无功补偿装置工作原理SVG(Static Var Generator)动态无功补偿装置是一种能够实现电网无功补偿的设备,通过控制电压和电流的相位差来补偿电网中的无功功率。

它通过逆变器将直流电源转换成可调节的交流电流,根据电网的需求进行无功功率的补偿。

SVG的主要工作原理是通过控制逆变器的开关器件,通过对逆变器的输入电流进行控制,来改变逆变器输出的电流和电压的相位差,从而实现无功功率的补偿。

SVG的工作流程如下:1.电网监测:通过电压和电流传感器对电网进行监测,获取电网功率因数和无功功率的信息。

2.信号处理:将电网监测得到的信号进行滤波、去噪和放大等处理,得到稳定可靠的测量信号。

3.控制策略:根据电网的需求,通过控制器设计相应的控制策略。

控制策略可以基于电网的功率因数进行控制,也可以基于电网无功功率进行控制。

4.逆变器控制:根据控制策略生成逆变器的控制信号,通过控制开关器件的导通和断开,使逆变器输出的电流和电压的相位差发生变化。

5.逆变器输出:经过控制后的逆变器输出的交流电流,通过滤波电路进行滤波,得到准直流电流。

6.电网注入:通过串联电抗器将逆变器输出的准直流电流注入电网,实现无功功率的补偿。

由于串联电抗器的存在,可以调节逆变器输出的电压和电流的相位差,使得逆变器可以通过补偿电网的无功功率。

7.反馈控制:将电网注入的无功功率进行监测,根据监测结果反馈给控制器,进一步调整控制策略和逆变器的控制信号,使无功功率达到设定值。

8.系统保护:同时,SVG还需要具备过流、过温、过压等保护功能,保障设备的运行安全。

总之,SVG通过逆变器将直流电源转换成可调节的交流电流,通过控制器控制逆变器的开关器件,实现对无功功率的补偿,从而提高电网的功率因数和稳定性。

这种动态无功补偿装置在电力系统中具有重要的应用价值,能够有效解决电网的无功功率问题,提高电网的运行效率。

无功补偿装置的性能参数与指标解读

无功补偿装置的性能参数与指标解读

无功补偿装置的性能参数与指标解读无功补偿装置是一种重要的电力设备,用于管理和调整电力系统中的无功功率。

在现代电力系统中,无功功率是不可避免的,并且可能会导致诸多问题,如电压稳定性下降、效率低下、设备损坏等。

因此,无功补偿装置的性能参数与指标对于电力系统的运行和稳定至关重要。

本文将对无功补偿装置的性能参数与指标进行解读。

一、静态无功补偿装置(SVC)的性能参数与指标1. 静态无功补偿装置的基本性能参数包括无功容量、电压调制范围和响应速度等。

无功容量是指装置能够提供的无功功率大小,通常以千伏安(kVar)为单位。

电压调制范围表示装置能够在电力系统中调整电压的程度,一般以百分比表示。

响应速度是指装置从接收命令到实际调整无功功率所需的时间,常以毫秒(ms)为单位。

2. 静态无功补偿装置的指标包括无功补偿率和功率因数。

无功补偿率是指无功补偿装置所提供的无功功率与系统总无功功率的比值,通常以百分比表示。

功率因数是指电力系统中有功功率与视在功率的比值,它反映了电力系统的运行效率。

在静态无功补偿装置的作用下,功率因数可以得到显著改善,提高电力系统的效率。

二、动态无功补偿装置(DSTATCOM)的性能参数与指标1. 动态无功补偿装置的基本性能参数包括无功容量、电压调制范围、响应速度和谐波抑制能力等。

与静态无功补偿装置相比,动态无功补偿装置的无功容量通常更大,能够提供更高的无功功率。

电压调制范围表示装置对电压进行调整的幅度,响应速度表示调整电压所需的时间,谐波抑制能力表示装置对谐波电压的抑制效果。

2. 动态无功补偿装置的指标包括响应时间、跟踪能力和失控保护等。

响应时间是指装置从接收无功功率调整命令到实际调整所需的时间,它反映了装置的调节速度。

跟踪能力是指装置能否实时跟踪电力系统的无功功率需求。

失控保护是一种安全保护机制,用于防止装置失控或发生故障时对电力系统造成不利影响。

三、无功补偿装置的其他性能参数与指标除了上述提及的性能参数与指标外,还有一些其他的重要参数需要关注。

无功补偿装置的容量计算与配置

无功补偿装置的容量计算与配置

