(完整版)高中数学三角函数解题技巧和公式(已整理)

合集下载

(完整版)高中高考数学三角函数公式汇总(最新整理)

(完整版)高中高考数学三角函数公式汇总(最新整理)

1
四、和角公式和差角公式
sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin tan( ) tan tan
六、万能公式(可以理解为二倍角公式的另一种形式)
sin 2
2 tan 1 tan2
, cos 2
1 1
tan2 tan2
, tan 2
2 tan 1 tan2

万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。
七、和差化积公式2sin来自sin2 sin
cos
…⑴
2
2
sin
sin
⑴ 2k (k Z ) 、 、 、 、 2 的三角函数值,等于
的同名函数值,前面加上一个把 看成锐角时原函数值的符号。(口诀:函数
名不变,符号看象限)



3

3
的三角函数值,等于 的异名函数
2
2
2
2
值,前面加上一个把 看成锐角时原函数值的符号。(口诀:函数名改变,符
号看象限)
2
y
y
sin cos
sin cos 0
sin cos
sin cos 0
x y 0
o
x
As(in2,2)cos
o
x
sin cos 0
A(2,2)
xy 0
4
十三诱导公式
公式一: 设 α 为任意角,终边相同的角的同一三角函 数的值相等 k 是整数
公式二: 设 α 为任意角,π+α 的三角函数值与 α 的三 角函数值之间的关系

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀一、正弦函数(sine function)公式:1. 正弦函数的定义:在直角三角形中,正弦函数是对边与斜边之比,表示为sinθ。

2. 正弦函数的基本关系式:sinθ = 对边 / 斜边3. 弦函数的平方和恒等式:sin²θ + cos²θ = 1二、余弦函数(cosine function)公式:1. 余弦函数的定义:在直角三角形中,余弦函数是邻边与斜边之比,表示为cosθ。

2. 余弦函数的基本关系式:cosθ = 邻边 / 斜边3. 弦函数与余弦函数的关系:cosθ = sin(90° - θ)三、正切函数(tangent function)公式:1. 正切函数的定义:在直角三角形中,正切函数是对边与邻边之比,表示为tanθ。

2. 正切函数的基本关系式:tanθ = 对边 / 邻边3. 弦函数与正切函数的关系:tanθ = sinθ / cosθ四、余切函数(cotangent function)公式:1. 余切函数的定义:在直角三角形中,余切函数是邻边与对边之比,表示为cotθ。

2. 余切函数的基本关系式:cotθ = 邻边 / 对边3. 弦函数与余切函数的关系:cotθ = 1 / tanθ = cosθ / sinθ五、正割函数(secant function)公式:1. 正割函数的定义:在直角三角形中,正割函数是斜边与邻边之比,表示为secθ。

2. 正割函数的基本关系式:secθ = 斜边 / 邻边= 1 / cosθ六、余割函数(cosecant function)公式:1. 余割函数的定义:在直角三角形中,余割函数是斜边与对边之比,表示为cscθ。

2. 余割函数的基本关系式:cscθ = 斜边 / 对边= 1 / sinθ七、和差公式:1. 正弦函数和差公式:sin(θ±φ) = sinθcosφ ± cosθsinφ2. 余弦函数和差公式:cos(θ±φ) = cosθcosφ ∓ sinθsinφ3. 正切函数和差公式:tan(θ±φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)八、倍角公式:1. 正弦函数倍角公式:sin2θ = 2sinθcosθ2. 余弦函数倍角公式:cos2θ = cos²θ - sin²θ = 2cos²θ - 1= 1 - 2sin²θ3. 正切函数倍角公式:tan2θ = (2tanθ) / (1 - tan²θ)九、半角公式:1. 正弦函数半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]2. 余弦函数半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]3. 正切函数半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 +cosθ)]十、和差化积公式:1. 正弦函数和差化积公式:sinθ ± sinφ = 2sin[(θ ±φ)/2]cos[(θ ∓ φ)/2]2. 余弦函数和差化积公式:cosθ + cosφ = 2cos[(θ +φ)/2]cos[(θ - φ)/2]3. 正切函数和差化积公式:tanθ ± tanφ = sin(θ ± φ) /cosθcosφ以上是三角函数的常用公式。

