ABAQUS在土木工程的应用
abaqus在土木工程中的应用

abaqus在土木工程中的应用随着当今技术的飞速发展,地球工程领域正在更快地应用数值模拟软件进行结构分析。
作为一种耗时较短,精度较高的工具,ABAQUS已成为土木工程专业中不可或缺的分析工具之一。
下面分步骤介绍ABAQUS在土木工程中的应用。
第一步:建立模型ABAQUS可用于任何类型的土木工程分析,可以对各种结构进行建模。
将工程结构进行建模,包含几何形状定义和内部属性,如材质类型、厚度、重量等。
ABAQUS使用的是非线性有限元分析方法,使得建模工作更加全面、详细和精确。
第二步:施加边界条件在进行结构分析时需要施加边界条件。
经过建模之后,边界条件需要在模型上设置。
包括各种负载,如静载、动载、温度等条件。
ABAQUS可以对模型进行测量、为模型添加几何形状,描绘相应的载荷、加速度和力。
第三步:应用约束和荷载将建立好的模型和分析器连接并应用约束和荷载,棒状元素构造法和平面单元构造法可以既快速又直接地执行这些任务。
轴对称模型和每空模型可以使用球壳和三棱柱进行几何上的转换。
质量和温度约束、着色和纹理可以根据工程需求随时添加和修正。
第四步:进行分析进行结构分析后,可以看到结果的输出。
主要涵盖工程结果的图形和数值报告。
设置好要求输出的参数,运行大规模有限元计算,ABAQUS将您的结构分析带入高维度空间。
第五步:优化设计基于分析结果,改进工程的反应能力和可靠性,实现工程的优化设计。
ABAQUS提供了多种方法来优化设计,例如将结构设计优化的几何参数和材料属性,及有助于提高品质和性能的多重重放等。
ABAQUS在土木工程中的应用涉及广泛,可以用于桥梁、路面、管道、隧道、高楼建筑等各种类型的结构的分析。
ABAQUS技术的持续发展和市场的积极响应已经成为数值模拟工具的一个重要指标。
应用ABAQUS进行分析不仅可以降低分析成本并且可以提高工程的质量和可靠性,帮助设计人员做出最佳选择。
弹塑性力学土木工程应用有限元ABAQUS分析课件

q=100Mpa
k
故应力集中因子为:
Kσφmax 279.42.794 q 100
弹塑性力学土木工程应用 有限元ABAQUS分析
误差分析
每边单元数10,最大应力288 每边单元数15,最大应力299
弹塑性力学土木工程应用 有限元ABAQUS分析
对比分析
网格划分的不同,对数据的拟合具有一定的影响, 划分的密集,计算结果更逼近理论值。
验证小孔处的应力集中系数
K σ φmax q
弹塑性力学土木工程应用 有限元ABAQUS分析
验证
基于结构和荷载的对称性,只 取结构的 1/4 进行分析。
弹塑性力学土木工程应用 有限元ABAQUS分析
验证
圆孔边缘应力最大的部位在
90°处,与理论分析的结果
一致,且最大应力279.4Mpa。
右侧施加的均布荷载为
0.09406
380
0.150
437.00
0.13976
0.13831
400
0.200
480.00
0.18232
0.18072
弹性模量E 3.00E+05
弹塑性力学土木工程应用 有限元ABAQUS分析
PART.03
有限元分析验证
弹塑性力学土木工程应用 有限元ABAQUS分析
平板圆孔应力
σρ
q 2
l0d lllnll0
lnl lnl0l
l0
l0
nom
l l0
lnl0 l0lln1nom
弹塑性力学土木工程应用 有限元ABAQUS分析
名义、真实应力(变) 真实应力与名义应力的关系
nom(1nom)
真实应变与名义应变的关系
ABAQUS在土木工程中的数值分析

量平面上为 圆, 其 函数表达式如( 1 ) 式。
= q - 、 / 3 %p - 、 / 。
式中: p = 一 I I / 3 ; q = 3 J 2 ;
( 1 )
告 1 — 2 一( 、 V 。 一 寺
参数a o 反映了静水压力对屈服的贡献; r = r 为输入常数,