无功补偿装置的容量计算与配置无功补偿装置是电能质量管理中的重要组成部分,它能有效地改善电力系统的功率因数,提高系统的稳定性和可靠性。

然而,为了确保无功补偿装置能够正常工作并达到预期的效果,我们需要进行准确的容量计算和合理的配置。

本文将介绍无功补偿装置容量计算的方法,并提供配置建议。

一、容量计算方法无功补偿装置的容量计算一般包括静态无功补偿装置(SVC)和动态无功补偿装置(DSTATCOM)两种情况。

1. 静态无功补偿装置(SVC)SVC主要用于调节电力系统的电压,通过调节无功功率的输入或输出来调整系统的功率因数。

对于SVC的容量计算,通常采用以下步骤:1) 确定需要补偿的无功功率:根据电力系统的需求和特点,确定需要补偿的无功功率大小,一般以kvar(千乏)为单位。

2) 确定电压调整范围:根据系统的电压波动情况和设备的工作范围,确定SVC的电压调整范围。

3) 计算容量:根据实际需求和设备的特性,计算出SVC的容量。

2. 动态无功补偿装置(DSTATCOM)DSTATCOM主要用于响应瞬时电能质量问题,通过快速响应调整无功功率来实现无功补偿。

对于DSTATCOM的容量计算,一般需要考虑以下因素:1) 负荷的类型和特点:不同类型的负荷对无功补偿的需求不同,需要根据负荷的特点来确定DSTATCOM的容量。

2) 系统的瞬变功率需求:瞬态电能质量问题通常由瞬变负荷引起,需要根据系统的瞬变负荷情况来确定DSTATCOM的容量。

3) 响应时间需求:根据系统的响应时间要求,确定DSTATCOM的容量。

二、配置建议无功补偿装置的配置不仅需要考虑装置的容量,还需要考虑安装位置和连接方式等因素。

下面是几点配置建议:1. 安装位置为了最大限度地提高无功补偿装置的效果,应尽可能将其安装在负载附近,减少输电线路的损耗和电压波动,提高无功补偿的效果。

2. 连接方式无功补偿装置一般采用并联方式与电力系统连接,这样可以将无功功率直接注入到负载侧,实现最佳的补偿效果。

无功补偿装置的分类及特点

无功补偿装置的分类及特点

无功补偿装置的分类及特点无功补偿装置是电力系统中用来改善功率因数的重要设备之一。

它通过补偿无功功率,提高电力系统的效率和稳定性。

根据不同的工作原理和功能,无功补偿装置可以分为静态无功补偿装置和动态无功补偿装置两大类。

本文将对这两类装置的特点进行探讨。

一、静态无功补偿装置静态无功补偿装置是一种通过静态元件来实现无功功率补偿的装置。

主要有电容补偿装置、电抗补偿装置和混合补偿装置。

1. 电容补偿装置电容补偿装置采用电容器来产生无功电流,补偿电网中的感性无功功率。

它主要可以分为固定电容补偿装置和可变电容补偿装置两种类型。

固定电容补偿装置适用于无功负荷变化不大的场合。

它具有简单、可靠的特点,并且成本较低。

但是,由于负载变化时的固定补偿容量不能适应需求,可能导致补偿效果不佳。

可变电容补偿装置能够根据负荷变化自动调整补偿容量,适用于负荷波动较大的场合。

它通过控制开关和电容器的并联或串联连接来实现不同的电容量组合,从而提供灵活的无功补偿调节。

2. 电抗补偿装置电抗补偿装置主要采用电感器来产生无功电流,补偿电网中的容性无功功率。

它主要包括固定电抗补偿装置和可变电抗补偿装置两种类型。

固定电抗补偿装置适用于容性负荷变化不大的场合。

它能够稳定供电系统电压,改善电网的稳定性和功率因数。

但是由于固定电感器无法应对负荷波动,因此其补偿效果受到一定限制。

可变电抗补偿装置能够根据负荷变化自动调整补偿容量,适用于波动性负荷较大的场合。

它通过调节器件的感应度和接入方式实现电抗的动态调节,以满足不同负荷条件下的无功补偿需求。

3. 混合补偿装置混合补偿装置是将电容补偿装置和电抗补偿装置组合在一起使用的装置。

通过合理地选择电容和电抗的组合方式,可以更精确地对功率因数进行补偿。

这种补偿方式在大型电力系统中应用较多,可以提高电网的功率因数、稳定性和可靠性。

二、动态无功补偿装置动态无功补偿装置是一种根据电网运行状态实时调整补偿容量的装置。

主要包括SVG(Static Var Generator)和SVC(Static Var Compensator)。

动态无功补偿装置(SVC)

