高中数学函数解题技巧方法总结(高考)-学生版

合集下载

高中数学函数解题技巧方法总结-9页word资料

高中数学函数解题技巧方法总结-9页word资料

高中数学函数知识点总结1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。

当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

3. 如何求复合函数的定义域?义域是_____________。

[](答:,)a a -复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

例 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。

分析:由函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。

解:依题意知:2log 212≤≤x 解之,得 42≤≤x ∴ )(log 2x f 的定义域为{}42|≤≤x x4、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=x1的值域2、配方法配方法是求二次函数值域最基本的方法之一。

例、求函数y=2x -2x+5,x ∈[-1,2]的值域。

3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂 4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例 求函数y=6543++x x 值域。

如何快速解决高考数学中的函数题

如何快速解决高考数学中的函数题

如何快速解决高考数学中的函数题高考数学中有很多种题型,其中函数题是一种相对难度较大且出现频率较高的题型。

如何迅速解决高考数学中的函数题,是每个高考学生都需要掌握的技巧之一。

以下将从几个方面分析如何迅速解决高考数学中的函数题。

一、熟练掌握基础知识理解函数的概念是解决高考数学中的函数题的基础。

函数的定义、函数的性质、函数的图像等内容需要牢固掌握。

此外,掌握初等函数的基本性质,包括数映射、函数的值域及其可取值范围、函数的单调性等,在解决函数题时会起到事半功倍的效果。

二、灵活运用函数定义在解决高考数学中的函数题时,必须清楚理解和熟练应用函数的定义。

例如,对于一些函数题中涉及到的函数性质,可以通过运用函数的定义进行求解,如求函数的值、函数的单调性等。

此外,运用函数的定义可以找到函数与其它函数或变量之间的关系,这样可以更快地解决函数题。

三、善于利用函数图像函数图像是可以直观地反映函数性质的,因此善于运用函数图像对函数题进行分析可以更快地解决问题。

例如,对于一些涉及函数图像的题目,可以快速画出函数图像,通过观察函数图像来判断函数的单调性、奇偶性、对称性等性质。

此外,函数的零点、极值等信息也可以通过函数图像得到,这对解决高考数学中的函数题有很大的帮助。

四、认真分析函数题在解决高考数学中的函数题时,必须认真分析题目,理解题目所求的具体内容。

一些函数题可能需要求函数的导数、极限、反函数等,因此需要掌握函数导数的基本概念、求导法则、极限的求法等知识。

同时,还需注意题目中可能存在的误差以及数值范围的限制等细节问题。

五、扎实练习熟能生巧,只有不断练习才能更好地掌握函数题的解题方法。

建议在备考阶段练习大量高考数学的函数题,不仅可以加深对函数题的理解,也可以在解题时迅速找到解题的方法和技巧。

综上所述,要迅速解决高考数学中的函数题,需要熟练掌握基础知识,灵活运用函数定义,善于利用函数图像,认真分析函数题,并进行扎实练习。

相信只要掌握了这些技巧,便可以在高考数学中大显身手,取得优异的成绩。

高考数学函数答题方法和技巧

高考数学函数答题方法和技巧

高考数学函数答题方法和技巧高中的函数题目有点难,不知道怎么才能答好高考数学函数题?不用怕,下面给大家分享一些关于高考数学函数答题方法和技巧,希望对大家有所帮助。

一.高考函数体命题方向高考函数与方程思想的命题主要体现在三个方面①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;③是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。

二.高考数学函数题答题技巧对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得可以得到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

高考数学函数解答方法

高考数学函数解答方法

高考数学函数解答方法高考数学中,函数是一个非常重要的考点,在解答函数题目的时候,可以采取下面几种方法:一、代入法代入法是最直接、最简单的解答方法。

当函数题目给出了具体的数值,我们可以直接将这些数值代入函数中计算得到结果。

例如,题目给出了函数f(x)=2x+1,要求求出f(3)的值,我们可以将3代入函数中,计算得到f(3)=2(3)+1=7代入法的优点是简单快速,适用于无法通过其他方法求解的题目。