A B AQ U S作为一种 大型通用 的有 限元 分析 软件 , 其在非
线性分析方 面具 有巨大优势 , 且它不仅具 备其它有 限元分析 软件的数值计算快 、结果精度 高以及分 析成 本低等优点 , 还 具有更人性化的操作界面和可视化 的结果 , 尤其 是运用于钢 筋混凝土结构 非线性 分析 中能得 到相对更精 确的 、 更贴合实 际 的结 果 ,在 结 构 分析 领 域 的应 用 趋 于广 泛 。本 文将 以
工程结构 中的力学 问题 , 从其本质而言应属于非线性 变 形 的范畴 , 也 就是说 , 所 研究 的工程结 构体 系的 内部 变化 量
与所作用 的外来 因素是非线性 的因果关 系 , 线性假 设只是实
交互模 型等, 都是在模型试验的基础上, 基于一些简化和假定, 而建立 的与模型试验结果基本相符 的数学力学模型 。基于不 同的假定,不同有限元软件 在钢筋混凝 土非线性分 析中采用 不 同的模型, 各有特点 。
土 结 构 的一 个 重 要 的手 段 。
f o r c o n c r e t e 。其 中 C o n c r e t e S m e re a d C r a c k i n g 应用较为普遍, 本文将对该本构模型进行讨论 。
C 0 n c r e t e S m e a r e d C r a c k i n g 是 一 个 用 弹 塑 性模 型描 述 混
abaqus在岩土工程中的应用 案例文件

abaqus在岩土工程中的应用案例文件abaqus是一款常用的有限元分析软件,广泛应用于岩土工程中。
下面列举了岩土工程中abaqus的应用案例,包括地基工程、边坡稳定性分析、挡土墙设计等方面。
1. 地基工程地基工程是岩土工程的核心内容之一,abaqus可以用于地基的承载力和沉降分析。
通过建立地基模型,考虑不同荷载情况下的土体性质,可以计算地基的承载力和变形情况,进而指导实际工程设计。
例如,可以通过abaqus模拟地基基坑开挖对周围土体的影响,预测地基下沉的情况,为地下结构的设计提供依据。
2. 边坡稳定性分析边坡稳定性是岩土工程中的重要问题,abaqus可以用于边坡的稳定性分析。
通过建立边坡模型,考虑不同荷载、土体参数和边坡几何形状等因素,可以计算边坡的稳定性指标(如安全系数)和发生滑移的位置。
例如,可以通过abaqus模拟陡坡下雨后的渗流和剪切破坏,评估边坡稳定性,并提出相应的加固措施。
3. 挡土墙设计挡土墙是岩土工程中常见的结构,abaqus可以用于挡土墙的设计和分析。
通过建立挡土墙模型,考虑土体参数、结构形式和荷载情况等因素,可以计算挡土墙的稳定性和变形情况,指导挡土墙结构的设计。
例如,可以通过abaqus模拟挡土墙的荷载响应和土体变形,评估挡土墙的稳定性,并确定合适的尺寸和材料。
4. 地铁隧道分析地铁隧道是岩土工程中的典型工程,abaqus可以用于地铁隧道的分析。
通过建立隧道模型,考虑地下水、土体参数和开挖方式等因素,可以计算隧道的稳定性和变形情况,指导隧道的设计和施工。
例如,可以通过abaqus模拟隧道开挖对周围土体的影响,评估隧道的稳定性和地表沉降情况,并提出相应的支护措施。
5. 岩石力学分析岩石力学是岩土工程中的重要分支,abaqus可以用于岩石的力学分析。
通过建立岩石模型,考虑岩石的本构关系和荷载情况,可以计算岩石的应力分布、变形情况和破坏机制,指导岩石工程的设计和施工。
例如,可以通过abaqus模拟岩石的加载过程和破坏模式,评估岩石的强度和变形特性,为岩石工程提供依据。
abaqus土木工程实例

abaqus土木工程实例
摘要:
1.Abaqus 简介
2.Abaqus 在土木工程中的应用
3.Abaqus 的实例:隧道开挖、边坡稳定性分析、桥梁结构分析
4.Abaqus 的未来发展前景
正文:
Abaqus 是一款强大的有限元分析软件,广泛应用于土木工程、机械工程、航空航天等领域。
其中,在土木工程中,Abaqus 发挥着越来越重要的作用。
Abaqus 在土木工程中的应用主要体现在以下几个方面:首先,Abaqus 可以用于隧道开挖的分析。
通过模拟隧道开挖的过程,可以预测地层的变形、沉降,以及对周围环境的影响,从而指导实际的施工。
其次,Abaqus 也可以用于边坡稳定性分析。
通过对边坡的力学性质进行模拟,可以评估边坡的稳定性,预防边坡滑坡等灾害的发生。
此外,Abaqus 还可以用于桥梁结构分析。
通过模拟桥梁在各种载荷下的反应,可以评估桥梁的强度、刚度,以及抗震性能。
Abaqus 的实例分析结果,不仅可以用于理论研究,还可以用于指导实际工程。
例如,通过隧道开挖的实例分析,可以优化隧道的开挖方式,提高工程效率,降低工程风险。
通过边坡稳定性分析的实例,可以制定合理的边坡防护措施,防止边坡滑坡等灾害的发生。
通过桥梁结构分析的实例,可以优化桥梁
的设计,提高桥梁的安全性能。
随着科技的发展,Abaqus 也在不断更新,未来发展前景广阔。
abaqus在岩土工程中的应用 案例文件

abaqus在岩土工程中的应用案例文件abaqus是一种强大的有限元分析软件,可广泛应用于岩土工程中。
下面列举了10个关于abaqus在岩土工程中的应用案例。
1. 地基承载力分析:abaqus可以模拟地基承载力分析,包括地基沉降、土体变形等问题。
通过建立地基土的有限元模型,可以计算地基承载力和变形情况,进而评估土壤的稳定性和可行性。
2. 地下水渗流分析:abaqus可以模拟地下水渗流问题,包括渗流压力、渗流速度等。
通过建立地下水流动的有限元模型,可以计算地下水渗流的分布情况,进而评估地下水资源的利用和保护。
3. 边坡稳定性分析:abaqus可以模拟边坡的稳定性分析,包括边坡滑动、倾斜等问题。
通过建立边坡的有限元模型,可以计算边坡的稳定系数和安全系数,进而评估边坡的稳定性和安全性。
4. 岩土隧道分析:abaqus可以模拟岩土隧道的力学行为,包括围岩应力、位移等问题。
通过建立隧道的有限元模型,可以计算隧道围岩的应力分布和变形情况,进而评估隧道的稳定性和安全性。
5. 地震响应分析:abaqus可以模拟地震对岩土工程的影响,包括地震波传播、结构动力响应等问题。
通过建立岩土工程的有限元模型,可以计算地震波的传播路径和结构的动力响应,进而评估岩土工程的地震安全性。
6. 桩基工程分析:abaqus可以模拟桩基工程的力学行为,包括桩身承载力、桩身变形等问题。
通过建立桩基的有限元模型,可以计算桩身的承载能力和变形情况,进而评估桩基工程的稳定性和可行性。
7. 岩土地下工程分析:abaqus可以模拟岩土地下工程的力学行为,包括地下开挖、地下水渗流等问题。
通过建立岩土地下工程的有限元模型,可以计算地下工程的应力分布和变形情况,进而评估地下工程的稳定性和安全性。
8. 岩土边坡防护分析:abaqus可以模拟岩土边坡的防护措施,包括挡土墙、护坡等问题。
通过建立岩土边坡的有限元模型,可以计算防护结构的稳定性和抵抗能力,进而评估边坡的安全性和可行性。
abaqus在土木工程的应用

Stress-deformation curve under cyclic loading (large compressive stress)
Reinhardt and Cornelissen (1984)
ABAQUS中的混凝土本 构模型
高压混凝土裂纹扩展被阻止。脆性的特性被柔性硬化的特性代替。 Under high confining pressure, crack propagation is prevented. The brittle behavior disappears and is replaced by ductility with work hardening.