高中三角函数公式汇总与解析

高中三角函数公式汇总与解析

高中三角函数公式汇总与解析【引言】三角函数是高中数学中的一大重点内容,掌握三角函数的公式是学好数学的基础。

本文将对高中三角函数的公式进行汇总与解析,以帮助读者更好地理解和运用这些公式。

【正文】一、角度与弧度的转换在三角函数中,角可以用度数表示,也可以用弧度表示。

两者之间的转换关系如下:1度=π/180弧度1弧度=180/π度二、基本三角函数公式1. 正弦函数(sin)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. sin(-x) = -sin(x)b. sin(x+π) = -sin(x)2. 余弦函数(cos)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. cos(-x) = cos(x)b. cos(x+π) = -cos(x)3. 正切函数(tan)①定义域:x≠(2k+1)π/2,其中k为整数②值域:实数集R③周期性:T=π④奇偶性:a. tan(-x) = -tan(x)b. tan(x+π) = tan(x)三、和差角公式1.正弦函数:sin(A±B) = sin(A)cos(B)±cos(A)sin(B) 2.余弦函数:cos(A±B) = cos(A)cos(B)∓sin(A)sin(B)tan(A±B) = (tan(A)±tan(B))/(1∓tan(A)tan(B))四、倍角公式1.正弦函数:sin(2A) = 2sin(A)cos(A)2.余弦函数:cos(2A) = cos²(A) - sin²(A) = 2cos²(A) - 1 = 1 - 2sin²(A) 3.正切函数:tan(2A) = (2tan(A))/(1 - tan²(A))五、半角公式1.正弦函数:sin(A/2) = ±√[(1-cos(A))/2]2.余弦函数:cos(A/2) = ±√[(1+cos(A))/2]3.正切函数:tan(A/2) = ±√[(1-cos(A))/(1+cos(A))]六、倒数公式1.正弦函数:csc(A) = 1/sin(A)sec(A) = 1/cos(A)3.正切函数:cot(A) = 1/tan(A)七、和角公式1.正弦函数:sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)2.余弦函数:cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)3.正切函数:tan(A) + tan(B) = (sin(A)+sin(B))/(cos(A)+cos(B))【结论】本文对高中三角函数的公式进行了汇总与解析,包括角度与弧度的转换、基本三角函数公式、和差角公式、倍角公式、半角公式、倒数公式和和角公式。

高考数学中的三角函数计算中的技巧总结

高考数学中的三角函数计算中的技巧总结

高考数学中的三角函数计算中的技巧总结三角函数是高中数学中的一个重要概念,也是高考数学不可避免的考点。

在三角函数的计算中,有一些技巧是必须掌握的,本文将对常用的技巧进行总结。

一、公式的推导对于三角函数的计算,最重要的是理解和掌握各种公式的推导,这样才能更好地理解三角函数的运算规律和应用。

1. 正弦和余弦的和差公式。

假设有两个角α和β,则有:cos(α±β)=cosαcosβ∓sinαsinβsin(α±β)=sinαcosβ±cosαsinβ其中,加号表示正弦和余弦的和,减号表示正弦和余弦的差。

这个公式的推导可以通过向量法或三角形法进行。

以向量法为例,假设有两个长度为1的向量OA和OB,头顶角分别为α和β,如图所示:[IMG]则有:OA⋅OB=cosα|OA||OB|OA⊥OB,所以OAOB为直角三角形,也就是OAOB 的面积是 OA x OB所以:OA⋅OBsinα = OB⋅OA sinβOA⋅OBsinα + OA⋅OBcosα = OB⋅OA sinβ + OB⋅OA cosβOA⋅OB (sinα + cosα) = OA⋅OB (sinβ + cosβ)sin(α+β) = sinαcosβ + sinβcosαcos(α+β) = cosαcosβ - sinαsinβ同样地,对于差的情况,只需要令β’=-β就可以了。

2. 正切的和差公式。

tan(α±β)=tanα±tanβ/(1∓tanαtanβ)这个公式的推导可以采用倍角公式,将两个角变为一个角的形式,再代入已知的正切值进行求解。

3. 万能公式。

tanx=(sinx)/(cosx)cotx=(cosx)/(sinx)tan2x=2tanx/(1-tan^2x)cot2x=(cot^2x-1)/(2cotx)sin2x=2sinxcosxcos2x=cos^2x-sin^2xsin^2x+cos^2x=1这些公式的推导可以通过三角函数的定义和之前所学的公式推导来得到。

(完整版)高中数学三角函数解题技巧和公式(已整理)

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处 理技巧以及心得、体会。

下面尝试进行探讨一下:一、关于 sin cos 与 sin cos (或 sin2 ) 的关系的推广应用:2sin cos 1 2sin cos 故知道 (sin cos ) ,必可推出 sin cos (或 sin2 ) ,例如:例1 已知 sin cos3, 求 sin 3 33cos 。

