UASB厌氧反应器的结构和原理
UASB厌氧反应器的组成和机制

UASB厌氧反应器的组成和机制1. 概述UASB(上升式厌氧污泥床)反应器是一种常用于废水处理的生物反应器。
它以其高效,低能耗和易于操作等优点而受到广泛应用。
本文将介绍UASB反应器的组成和工作原理。
2. 组成UASB反应器主要由四个部分组成:1. 上升式厌氧污泥床:废水进入UASB反应器后,通过此床层,废水中的可生物降解有机物被微生物附着。
厌氧条件下,这些附着的微生物将进行厌氧消化,转化有机物为甲烷、二氧化碳和水。
2. 上升式多孔塔:位于上升式厌氧污泥床上部,其内部有多孔塔隔层。
通过上升式多孔塔,底部的厌氧消化产物可以上升到上层进一步处理。
3. 上升式气液分离器:位于上升式多孔塔顶部,用于将产生的甲烷气体与废水进一步分离。
甲烷气体通过分离器的顶部逸出,而废水则从底部回流至反应器床层。
4. 出水装置:用于将处理后的废水排出系统。
3. 工作原理UASB反应器的工作原理可简述如下:1. 废水进入上升式厌氧污泥床,通过附着在床层上的微生物进行厌氧消化。
2. 厌氧消化过程中,可生物降解有机物被转化为甲烷气体等消化产物。
3. 上升式多孔塔和气液分离器的作用是将产生的甲烷气体与废水分离,使甲烷气体顶部逸出。
4. 处理后的废水再次回流到床层中,进行下一轮的厌氧消化过程。
5. 最终,处理后的废水通过出水装置排出系统。
4. 总结UASB厌氧反应器是一种高效的废水处理装置,由上升式厌氧污泥床、上升式多孔塔、上升式气液分离器和出水装置组成。
其工作原理是通过附着在床层上的微生物进行厌氧消化,并将产生的甲烷气体与废水分离。
UASB反应器的应用可以有效地处理废水,降低环境污染。
以上为UASB厌氧反应器的组成和工作原理的简要介绍。
希望对您有所帮助!。
UASB厌氧反应器的框架和工作原理

UASB厌氧反应器的框架和工作原理框架
UASB厌氧反应器通常由以下几个主要部分组成:
1. 上升流区:废水进入反应器后,在上升流区内通过分布器均
匀分布。
这个区域允许废水中的有机物与厌氧微生物接触。
2. 厌氧污泥毯:厌氧微生物聚集在上升流区的下方,形成厌氧
污泥毯。
这个污泥毯中的微生物通过降解有机物产生沼气。
3. 沉降区:在污泥毯上面,有一个沉降区,用于分离废水中的
悬浮物和产生的污泥。
清水经过此区域后会被排出反应器。
4. 底部区域:在反应器的底部,有一个污泥收集区域。
在这里,产生的厌氧污泥会积累,并可以周期性地进行污泥处理。
工作原理
UASB厌氧反应器的工作原理可以概括为以下几个步骤:
1. 废水进入反应器后,流经上升流区。
在这里,有机物与厌氧
微生物发生接触。
微生物以有机物为能源,进行生物降解过程。
2. 有机物在上升流区中被降解,产生沼气和产生的污泥。
降解
过程是在厌氧环境下进行的,不需要氧气。
3. 产生的污泥和悬浮物在沉降区被分离。
清水从沉降区流出,
而污泥留在反应器中。
4. 沉降的污泥在底部区域积累,并可以周期性地进行污泥处理,以维持反应器的正常运行。
通过这些步骤,UASB厌氧反应器能够高效地去除废水中的有
机物,并产生可回收的沼气。
以上是关于UASB厌氧反应器框架和工作原理的简要介绍。
如
果您对此有任何疑问或需要进一步的信息,请随时与我联系。
UASB反应器的原理是什么