但是代入法只能得到特定数值的结果,对于一些要求得到一般性结论的函数题目来说,代入法并不适用。

二、图像法图像法是解答函数图像相关题目的一种常用方法。

给定函数表达式,我们可以通过绘制函数的图像来帮助我们理解和解答题目。

首先,我们要根据函数表达式的特点来大致判断函数图像的性态,包括函数的增减性、奇偶性、对称性等。

例如,对于函数f(x)=x^2+1,我们知道这是一个二次函数,开口向上,对称于y轴,最低点在坐标原点处。

其次,我们可以根据给定的条件来确定函数图像的具体形状。

例如,题目给出了函数f(x)=x^2+1的图像在点(2,5)处的切线斜率为4,我们可以通过求导求出函数f(x)的导函数f'(x),然后将x=2代入导函数中计算得到切线斜率为4图像法的优点是直观、直接,可以帮助我们对函数的性质有更深入的理解。

但是图像法也有一些局限性,例如绘制函数图像需要在试卷上进行,不太方便,同时对于一些复杂的函数图像,很难手绘出准确的形状。

三、解方程法解方程法是解答函数方程相关题目的一种常用方法。

对于已知的函数方程,我们可以通过求解方程来确定函数的性质和解答题目。

例如,题目给出函数f(x)满足f(x)=f(2-x),要求求出函数g(x)=f(2x)的表达式。

我们可以先将f(x)=f(2-x)两边同时代入变量t,即f(x)=t,f(2-x)=t。

然后将x和2-x分别代入f(x)=t的表达式中,得到t=f(x)=f(2-x)。

高中函数解题技巧

高中函数解题技巧

高中函数解题技巧高中函数解题技巧引言在高中数学中,函数是一个重要的内容,解题时需要运用合适的技巧来解决各种函数问题。

本文将详细说明高中函数解题的各种技巧,帮助学生更好地应对考试。

技巧一:函数定义的掌握1.理解函数的定义:函数是一个映射关系,将自变量映射到因变量。

2.弄清楚定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。

3.利用定义域和值域求解问题:在解题过程中,需要根据函数的定义域和值域来确定自变量和因变量的取值范围,进而解决相关问题。

技巧二:函数的性质应用1.利用奇偶性判断函数的对称性:奇函数以原点对称,偶函数以y轴对称。

通过判断函数的奇偶性,可以简化一些计算和问题的分析。

2.利用导数判断函数的增减性:函数的导数代表其斜率,通过求导可以判断函数在某一区间内的增减情况,有助于解决最值和特殊点问题等。

3.利用周期性解决重复性问题:某些函数具有周期性特征,通过寻找周期性解决问题,可以简化计算和分析过程。

技巧三:函数图像的应用1.利用函数图像解读问题:观察函数的图像,可以帮助理解函数的性质和规律,进而解决相关问题。

2.利用函数图像求解交点和切点:通过观察函数图像的交点和切点,可以求解函数的零点、最大最小值和特殊点等问题。

技巧四:函数图像的变换1.利用平移变换函数图像:平移函数图像可以改变函数图像的位置,通过平移变换可以简化计算和分析过程。

2.利用伸缩变换函数图像:伸缩函数图像可以改变函数图像的尺寸,通过伸缩变换可以观察到函数的变化规律。

技巧五:函数组合和复合1.利用函数组合化简问题:将多个函数组合起来,可以简化计算和分析过程,有助于解决复杂的问题。

2.利用函数复合求解复合函数值:通过将自变量代入复合函数,可以求解复合函数的值,解决相关问题。

技巧六:方程和不等式的解法1.利用函数解方程:将方程转化为函数等式,通过解函数等式来求解方程,可以简化计算和分析过程。

2.利用函数解不等式:将不等式转化为函数不等式,通过解函数不等式来求解不等式,解决相关问题。

高一函数题型及解题技巧

高一函数题型及解题技巧

高一函数题型及解题技巧高一函数是高中数学中的重要内容,包括函数的定义、性质、图像、变化规律等,在考试中也经常出现。

下面是一些高一函数题型及解题技巧的介绍。

1.函数的定义题型函数的定义题型考察的是对函数的基本概念和定义的理解。

通常会给出一个函数的表达式或定义,然后要求判断函数的性质或回答问题。

解题时要仔细分析函数的定义,注意函数值的范围、定义域和值域等因素。

2.函数的性质题型函数的性质题型考察的是对函数性质的理解和运用。

通常会给出一个函数的表达式或定义,并且要求判断函数的奇偶性、单调性、周期等性质。

解题时要根据函数的性质进行分析,可以使用导数、导数的符号变化、函数图像等方法。