动态无功补偿装置(SVC)

动态无功补偿装置(SVC)概述:石家庄凯尊电力设备GRASUN SVC动态无功补偿装置,主电路采用无涌流接触器或晶闸管无触点开关投切调谐电容器组〔调谐电抗+电容组〕,控制局部基于DSP技术,将瞬时无功理论方法与快速傅里叶变换〔FFT〕相结合,高速分析系统中的电压和电流谐波分量,实现对电网无功功率的实时跟踪和瞬时补偿,调谐电容器组的过零投切控制技术,完全实现单相和三相调谐电容器组的无暂态、高速投切,从而使无功功率得到动态补偿。

过零投切技术不引入暂态和谐波。

具有无合闸涌流冲击,无电弧重燃,无操作过电压,电容器无需放电即可再投,快速跟踪无功变化,频繁投切,动态响应快的特点。

分组多级补偿可一次到位,对不平衡负载可分相补偿。

动态无功补偿装置动态响应时间:小于20ms,功率因数提高到0.92以上。

应用场合动态无功补偿装置适用于企业内部需要补偿无功功率或需要滤除特定低次谐波的场合。

产品特点晶闸管作为无触点开关,1us~3us投切⌝1.零电压差投入和零电流切除技术⌝2.动态无功补偿装置无冲击投、切⌝3.全部实现分相补偿,接近于无级的动态补偿⌝4.谐波抑制或治理功能⌝5.保护完备⌝6.动态无功补偿装置界面友好⌝7.技术参数石家庄凯尊电力设备是一家股份制高新技术企业。

主要生产:谐波抑制器,滤波电抗器,滤波成套装置,滤波电容器,无功动补调节器,复合开关,动态补偿成套装置,低压滤波成套装置,谐波治理。

同时在电能质量的提高方面为用户提供谐波的测量、方案的设计以及装置的制造等全方位的效劳,让用户满意。

谐波治理公司致力于无功补偿及滤波产品的开发和谐波治理,在我公司高级工程技术人员的潜心研究下,开发研制了为提高供电网络电能质量的系列产品。

谐波抑制器1.谐波抑制器采用高新技术纳米材料制成,其导磁率Ui在80000- 100000以上,是最理想的导磁材料因而在电路中能有效地抑制高次谐波,性能稳定可靠且不会饱和,采用环型构造,防止了电能损耗及电磁辐射。

SVG动态无功补偿装置原理1

SVG动态无功补偿装置原理1

SVG动态无功补偿装置原理1SVG动态无功补偿装置原理1SVG(Static Var Generator)动态无功补偿装置是一种用于电力系统的无功补偿装置,其工作原理主要包括控制系统、功率电子元件和滤波电路三部分。

控制系统是SVG装置的核心部分,通过对电网电压、电流和功率因数等参数进行监测和分析,实时计算出电网的无功功率需求,并根据计算结果控制功率电子元件的工作状态,以实现无功补偿。