UASB反应器的原理是什么?
UASB反应器是升流式厌氧污泥床反应器的简称。
在UASB中污水
为上向流,反应器由污泥区、反应区、三相分离器和气室组成,在反应器的底部有大量的具有良好沉降和凝聚性能的厌氧污泥。
当污水自底部进入反应器并与厌氧污泥充分混合接触时,污水中的有机物被厌氧污泥中的微生物分解,并产生沼气形成小气泡,微小气泡在上升过程中将污泥托起,形成污泥悬浮层。
随着产气量的增加,气体不断从污泥层中逸出;含有大量气泡的混合液不断上升,到达三相分离器的下部,将气体进行分离。
被分离出来的沼气进入气室,并由管道导出。
混合液经过反射进入三相分离器的澄清区,混合液中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降,返回到厌氧反应区内,以保持反应区内足够的污泥量,与污泥分离后的澄清水经溢流堰排出。
UASB厌氧反应器的形式和工作机制

UASB厌氧反应器的形式和工作机制1. 引言UASB(上升式厌氧污泥床)反应器是一种常用于废水处理的生物反应器。
它以其高效的除污能力而闻名,并被广泛应用于各个领域。
本文将介绍UASB反应器的形式和工作机制。
2. UASB反应器的形式UASB反应器通常采用圆柱形状,由垂直设置的管道和沉淀池组成。
管道中注入待处理的废水,同时在底部排出产生的污泥。
沉淀池用于分离废水中的固体物质和污泥。
3. UASB反应器的工作机制UASB反应器利用一种被称为厌氧发酵的过程来处理废水。
在反应器中,废水通过上升速度较慢的管道流过,这样污泥可以在其中沉淀下来。
废水中存在的有机物被厌氧细菌分解,产生甲烷和二氧化碳等气体。
3.1 厌氧菌的生长在UASB反应器中,厌氧菌在污泥床上生长。
这些菌群利用废水中的有机物作为能源,通过发酵和降解反应将其分解。
厌氧菌在底部的污泥中繁殖,并形成一种称为粒状污泥颗粒的结构。
3.2 有机物的降解过程当废水通过UASB反应器时,有机物会被分解为较小的化合物。
这些化合物由厌氧菌通过发酵和酸化反应转化为甲烷、二氧化碳和其他产物。
在此过程中,厌氧菌利用有机物作为能源来进行生长和繁殖。
3.3 污泥的沉淀和外排在UASB反应器中,污泥会在管道中沉淀下来,并与底部的沉淀池分离。
沉淀池中的固体物质和重质污泥随后被排出反应器,以保持反应器中的正常运行。
4. 结论UASB反应器是一种高效的废水处理设备,能够通过厌氧发酵的机制将有机物降解为甲烷和二氧化碳等气体。
理解UASB反应器的形式和工作机制对于废水处理领域的专业人士和研究人员来说至关重要。
参考文献:1. Zhang, T.C., Fang, H.H., 1999. Principles of anaerobic wastewater treatment. Water Sci. Technol. 40 (8), 1–9.2. Lettinga, G., van Velsen, A.F.M., Hobma, S.W., de Zeeuw, W., Klapwijk, A., 1980. Use of the upflowsludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22 (4), 699–734.3. Chernicharo, C.A.L., 2007. Anaerobic reactors. Biological Wastewater Treatment Series. IWA Publishing, London, UK.。
UASB厌氧反应器的构造和工作原理

UASB厌氧反应器的构造和工作原理1. 厌氧反应器的构造UASB(Upflow Anaerobic Sludge Blanket)厌氧反应器是一种常用于废水处理的反应器。
它通常由以下几个主要部分构成:1.1 上升气液分离器UASB厌氧反应器的顶部通常有一个上升气液分离器,用于将产生的气体与废水分离。
这可以通过设置气体排放口和液体回流管道来实现。
1.2 反应器本体反应器本体是UASB厌氧反应器的主要部分。
它通常是一个圆柱形或方形的,内部分割成不同的区域,以促进废水的处理过程。
这些区域通常被称为空隙,其作用是增加废水与微生物的接触面积,提高反应效果。
1.3 底部沉淀池UASB厌氧反应器的底部通常有一个沉淀池。
在废水处理过程中,产生的污泥会沉积在沉淀池中,而处理后的干净水则会从顶部流出。
通过及时清理沉淀池中的污泥,可以保证反应器的正常运行。
2. 厌氧反应器的工作原理UASB厌氧反应器的工作原理基于厌氧条件下微生物的代谢活动。
主要的反应过程包括:2.1 废水进入反应器废水首先通过入口管道进入UASB厌氧反应器的反应器本体。
在反应器中,废水在空隙中流动,与微生物接触。
2.2 微生物的附着与处理废水中的有机物质被微生物吸附,微生物通过代谢作用分解有机物质,并将其转化为产生的气体(如甲烷)和产生的污泥。
这个过程促使废水中的污染物逐渐减少。
2.3 上升气液分离在反应过程中,产生的气体会上升到反应器的顶部,通过上升气液分离器与废水分离。
分离后的气体通过气体排放口排出,而废水则回流到反应器进行二次处理。
2.4 干净水的排出经过处理后的废水在反应器本体中流动并经过沉淀池。
在沉淀池中,污泥沉淀到底部,而处理后的干净水从顶部流出,可用于进一步的处理或直接排放。
3. 总结UASB厌氧反应器借助微生物的附着和代谢活动,有效地处理废水中的有机物质。
通过合理的构造和工作原理,UASB厌氧反应器可以高效地减少废水中的污染物,并产生有价值的产物,如甲烷气体。
uasb反应器工作原理