3.函数的图像题型函数的图像题型考察的是对函数图像的理解和分析能力。

通常会给出一个函数的表达式或定义,然后要求画出函数的图像或分析图像的特点。

解题时可以先分析函数的性质,然后根据性质画图,注意函数的变化规律和特殊点的位置。

4.函数的变化规律题型函数的变化规律题型考察的是对函数变化规律的掌握和分析能力。

通常会给出一个函数的表达式或定义,然后要求分析函数的变化规律或进行函数的运算。

解题时要注意函数的变化趋势、特点和规律,可以使用导数、极值、最值等方法。

解题技巧:1.熟练掌握函数的基本概念和定义,理解函数的性质和特点。

2.注意观察题目中给出的已知条件和要求,对问题进行合理的分析和解答。

3.尽量画出函数的图像,根据图像进行分析和判断。

首先确定函数的性质和特点,然后根据特点进行计算或推导。

4.注意函数的定义域和值域,合理利用函数的性质进行推导和计算。

5.灵活运用导数和基本函数的性质,尤其是对于求导和导数的符号变化。

6.注意函数的极值和最值,找出极值点和最值点的位置和数值。

以上是一些高一函数题型及解题技巧的介绍,希望对你有帮助。

在学习函数的过程中,要多做练习题,熟练掌握函数的概念、性质和画图方法,提高解题能力。

高考函数大题解题技巧

高考函数大题解题技巧

高考函数大题解题技巧高考函数大题解题技巧解三角形解题指导:仔细审题,画出关键词(如锐角三角形等)边角互化规则:(1)先考虑统一为角 ;后考虑统一为边;(2)尽量减少角的个数最值及范围问题:(1)注意应用两边之和大于第三边;(2)统一为角就用三角函数解题;统一为边就用不等式解题。

面积公式的选择优先考虑用已知角。

立体几何解题指导:仔细审题,画出关键词建系规则:尽量使各个点都落在坐标轴上。

求点的坐标技巧:一是转化为平面图形;二是利用向量共线已知条件的意图:(1)已知边长有两个作用,一是方便建系设点的坐标;二是利用勾股定理证明垂直。

(2)已知面面垂直的作用:证明线面垂直。

线面平行的证明:法1 线线平行;法2 面面平行。

温馨提示:有些时候法向量就是坐标轴哦概率与统计解题指导:仔细审题,正确判断随机变量的取值。

(1)若题中有关键词或关键信息:相互独立,互不影响,已知概率等,则考独立事件或二项分布(2)若题中有关键信息:已知概率且概率相等,直接求期望,实验次数多,实验具有重复性,则考独立重复试验(二项分布)(3)与统计相结合的概率题目解题技巧:分层抽样与独立性检验结合,系统抽样与频率分布直方图相结合,有“频率视为概率”则考二项分布,有“在(从)...选取...”则考古典概型或超几何分布)温馨提示:有些时候期望可以带公式哦(二项分布,超几何分布)解析几何解题指导:仔细审题,注意画图,注意焦点位置。

设点的坐标注意利用对称性,以减少变量个数定值定点问题:法1特值探路;法2利用对称性判断定点位置。

存在性问题:法1特值探路;法2假设存在。

最值问题:合理构建函数关系式,然后用换元法,求导法,配方法等求最值。

温馨提示:1、直线方程可以正设和反设,还可以设为两点式哦!2、与圆综合多考虑图形的几何特征哦!3、考抛物线可与导数切线相结合哦!函数与导数解题指导:仔细审题,注意画函数图像,注意定义域,参数范围。

求导之后需要思考的问题:1、判断正负,以确定原函数的单调性,2、求根(猜根),3、二次求导,研究导函数的单调性4、当导数含有参数时要多分析参数对导数正负的影响求参问题方法与技巧:法1、分离参数:转化为恒成立问题,即大于最大,则大于所有;小于最小,则小于所有;法2、构造函数:转化为恒成立问题,对参数进行分类讨论;法3、利用不等式:整合函数解析式;lnxx-1 (x0),exx+1,sinxx (x0) 技1、可以提前分析(通过函数解析式的结构)参数的大致范围,以减少讨论情况技2、提前限定(通过闭区间的端点函数值)参数的大致范围,以减少讨论情况技3、重新整合函数解析式;如遇到x与lnx;x与sinx;x与cosx时要进行分离处理技4、出现含参二次函数结构优先考虑因式分解证明问题方法与技巧:法1、分析法:利用划归转化思想法2、构造函数:转化为求函数最值问题;法3、f(x)ming(x)max法4、赋值法法5、利用函数不等式:整合函数解析式;lnxx-1 (x0) exx+1sinxx (x0)法6、利用函数单调性高考数学拿高分的六个方法1.先易后难。