分析:由于 sin 3cos 3 (sin cos )(sin 2 sin cos cos 2 )(sin2cos )[(sin cos ) 3sin cos ]其中, sin cos已知,只要求出 sin cos 即可,此题是典型的知 sin -cos ,求sin cos 的题型。

解:∵ (sincos)2 1 2sincos故:132 112sin cos () sin cos333 3 sin3 cos(sin cos )[(sin2cos ) 3sin cos ]3 32 [( )2 3 1]31 433 3333 9例2 若sin +cos =m 2,且 tg +ctg =n ,则 m 2 n 的关系为( )。

2 21 ,选 B 。

n例 3 已知: tg +ctg =4,则 sin2 的值为(1、由于 (sincos )2 sin 2cos 2A .m 2=nm 2=2 1n分析:观察 sin +cos 与 sin cos的关系:而: sincos(sincos )2 1 2m 2 1tgctgsin ncos 故:分析:由于 ctgcos sin,故必将式子化成含有 cos sin的形式,而此题与例 4 有所不同,式子本身没A.1 B . 122C.1 .4D . 14分析: tg +ctg = 1 4 sin cos1sin cos4故:sin2 2sin cos sin2 1 。

高中数学三角函数的解题技巧

高中数学三角函数的解题技巧

高中数学三角函数的解题技巧高中数学中,三角函数是一个重要的知识点,也是考试中常见的题型。

掌握好三角函数的解题技巧,不仅可以帮助学生提高解题效率,还可以帮助他们在考试中取得好成绩。

本文将通过具体的题目举例,介绍一些高中数学三角函数解题的技巧,并给出一些解题的思路和方法。

一、角度的换算在三角函数的运算中,经常需要将角度转换为弧度或将弧度转换为角度。

对于角度的换算,我们需要掌握以下两个基本公式:1. 弧度 = 角度× π / 1802. 角度 = 弧度× 180 / π例如,如果要将角度60°转换为弧度,可以使用公式1:弧度= 60 × π / 180 = π / 3。

反之,如果要将弧度π/4转换为角度,可以使用公式2:角度= π / 4 × 180 / π = 45°。

在解题过程中,如果涉及到角度与弧度的转换,可以根据具体情况选择适当的公式进行换算。

二、三角函数的基本关系三角函数中的正弦函数、余弦函数和正切函数是最常用的三个函数。

它们之间有一些基本的关系,掌握好这些关系可以帮助我们解题。

1. 正弦函数和余弦函数的关系:sinθ = cos(90° - θ)例如,如果要求sin30°的值,可以利用这个关系式:sin30° = cos(90° - 30°) =cos60° = 1/2。

2. 正切函数和余切函数的关系:tanθ = 1/cotθ例如,如果要求tan60°的值,可以利用这个关系式:tan60° = 1/cot60° = 1/tan30°= 1/(1/√3) = √3。

在解题过程中,如果遇到需要求解某个三角函数的值,可以利用这些基本关系进行转化,简化计算过程。

三、三角函数的周期性三角函数在一定范围内具有周期性,这也是解题过程中需要注意的一个重要点。

高中数学三角函数知识点解题技巧总结

高中数学三角函数知识点解题技巧总结

高中数学三角函数知识点解题技巧总结高中数学三角函数知识点总结高中数学三角函数知识点解题方法总结一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα;0(或0(或|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.六、见“正弦值或角的平方差”形式,启用“平方差”公式:1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,起用平方法则:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且横向于y轴的直线分别成直线型;2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;3.同样,利用图象也可以得到向量y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。

浅谈高中数学三角函数解题技巧

浅谈高中数学三角函数解题技巧

浅谈高中数学三角函数解题技巧高中数学中,三角函数是一个非常重要的知识点,也是学生比较容易出错的地方。

在解题时,我们需要掌握一些技巧,让自己更加熟练地应用三角函数。

下面,我将从以下几个方面来谈谈高中数学三角函数解题技巧。

一、三角函数基础公式的掌握三角函数的基础公式是我们使用三角函数解题的基础。

常见的基础公式包括:1、余角公式:sin(90° –θ) = cosθ , cos (90° –θ) = sinθ2、补角公式:sin(90 – A) = cosA, sin(180 – A) = sinA, sin(270 – A) = –cosA, sin(360 – A) = –sinA掌握好这些基础公式,就能够快速地转化三角函数式子,简化解题过程。