功率电子元件是SVG装置的关键组成部分,主要包括IGBT(Insulated Gate Bipolar Transistor)等变流器元件。

根据控制系统的信号,控制IGBT元件的开关状态,将电网中的电能转换成SVG装置所需要的无功电能或使SVG装置所产生的无功电能返回给电网。

通过控制IGBT的开关状态,SVG装置可以实现对电网的无功功率进行调节。

滤波电路是为了减小SVG装置对电网的谐波干扰而设置的。

因为功率电子元件的开关操作会引入一定的谐波电流,这些谐波电流会对电网和相关设备产生不良影响。

滤波电路通过合适的阻抗特性和参数设计,将功率电子元件引入的谐波电流进行滤除,使得输出到电网的电流波形更加接近正弦波。

SVG装置工作时,根据电网的无功功率需求,调节其输出的无功功率。

当电网的功率因数偏低时(过低或过高),SVG装置吸收或注入适量的无功电能,以调整电网的功率因数至合适范围。

此外,SVG装置还可以通过控制输出电压的幅值和相位角,实现电网的电压调节功能。

总体来说,SVG动态无功补偿装置的工作原理是通过控制系统对电网参数进行实时监测和分析,控制功率电子元件的开关状态,将所需的无功功率引入或返回给电网。

同时借助滤波电路减小对电网的谐波干扰,达到对电网无功功率进行调节和补偿的目的。

这种装置可以有效提高电网的功率因数,减小电网的无功功率损耗,提高电网的稳定性和可靠性。

动态无功补偿装置(SVG)在变电站中的应用

动态无功补偿装置(SVG)在变电站中的应用

动态无功补偿装置(SVG)在变电站中的应用摘要:随着电力系统的不断发展,电力负荷的变化和电力质量的要求越来越高,无功补偿技术已经成为电力系统中不可或缺的一部分。

传统的无功补偿装置存在着体积大、响应速度慢、效率低等问题,而动态无功补偿装置(SVG)则能够有效地解决这些问题。

关键词:SVG;变电站;原理;应用1 SVG的基本原理SVG是一种用于电力系统中的无功补偿设备,其基本原理是通过控制电容器和电感器的电流,实现对电网中无功功率的调节,从而达到电网的无功平衡和电压稳定的目的。

SVG通过检测电网的电压和电流信号,计算出电网的无功功率,然后根据控制策略,控制电容器和电感器的电流,使其产生与电网中无功功率相反的无功功率,从而实现无功平衡。

同时,SVG还可以根据电网的电压变化,调节电容器和电感器的电流,以保持电网的电压稳定。

SVG通过精确的电流控制,实现对电网中无功功率的调节,从而提高电网的稳定性和可靠性。

它是一种高效、灵活、可靠的无功补偿设备,被广泛应用于电力系统中。

2 SVG装置的运行状态(1)待机状态待机状态是指SVG装置处于准备工作状态,但是还没有开始正式工作的状态。

在待机状态下,SVG装置会进行自检和初始化操作,以确保其各项功能正常运行。

同时,SVG装置也会进行与其他设备的通信,以便在需要时能够及时响应。

待机状态下,SVG装置的功率输出为零,其主要功能是监测电网的电压和电流,并对其进行实时控制。

此时,SVG装置会根据电网的实际情况,调整其控制参数,以便在正式工作时能够更好地实现电力质量的改善。

(2)充电状态充电状态是指SVG装置在运行过程中,其电容器内的电荷处于充满状态。

在SVG装置运行时,其电容器会不断地吸收电网中的电能,将其存储在电容器中,以便在需要时释放出来,以实现对电网的无功补偿。

当SVG装置处于充电状态时,其电容器内的电压会逐渐升高,直到达到设定的充电电压。

此时,SVG装置会自动停止吸收电网中的电能,以避免电容器过充电而损坏。

磁控式动态无功补偿装置技术原理、优势及适用行业

磁控式动态无功补偿装置技术原理、优势及适用行业

磁控式动态无功补偿装置技术原理、优势及适用行业摘要无功补偿有多种形式,基于MCR的动态无功补偿是其中较为先进的一类,磁控电抗器(MCR)利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。

该系统装置具有较高的安全性,运行稳定可靠。

与其他类型的无功补偿装置对比。

此类补偿装置与其它类型的无功补偿装置的区别主要在于磁控电抗器(MCR),因此,该文重点讲述了MCR的基本原理和技术优势,与它类型的无功补偿装置做了技术比较,预测了MSVC技术的发展前景。