高一数学函数题型及解题技巧总结

高一数学函数题型及解题技巧总结

高一数学函数题型及解题技巧总结在高一数学中,函数是一个非常重要的概念,它在数学中的地位非常重要。

函数不仅在数学理论中占有重要地位,而且在实际生活中也有很多应用。

因此,学好函数对于高一学生来说至关重要。

下面我们将从函数的基本概念入手,逐步介绍高一数学中常见的函数题型及解题技巧。

一、函数的基本概念首先,我们来了解一下函数的基本概念。

在数学中,函数是一种对应关系,它可以将某一个集合中的每个元素映射到另一个集合中的一个元素上。

通常用f(x)来表示函数,其中x为自变量,f(x)为因变量。

在函数中,自变量的取值范围叫做定义域,因变量的取值范围叫做值域。

函数又可以分为初等函数和非初等函数两大类。

初等函数包括多项式函数、指数函数、对数函数、三角函数和反三角函数等;非初等函数包括幂函数、指数对数函数、三角反三角函数等。

二、高一数学中常见的函数题型1.多项式函数的性质题多项式函数是高中数学中的一个重要内容。

多项式函数的性质题一般包括函数的奇偶性、增减性、最值等。

解这类题目首先要对函数的解析式进行化简,然后根据化简后的函数性质进行分析,找出相应的结论。

解题技巧:1)对于奇偶性的判断,可以利用f(-x)和f(x)来进行判断。

如果f(-x)=f(x),则是偶函数,如果f(-x)=-f(x),则是奇函数。

2)对于增减性的判断,可以通过求导或者利用一阶导数的符号进行判断。

3)对于最值的求解,可以通过求导或者利用函数的性质进行判断。

2.指数函数与对数函数的相关题型指数函数与对数函数是初等函数中的重要内容。

它们在数学中有着重要的应用,如在增长与衰减、复利等方面。

指数函数与对数函数的相关题型主要包括函数的性质、指数方程与对数方程的解法、幂函数与对数函数的互化等。

这类题目的解题关键在于熟练掌握指数对数函数的性质以及运用性质解题。

解题技巧:1)对于指数函数与对数函数的性质题,可以利用函数的定义以及性质进行分析求解。

2)对于指数方程与对数方程的解法,可以利用换底公式、对数的性质等进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数知识点总结一、. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 二、. 求函数的定义域有哪些常见类型?()()例:函数的定义域是y x x x =--432lg函数定义域求法:● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。

●正切函数x y tan = ⎪⎭⎫⎝⎛∈+≠∈Z ππk k x R x ,2,且当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

三、. 如何求复合函数的定义域?[]的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。

复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

例 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。

四、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=x1的值域2、配方法配方法是求二次函数值域最基本的方法之一。

例、求函数y=2x -2x+5,x ∈[-1,2]的值域。

3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面.112..22222222ba y 型:直接用不等式性质k+x bxb. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx n x mx nd. y 型x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例 求函数y=6543++x x 值域。

5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。

我们所说的单调性,最常用的就是三角函数的单调性。

例 求函数y=11+-x x e e ,2sin 11sin y θθ-=+,2sin 11cos y θθ-=+的值域。

6、函数单调性法通常和导数结合,是最近高考考的较多的一个内容 例求函数y=+-25x log31-x (2≤x ≤10)的值域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。

换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。

例 求函数y=x+1-x 的值域。

8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。

例:已知点P (x.y )在圆x 2+y 2=1上,2,(2),2(,20, (1)的取值范围 (2)y-2的取值范围 解:(1)令则是一条过(-2,0)的直线.d 为圆心到直线的距离,R 为半径)(2)令y-2即也是直线d d yx x yk y k x x R d x b y x b R +==+-≤=--=≤ 例求函数y=)2(2-x +)8(2+x 的值域。

例求函数y=1362+-x x+542++x x的值域9 、不等式法利用基本不等式a+b ≥2ab ,a+b+c ≥3abc 3(a ,b ,c ∈R +),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。