二、几何思维与三角函数的应用在解三角函数题时,我们需要注意几何意义,尤其是正弦、余弦、正切的含义。

对于正弦,我们可以理解为三角形的对边比斜边,也就是一个高的比率。

而余弦则是邻边比斜边,也就是斜边的投影比率,正切则是对边比邻边,也就是斜线上的比率。

对于不同题型,可以从几何角度出发,进行建模和转化,帮助我们更好地应用三角函数。

三、换元和化简的技巧三角函数的变化非常复杂,而且有些题目的数据十分巧妙,往往需要借助换元来解决。

在解题时,我们可以把一些比较复杂的函数替代成另一个函数,来简化答案。

此外,还可以利用三角函数的定义式、基本关系式,或者利用平方等恒等式进行化简。

这些技巧是我们日常解题必须掌握的。

四、解三角函数的基本步骤在解三角函数问题时,需要先进行观察、分类,找到可以用的条件和信息,然后根据题目的要求,选择适当的关系式和方法,进行计算和化简。

通常情况下,我们需要按照以下步骤进行:1、观察,寻找可能用到的三角函数关系式2、利用已知条件建立方程组3、求解方程组并化简结果4、检查结果是否符合题意要求五、练习题目的选择最后,为了掌握好三角函数的解题技巧,我们需要选择适当难度的练习题目进行训练,从而加深自己的理解和记忆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。

下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如:例1 已知θθθθ33cos sin ,33cos sin -=-求。

分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。

解:∵θθθθcos sin 21)cos (sin 2-=-故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。

A .m 2=nB .m 2=12+nC .n m 22=D .22mn = 分析:观察sin θ+cos θ与sin θcos θ的关系:sin θcos θ=2121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θθθθcos sin 1 故:1212122+=⇒=-nm n m ,选B 。

例3 已知:tg α+ctg α=4,则sin2α的值为( )。

A .21B .21-C .41D .41- 分析:tg α+ctg α=41cos sin 4cos sin 1=⇒=αααα 故:212sin cos sin 22sin =⇒=αααα。

答案选A 。

例4 已知:tg α+ctg α=2,求αα44cos sin +分析:由上面例子已知,只要αα44cos sin +能化出含sin α±cos α或sin αcos α的式子,则即可根据已知tg α+ctg α进行计算。

由于tg α+ctg α=⇒=2cos sin 1αα 21cos sin =αα,此题只要将αα44cos sin +化成含sin αcos α的式子即可: 解:αα44cos sin +=αα44cos sin ++2 sin 2αcos 2α-2 sin 2αcos 2α=(sin 2α+cos 2α)- 2 sin 2αcos 2α=1-2 (sin αcos α)2 =1-2)21(2⨯ =211- =21 通过以上例子,可以得出以下结论:由于ααcos sin ±,sin αcos α及tg α+ctg α三者之间可以互化,知其一则必可知其余二。

这种性质适合于隐含此三项式子的三角式的计算。

但有一点要注意的;如果通过已知sin αcos α,求含ααcos sin ±的式子,必须讨论其象限才能得出其结果的正、负号。

这是由于(ααcos sin ±)2=1±2sin αcos α,要进行开方运算才能求出ααcos sin ±二、关于“托底”方法的应用:在三角函数的化简计算或证明题中,往往需要把式子添加分母,这常用在需把含tg α(或ctg α)与含sin α(或cos α)的式子的互化中,本文把这种添配分母的方法叫做“托底”法。

方法如下:例5 已知:tg α=3,求ααααcos sin 2cos 3sin +-的值。

分析:由于αααcos sin =tg ,带有分母cos α,因此,可把原式分子、分母各项除以cos α,“造出”tg α,即托出底:cos α;解:由于tg α=30cos 2≠⇒+≠⇒αππαk故,原式=013233123cos cos cos sin 2cos cos 3cos sin =+⨯-=+-=+⋅⋅-ααααααααααtg tg例6 已知:ctg α= -3,求sin αcos α-cos 2α=? 分析:由于αααsin cos =ctg ,故必将式子化成含有ααsin cos 的形式,而此题与例4有所不同,式子本身没有分母,为了使原式先出现分母,利用公式:1cos sin 22=+αα及托底法托出其分母,然后再分子、分母分别除以sin α,造出ctg α: 解:αααααααααα222222cos sin cos cos sin cos cos sin 1cos sin +-=-⇒=+ α2sin ,分母同除以分子 ααααααααα22221)sin cos (1)sin cos (sin cos ctg ctg ctg +-=+- 56)3(1)3(322-=-+-+-= 例7 (95年全国成人高考理、工科数学试卷) 设20,20ππ<<<<y x ,)6sin()3sin(sin sin y x y x --=ππ且 求:)3)(33(--ctgy ctgx 的值 分析:此题是典型已知含正弦函数的等式求含正切、余切的式子,故要用“托底法”,由于20,20ππ<<<<y x ,故0sin ,0sin ≠≠y x ,在等式两边同除以y x sin sin ,托出分母y x sin sin 为底,得:解:由已知等式两边同除以y x sin sin 得: 1sin sin 6cos cos 6sin sin sin 3cos cos 3sin 1sin sin )6sin()3sin(=-⋅-⇒=--y y y x x y x y x ππππππ 334)3)(33(1)3)(33(431)3)(13(411sin sin 3cos sin sin cos 341=--⇒=--⇒=--⇒=-⋅-⋅⇒ctgy ctgx ctgy ctgx ctgy ctgx yy y x x x “托底”适用于通过同角的含正弦及余弦的式子与含正切、余切的式子的互化的计算。