关键词:MCR;直流励磁;可控硅;无功功率引言目前,无功补偿的主要装置是电容器、电抗器和少量的动态无功补偿装置。

开关(断路器)投切电容器的调节方式是离散的,不能取得理想的补偿效果。

开关投切电容器所造成的涌流和过电压对系统和设备本身都十分有害。

20世纪80年代以来,基于相控电抗器(TCR)的静止型动态无功补偿器(SVC)在电力系统中投入实际运行。

但由于其投资昂贵,难以推广。

20世纪末,因具有价格便宜、维护方便等优点,基于磁阀式可控电抗器(MCR)的SVC,相继在一些国家电网投入运行,并展示了它的优越性。

磁控电抗器(MCR)型SVC(简称MSVC)装置利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。

一、MSVC装置的基本结构:MSVC装置由补偿(滤波)支路和磁控电抗器(MCR)并联支路组成,其中补偿(滤波)支路经隔离开关固定接于母线,通过调节磁控电抗器的输出容量(感性无功功率)实现无功的柔性补偿。

因与其它各类补偿装置的主要区别在于磁控电抗器,故下面集中对磁控电抗器(MCR)作介绍。

图1动态无功补偿装置(MSVC)一次系统图二、磁控电抗器(MCR)2.1基本工作原理磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁芯,改变铁芯磁导率,实现电抗值的连续可调,其内部为全静态结构,无运动部件,工作可靠性高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态无功补偿装置随着现代电力电子技术的发展,产生了一些静止形态的动态无功补偿装置。

电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。

在许多情况下,动态补偿有功功率或在补偿无功的同时也补偿部分有功功率,对改善电能质量会有更好的效果。

随着电网中精密电能用户的增多,要求电网必须提供与用户所要求的质量指标相适应的电能。

近年来,为了进一步提高配电电能质量指标,出现了多种动态的改善电能指标的电力电子设备。

这些提高电能质量和供电可靠性的技术称为契约电力(custom power)。

补偿技术发展的初期,人们已经注意到补偿无功功率和补偿系统参数存在某些相同的效果,有时甚至会产生更适合用户的效果,因此,补偿参数技术在电网中有着重要的应用领域。

最常用的是串联电容输电补偿,他对减少电压变动,提高电力系统稳定性起到重要的作用。

本文对电力系统中为提高电能质量所使用的各种补偿技术及动态补偿方式作了概括性的介绍,重点叙述了补偿技术的发展及其技术前景,讨论了正在开展的新的补偿技术以及补偿用能源的合理使用,并表明了对当前电网中应用各种补偿方式的看法和评价。

电力电子技术应用于电网和用户后使电网上产生了更多的无功和谐波,而用于滤波的技术实际上与补偿技术是相互联系也是相互影响的,因此,对滤波技术的进展也作了介绍。

1并联无功补偿1.1同步调相机同步调相机是最早用于电网的无功补偿设备,适合于电网电压调节。

但调相机的反应速度较慢,因此对瞬时电压波动效果较差。

他以励磁电流调节来改变发出电压,从电压的幅值大小决定无功功率的输出,同步电机的启动和运行需要很大的维护工作量,这是他的弱点。

同步调相机运行中转子有惯性,在故障瞬间调相机向系统输出短路电流,增大系统的短路容量。

对系统容量偏小而且电网短路电流不够大的电网(如直流输电的受端),同步调相机还是有显著作用的。

但是,在一般电网中,由于短路容量往往偏大,甚至于需要采取限流措施,不适合采用同步调相机。

目前,除了需要加大短路容量外,作为无功和电压补偿的同步调相机已经被完全淘汰。

1.2静止无功补偿器(static var compansator,SVC)平滑动态补偿是指所补充进电网的无功电流,他是按照电网无功需求的变化而变化的。

由于无功是与电压直接联系的,所以调节无功在很大程度上是为了系统电压的质量和电压支撑。

静止无功补偿器目前主要有以下2种类型,一种是晶闸管投切电容器(TSC),另一种是晶闸管控制电抗器(TCR)。

TSC与普通电容器不同之处,在于用晶闸管代替了断路器作电容器组的投切。

TCR则连续调节电抗器电流大小,使无功按要求变化,下面分别说明其特点。

1.2.1晶闸管投切电容器(TSC)电容器组的投切开关处用晶闸管开关取代了机械式的开关,例如油断路器或真空断路器。

晶闸管开关由反并联的晶闸管组成,也可以用一只晶闸管与一只二极管反并联。

TSC用的晶闸管只有2个状态,导通和断开。

晶闸管由一个控制器控制。

用晶闸管开关取代普通有接点开关的优点是,在投切过程中没有冲击电流和过电压,这是由于电容器的接入是在晶闸管两端电压过零瞬间完成,而电容器的切断是由晶闸管在电流过零时完成。