例:33()13()32x (3-2x)(0<x<1.5)x x+3-2x =x x (3-2x) (应用公式abc 时,应注意使3者之和变成常数)a b c +⋅⋅≤=++≤ 10.倒数法2(0)113322x =x (应用公式a+b+c 者的乘积变成常数)x xx x +>++≥=≥有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例求函数y=32++xx的值域20112022012时,时,=0yxyyx yy=+≠==+≥⇒<≤+=∴≤≤多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

五、. 如何用定义证明函数的单调性?(取值、作差、判正负)判断函数单调性的方法有三种:(1)定义法:根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系可以变形为求1212()()f x f xx x--的正负号或者12()()f xf x与1的关系(2)参照图象:①若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性;(特例:奇函数)②若函数f(x)的图象关于直线x=a对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。

(特例:偶函数)(3)利用单调函数的性质:①函数f(x)与f(x)+c(c是常数)是同向变化的②函数f(x)与cf(x)(c是常数),当c>0时,它们是同向变化的;当c<0时,它们是反向变化的。

③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加)④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘)⑤函数f(x)与1()f x在f(x)的同号区间里反向变化。

⑥若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y=F[φ(x)]是递增的;若函数u=φ(x),x[α,β]与函数y=F(u),u ∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y=F[φ(x)]是递减的。

(同增异减)()如:求的单调区间y x x =-+log 1222六、.如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。

(在个别点上导数等于a b f x f x '()()≥0零,不影响函数的单调性),反之也对,若呢?f x '()≤0[)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013()值是( )七、 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

()若是奇函数且定义域中有原点,则。

2f(x)f(0)0=如:若·为奇函数,则实数f x a a a x x ()=+-+=2221又如:为定义在,上的奇函数,当,时,,f x x f x xx()()()()-∈=+1101241()求在,上的解析式。

f x ()-11八.判断函数奇偶性的方法1、定义域法一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数. 2、奇偶函数定义法在给定函数的定义域关于原点对称的前提下,计算)(x f -,然后根据函数的奇偶性的定义判断其奇偶性.这种方法可以做如下变形f(x)+f(-x) =0 奇函数f(x)-f(-x)=0 偶函数f(x)1 偶函数 f(-x)f(x)1 奇函数f(-x)==- 3、复合函数奇偶性九、. 你熟悉周期函数的定义吗?()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()() 函数,T 是一个周期。

) ()如:若,则f x a f x +=-()我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t. 推导:()()0()(2)()(2)0f x f x t f x f x t f x t f x t ++=⎫=>=+⎬+++=⎭,同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。

比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a 对称。

()()()()()()(2)(2)(2)()(2)2,222,()(22)()(22),()2||(,,,f x x a x b f a x f a x f b x f b x f x f a x f a x f b x f x f b x t a x b x t b a f t f t b a f x f x b a f x b a a b ==+=-+=-=-⎧⎫=>=>-=-⎨⎬=-⎩⎭=--=+-=+-=+--又如:若图象有两条对称轴,即,令则即所以函数以为周期因不知道的大小关系为保守起见我加了一个绝对值十. 你掌握常用的图象变换了吗?f x f x y ()()与的图象关于轴对称- 联想点(x,y ),(-x,y) f x f x x ()()与的图象关于轴对称- 联想点(x,y ),(x,-y) f x f x ()()与的图象关于原点对称-- 联想点(x,y ),(-x,-y) f x f x y x ()()与的图象关于直线对称-=1 联想点(x,y ),(y,x) f x f a x x a ()()与的图象关于直线对称2-= 联想点(x,y ),(2a-x,y) f x f a x a ()()()与的图象关于点,对称--20 联想点(x,y ),(2a-x,0)将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00上移个单位下移个单位b b b b y f x a b y f x a b()()()()>−→−−−−−−−−>=++=+-00注意如下“翻折”变换:()|()|x ()(||)y f x f x f x f x −−→−−→把轴下方的图像翻到上面把轴右方的图像翻到上面 ()如:f x x ()log =+21()作出及的图象y x y x =+=+log log 2211y=log 2x十一、 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠ (k 为斜率,b 为直线与y 轴的交点)()()()反比例函数:推广为是中心,200y k x k y b k x ak O a b =≠=+-≠'() 的双曲线。

相关文档
最新文档