Keywords:
*CONCRETE DAMAGED PLASTICITY *CONCRETE TENSION STIFFENING *CONCRETE COMPRESSION HARDENING *CONCRETE TENSION DAMAGE *CONCRETE COMPRESSION DAMAGE
Surface elements 不可以嵌入热传导和质量扩散实体 单元中
应用实例
应用实例
ABAQUS/CAE 演示
Smeared Cracking Model
Jain and Kennedy Slab 二维平面应变模型 本构关系: Smeared Cracking Model
Smeared Cracking Model
混凝土损伤模型 (ABAQUS Version 6.3)
高压力混凝土的本构关系
Cap model
Smeared Cracking Model (ABAQUS/Standard)
abaqus土木工程实例

abaqus土木工程实例在土木工程中,ABAQUS是一个广泛使用的有限元分析软件,可用于模拟和分析结构的力学行为。
本文将介绍几个ABAQUS在土木工程领域的实例应用,以帮助读者更好地理解和掌握该软件的使用。
二、桥梁结构分析桥梁是土木工程中常见的重要结构,其安全性及承载能力的分析对工程设计至关重要。
利用ABAQUS软件,我们可以对桥梁结构进行静力和动力分析,并评估其在不同荷载情况下的响应行为。
三、地基稳定性分析地基是土木工程中支撑结构的基础,其稳定性对于确保结构的安全性至关重要。
利用ABAQUS软件,我们可以模拟地基的力学行为,如地基沉降、承载能力等,从而评估地基的稳定性,并做出合理的设计和调整。
四、土壤-结构相互作用分析在土木工程中,土壤和结构之间的相互作用对于结构的性能和安全性具有重要影响。
ABAQUS软件可以模拟土壤与结构之间的相互作用,包括土-结构界面的摩擦和接触、土-结构-水的耦合等,从而更准确地评估结构在不同条件下的响应和行为。
五、结构优化设计结构优化设计在土木工程中具有重要的意义,可以有效提高结构的性能和经济性。
利用ABAQUS软件,我们可以进行结构的优化设计,通过调整结构的几何形状、材料和连接方式等参数,以满足给定的性能指标,并使结构在特定条件下具有更好的力学性能。
本文介绍了ABAQUS在土木工程中的几个实例应用,包括桥梁结构分析、地基稳定性分析、土壤-结构相互作用分析和结构优化设计。
通过这些实例,读者可以了解到ABAQUS在土木工程中的重要性和应用价值。
希望本文能对读者在土木工程领域的研究和实践工作中提供一定的指导和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Triaxial concrete behavior
Chen (1982)
Overview of ABAQUS Version 6.3
Mechanical Behavior of Plain Concrete
循环加载力学行为
塑性和刚度的退化
反向加载刚度恢复 (单向)
Stress-deformation curve under cyclic loading (small compressive stress)
1:
低压混凝土 (静水压力小于三倍单轴单轴压缩失效应力) ,占主导地位的是混凝土开裂(cracking)的行为 大荷载 (塑性阶段) ,次生裂缝行为明显 单调荷载(可以包括小的反向加载,但是不能模拟循环 加载)
Overview of ABAQUS Version 6.3
介绍
2:Modeling the behavior of unreinforced and reinforced concrete structures
Overview of ABAQUS Version 6.3
Cap Model
此模型最初于黏土材料
在Drucker-Prager剪切失效模型加了一个“cap”
Cap的作用
约束模型的静水压力 当材料剪切屈服时帮助控制体积膨胀
这些特性使得“cap”模型适用于受到高压的混凝土
静水压力别单轴压缩强度大很多 这不包括任何表示拉伸裂纹(cracking)和压缩破碎(Crushing)的 行为 因此只适用于收到高压的混凝土.
Mechanical Behavior of Plain Concrete
体积膨胀: Volume increase that results from the formation and growth of
cracks parallel to the direction of the greatest compressive stress.
ABAQUS中的混凝土本 构模型
Copyright 2002 Hibbitt, Karlsson & Sorensen, Inc.
Overview of ABAQUS Version 6.3
ABAQUS中的混凝土本构模型
ABAQUS 用连续介质的方法建立描述混凝土模型 不采用宏观离散裂纹的方法描述 裂纹的水平的在每一个积分点上单独计算
混凝土 钢筋混凝土
ABAQUS China
Copyright 2002 Hibbitt, Karlsson & Sorensen, Inc.
Overview of ABAQUS Version 6.3
内容提纲
介绍
无钢筋混凝土力学行为
ABAQUS中的混凝土本构模型 加强筋(钢)ABAQUS中的应用 应用实例
Overview of ABAQUS Version 6.3
介绍
Copyright 2002 Hibbitt, Karlsson & Sorensen, Inc.