这样电容器可以任意频繁的投切。

由于与TSC相连的由一般断路器投切的电容器或电缆线路会向TSC放电,因此,在TSC的电容器电路上串联有电抗器,他既可限制放电电流也能防止电容器组产生某些次谐波的谐振。

主要的TSC电路:△形接线电路的TSC可以在任何电网使用。

Y0形接线电路的TSC则只能用在电源变压器有中心点连出的系统中。

目前,Y0接线只用在低压系统。

对于TSC的使用范围,最近比较通行的看法是用在低压系统,即在600 V及以下电压等级系统中用一台或多台TSC控制无功和电压是既经济又可靠的选择。

1.2.2晶闸管控制电抗器(TCR)TCR是静止补偿器中的重要组成员,他调节晶闸管的导通角度以改变电抗器电流。

TCR总与电容器并联使用,当系统需要较多电容时,TCR使电抗电流减小,若系统需求电容电流下降,TCR则使电抗电流加大,用电抗电流多抵消电容电流,这相当于使接入系统的电容电流减小。

TCR本身会产生谐波,所以,往往用滤波器代替部分并联的电容器组,也可用TSC。

在电容器组切除后,TCR可以接受感性无功,这样,在电网夜间电压过高时,TCR可以起到降低受端电压的作用。

图3是TCR及其系统接线。

其中,变压器可以是任何一种接线。

滤波器除滤掉TCR产生的谐波外,也要滤掉负荷所产生的部分谐波,要根据负荷性质考虑滤除谐波的次数。

TCR和TSC都可以分相调节,也就是可以按每相电压或无功的要求确定。

瞬时补偿无功量。

他们都有减小不对称电流和电压的效果,并且具有在不对称故障时支撑电网电压的作用,使电网不因电压崩溃而失步。

1.2.3晶闸管投切滤波器(TSF)晶闸管投切滤波器在结构上与晶闸管投切电容器TSC相同,但其参数不同,且有独特的运行状态。

TSC 和TSF都有补偿系统无功的能力。

TSC的电抗器是为了避免电容涌流和躲过谐振频率而设置的。

TSF的电抗器是为了使某一次谐波取得低阻抗通道设计的。

运行中TSF可能有大量的谐波流过,高次谐波电流流过滤波器时每基波(50 Hz)电流相加使总电流可能产生多次过零的现象,这时,要求控制器有按反向电流流过而给晶闸管触发信号的能力,这要求控制器能在同步之外符合电流方向给以触发。

虽然,晶闸管投切滤波器是新的技术,但已经显示出他的重要作用,到目前其的运行效果是令人满意的。

1.3无功发生器(STATCOM,SVG)随着电力电子技术向可控关断和快速触发方向发展,有可能制造出动作频率更高的电力开关器件,从而研究开发出可以在任何相位运行的逆变器。

无功发生器(SVG)就是一个可以产生超前电流90°或滞后电流90°的逆变器,同时,他带有自整流充电能力。

SVG的工作原理是从三相电网上取得电压向一个直流电容充电,再将直流电压逆变成交流电压送回电网。

SVG最简单的原理见图4。

如果产生的电压大于系统电压,那么变压器上流过的电流超前电压90°,使电网带上电容性负荷,或者说SVG供应无功;如果产生的电压小于系统电压,流过变压器的电流滞后电压90°,使SVG成为电感性负载,或者说SVG吸收无功。

这样,如果按需要调节发生器的电压就可以得到适宜的无功输出,而且SVG可以在感性和容性间快速连续调整。

简化(略去谐波)后可用向量关系来描述上述原理(见图5)。

无功发生器的直流侧电容只提供直流电压,他的电压则由三相6个二极管充电得到。

因此,在系统电压下降时,他仍能供出额定的无功电流。

而静止补偿器类的设备,其输出的电流与电压是成比例减小的。

在原理上,无功发生器在故障中有更好地支撑电压的效果。

无功发生器难于应付系统的不对称。

无功发生器在系统电压不对称时,会产生很大的负序电流,这个电流必须流过直流电容器,也就是无功发生器本身不能承担过大的不对称电流。

另外,无功发生器在系统不对称时产生的不对称电流将扰乱系统的正常运行。

目前采取的方法是,在系统发生不对称时将无功发生器自动切除。

由于电力系统中的故障多数是不对称的,这使得无功发生器能产生额定无功电流的优势不能充分发挥出来。

2串联电容补偿2.1静态串联电容补偿装置(SC)从补偿电网负荷侧电压下降的角度看,用电容补偿无功并不能使电压的变化率减小。

如果系统电压用E表示,电网阻抗是R和X,受端电压为U,在负荷电流i和功率因数cosφ时,电流可以分解成有功电流ip(ip=icosφ)和无功电流iq(iq=isinφ)2个分量。