由于αααcos sin =tg ,αααsin cos =ctg ,即正切、余切与正弦、余弦间是比值关系,故它们间的互化需“托底”,通过保持式子数值不变的情况下添加分母的方法,使它们之间可以互相转化,达到根据已知求值的目的。

而添加分母的方法主要有两种:一种利用1cos sin 22=+αα,把αα22cos sin +作为分母,并不改变原式的值,另一种是通过等式两边同时除以正弦或余弦又或者它们的积,产生分母。

三、关于形如:x b x a sin cos ±的式子,在解决三角函数的极值问题时的应用:可以从公式)sin(sin cos cos sin x A x A x A ±=±中得到启示:式子x b x a sin cos ±与上述公式有点相似,如果把a ,b 部分变成含sinA ,cosA 的式子,则形如x b x a sin cos ±的式子都可以变成含)sin(x A ±的式子,由于-1≤)sin(x A ±≤1,所以,可考虑用其进行求极值问题的处理,但要注意一点:不能直接把a 当成sinA ,b 当成cosA ,如式子:x x sin 4cos 3+中,不能设sinA=3,cosA=4,考虑:-1≤sinA ≤1,-1≤cosA ≤1,可以如下处理式子:⎪⎪⎭⎫ ⎝⎛+±++=±x b a b x b a a b a x b x a sin cos sin cos 222222 由于1)()(222222=+++b a b b a a。

故可设:22sin b a aA +=,则A A sin 1cos -±=,即:22cos b a b A +±= ∴)sin()sin cos cos (sin sin cos 2222x A b a x A x A b a x b x a ±+=±+=±无论x A ±取何值,-1≤sin(A ±x)≤1,22b a +-≤)sin(22x A b a ±+≤22b a + 即:22b a +-≤x b x a sin cos ±≤22b a +下面观察此式在解决实际极值问题时的应用:例1(98年全国成人高考数学考试卷) 求:函数x x x y cos sin cos 32-=的最大值为(AAAA )A .231+B .13-C .231- D .13+ 分析:x x x x 2sin 21cos sin 221cos sin =⋅=,再想办法把x 2cos 变成含x cso 2的式子:212cos cos 1cos 22cos 22+=⇒-=x x x x 于是:x x y 2sin 21212cos 3-+⋅= x x 2sin 21232cos 23-+= 23)2sin 212cos 23(+-=x x由于这里:1)21()23(,21,232222=+=+==b a b a 则 ∴23)2sin 212cos 23(1+-⨯=x x y 设:21cos ,23123sin 22===+=A b a a A 则 ∴232sin cos 2cos sin +-=x A x A y 23)2sin(+-=x A 无论A-2x 取何值,都有-1≤sin(A-2x)≤1,故231+-≤y ≤231+ ∴y 的最大值为231+,即答案选A 。

例2 (96年全国成人高考理工科数学试卷)在△ABC 中,已知:AB=2,BC=1,CA=3,分别在边AB 、BC 、CA 上任取点D 、E 、F ,使△DEF 为正三角形,记∠FEC=∠α,问:sin α取何值时,△EFD 的边长最短?并求此最短边长。

分析:首先,由于222224)3(1AB CA BC ==+=+,可知△ABC 为Rt △,其中AB 为斜边,所对角∠C 为直角,又由于︒===30,21sin A AB BC A 故,则∠B= 90°—∠A=60°,由于本题要计算△DEF 的最短边长,故必要设正△DEF 的边长为l ,且要列出有关l 为未知数的方程,对l 进行求解。

相关文档
最新文档