Overview of ABAQUS Version 6.3
介绍
Motivation: 构造两种不同应力状态的混凝土模型,预测混凝土和钢 筋混凝土的力学行为
Typical plot of compressive stress vs. axial, lateral, and volumetric strain
Overview of ABAQUS Version 6.3
Mechanical Behavior of Plain Concrete 双轴加载:混凝土失效应力大于单轴状态时的失效强度
单轴实验
超过某应力水平, concrete 表现非线性行为, 表现出 累 积不可恢复的损伤 直到发生破坏
微裂纹导致应变软化
单轴压缩
Karsan and Jirsa (1969)
单轴拉伸
Mazars and Pijaudier-Cabot (1989)
Overview of ABAQUS Version 6.3
适用于混凝土的各种荷载分析 单调应变, 循环荷载, 动力载荷. 标量损伤模型 (各向同性) , 包含拉伸开裂(cracking)和压缩破碎(crushing). 此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学 特性
Keywords: *CONCRETE DAMAGED PLASTICITY *CONCRETE TENSION STIFFENING *CONCRETE COMPRESSION HARDENING *CONCRETE TENSION DAMAGE *CONCRETE COMPRESSION DAMAGE
Kupfer et al. (1969)
Overview of ABAQUS Version 6.3
Mechanical Behavior of Plain Concrete
混凝土双轴强度包络图
Biaxial strength envelope of concrete
Kupfer et al. (1969)
介绍
典型应用
低压应用: 典型的结构构件, 如带加钢筋混凝土梁、 板、柱、剪力墙 核反应堆容器高压密封加压失效模拟 炮弹对混凝土容器的冲击模拟 冰对海岸建筑的冲击模拟
Overview of ABAQUS Version 6.3
介绍
高压应用:
地下导弹发射井震动of ABAQUS Version 6.3
介绍
混凝土容器构造
Overview of ABAQUS Version 6.3
介绍
钢筋混凝土
建模:混凝土模型+钢筋模型+混凝土和钢筋的相互作用
ABAQUS中分别定义混凝土本构和钢筋的本构关系。 Concrete和rebar 的相互作用,粘结滑动(bond slip) and 暗销作用(dowel action)都可以通过引入拉 伸硬化(tension stiffening)模拟
Overview of ABAQUS Version 6.3
Reinforcement
We summarize here some of the new functionality in ABAQUS Version 6.3 for modeling reinforcement of structural and continuum elements. A number of improvements have been made to simplify rebar definition and provide rebar visualization in ABAQUS/CAE. A new *REBAR LAYER option is introduced to define one or multiple layers of reinforcement in membrane, shell, or surface elements. This option must be used in conjunction with the *MEMBRANE SECTION, the *SHELL SECTION, or the *SURFACE SECTION option.
不同于普通的脆性材料, 混凝土可以有非弹性变形,非弹性变形可以比弹性变形大 很多
混凝土损伤机制: 混凝土内部微裂纹和微孔洞的产生和发展 在高压(静水压力)下材料的固化和多微孔的结构的 坍塌
Overview of ABAQUS Version 6.3
Mechanical Behavior of Plain Concrete
材料压缩的行为假定为线弹性.
脆性断裂准则可以使得材料在拉伸应力过大时失效
Keywords: *BRITTLE CRACKING, *BRITTLE FAILURE, and *BRITTLE SHEAR
Overview of ABAQUS Version 6.3
Concrete Damaged Plasticity (ABAQUS Version 6.3)
加强筋(钢)在ABAQUS中的应用
define rebar in beam elements:
Isoparametric rebar in three-dimensional membrane/shell elements:
Skew Rebar in three-dimensional shell/ membrane elements: Define rebar in axisymmetric shell/ membrane elements: Define a layer of uniformly spaced rebar in continuum elements (skew/ ISOPARAMETRIC)
低压力混凝土的本构关系
Smeared cracking model (ABAQUS/Standard)
Brittle cracking model (ABAQUS/Explicit)
混凝土损伤模型 (ABAQUS Version 6.3)
高压力混凝土的本构关系
Cap model
Overview of ABAQUS Version 6.3
Under biaxial compressive loading, concrete strength is greater than the one observed in uniaxial tests.
Compressive stress vs. strain components and volumetric strain under biaxial-compressive loading
Keywords: *CAP PLASTICITY and *CAP HARDENING