受端电压与系统电压之间的关系其中ipR和iqX二项与U方向相同,是影响电压降ΔU的主要成分,而ipX和iqR二项与电压U垂直,主要生成两端电压的角度δ,即功率角。

有功电流和无功电流引起的电压降向量图见图6。

因此,对于以改善电能质量为目的的补偿应该主要着眼于ipR和iqX二项。

从图6中可以看出,ipR一般所占比例较小,且不便于补偿,因此,补偿iqX项是唯一可行的。

iq是无功电流,U是受端电压,无功Q=iqU。

如果经补偿使iq减小,也就是无功Q减小,电压降分量iqX就可以降低,从而使电压降减小。

如果要动态补偿iq,可采用TCR或TSC装置随时改变电容电流以减小iq,,但TCR和TSC的投资会大于电容器组。

如果用固定电容器补偿,有功电流几乎没有改变,而无功电流则成为iq-ic(ic,是电容电流)。

在iq=-ic,时,无功电流达到最小;而iq=0时,无功电流是-ic,这时,不仅电压没有下降反而会升高,即用固定电容补偿并不能减少电压的波动。

同样,固定电容也不能减少功角δ的变化。

在电压降项iqX内,不能减小iq时,用降低X的办法也是可行的。

X是系统电抗,其线路电抗基本是感性的。

如果串联一组电容器,容抗与系统电抗抵消一部分,使iqX减小,电压质量也会得到改善。

这种串联电容补偿方法在补偿参数的同时,由于电抗X减小,使功率因数也得到改善(从送端看),而且明显缩小功角δ,因此还可增进电力系统的稳定性。

图7是串联电容补偿的向量图。

其中U1和I1是未补偿前的受端电压和电流,U2和I2是补偿后的电压和电流。

虽然负荷的功率因数和功率没有变化,但受端电压在补偿后明显提高,也就是电压降减小。

同时补偿后功率因数也得到提高(从电网侧看),即φ+δ2φ+δ1。

串联电容补偿与并联电容补偿相比较,串联电容补偿在负荷变化时,受端的电压变化幅度小,他和并联的动态补偿有相似的功能。

但由于串联电容补偿技术稍复杂,所以推广较少。

国内在80年代初已有成套串联电容补偿产品供应,并经国家鉴定,串联补偿在实际运行中对改善电压质量、增加输电容量的效果很好。

2.2可控串联电容补偿(TCSC)串联电容补偿有减小电压降和减小功角的能力。

如果他能够快速随电流的振荡来改变电容容抗,则既可以阻尼系统的低频振荡,从而更加增加系统的输电容量,也可以抑制串联补偿引起的次同步谐振,即发电机轴系的扭振。

动态补偿系统阻抗参数X的具体方法是,在串联电容器上并联一组可控电抗器,借改变晶闸管的导通角改变电感电抗值,从而改变容抗及补偿度。

补偿度定义为k=xc/x。

图8是一相可控串补的电路图。

可控串联补偿设备全部置于绝缘平台上,按线路绝缘选用支架瓷瓶。

因此,电容及电感晶闸管都处于高电位,而控制器装置则在地面,中间测量和控制信号由光纤传送,也可用电流互感器传送电流值。

巴西南北的500 kV联络线上,始端、末端各配置有一组可控串联补偿装置,中间分布3级不可控串联补偿装置,输送容量达到1 300 MW。

瑞典和美国电网也都配置有可控串联补偿装置,这项技术正处在发展成熟过程中。

由于他的设置复杂,因此只适用于长距离交流输电线路。

当线路需要扩大传输容量、设计线路需要输送超常规模的负荷以及系统需要增大暂态和动态稳定时,可控串联补偿是一种可选的方法。

相关文档
最新文档