uasb反应器工作原理
UASB反应器是一种高效生物处理工艺,UASB是Upflow Anaerobic Sludge Blanket的缩写,即上升式厌氧污泥床反应器。
它是通过一系列的生物化学反应将有机废水转化为可再利用的沼气和减少水污染物的一种处理方式。
UASB反应器主要由上部进料区、中部生物反应区和下部排放区组成。
有机废水从上部进入反应器,经过中部的生物反应区,最后沉淀在下部的排放区。
在上部进料区,废水进入反应器之前会先进行预处理,如调节PH值和温度等。
在中部生物反应区,厌氧微生物通过一系列反应将有机污染物转化为沼气,并将残留物质沉淀到底部。
UASB反应器的工作原理基于厌氧微生物的生长和代谢。
厌氧微生物在缺氧条件下生长和代谢,可以将有机污染物分解为二氧化碳、甲烷等无害物质。
由于反应器中存在的厌氧微生物能够将有机物质高效转化为生物质和沼气,因此UASB 反应器具有高效、低能耗、低运行成本等优点。
UASB反应器在废水处理中的应用非常广泛。
它可以被用于处理各种含有有机废水的工业废水,如食品加工、制药、印染等领域。
同时,UASB反应器也可以用于农村和城市污水处理,将废水转化为沼气和可再利用的水资源,实现废物资源化利用和环境保护的双重目的。
UASB反应器

有机负荷的控制
❖ 甲烷菌的数量和活性是UASB效率的主要限 制因素。负荷过高,反应器内水解菌和产酸 菌增多,反应器内pH降低,产甲烷菌受到抑 制。
❖ 在启动阶段,一次增加的负荷不宜过高,在 低负荷阶段提负荷可以稍快,超过 0.1kgCOD/kgSS·d后每次负荷提高量为 20%~30%,在每一阶段要运行20天甚至更长 时间。
污泥颗粒化机理
污泥颗粒化是一个较为复杂的过程,其 形成机理没有完美的解释。由不同机理 形成的颗粒污泥在外形、组成菌群、密 实程度都不同。
选择压理论(1983)
颗粒化本质是对反应器中存在的污泥颗 粒的连续选择过程
废水经水解酸化后含有大量VFA。 Methanotrix对VFA的亲和力更高,作
由亚单位聚集形成的初生颗粒, 一般结构 较疏松, 亚单位之间呈半透明状态, 颗粒 表面无统一的基质膜包围, 边缘不整齐。
随着初生颖粒内细菌的生长和黑色金属 硫化物在亚单位之间的沉积, 颗粒逐渐变 得致密, 亚单位之间不再透明, 颗粒表面 逐渐被细菌代谢所产生的基质包围, 表面 变得光滑而整齐, 形成一个具有一定强度 和弹性的栋样黑色颗粒,这一过程称谓初 生颗粒的生长过程。
作用 形成机理 形成过程 影响因素
UASB中污泥的特性
UASB的有机负荷率与污泥浓度有关, 试验表明,污水通过底部0.4~0.6m的高 度,已有90%的有机物被转化。由此可 见厌氧污泥具有极高的活性,改变了长 期以来认为厌氧处理过程进行缓慢的概 念。
工艺的稳定性和高效性很大程度上取 决于生成具有优良沉降性能和很高甲烷 活性的污泥,尤其是颗粒状污泥。与此 相反,如果反应区内的污泥以松散的絮 凝状体存在,往往出现污泥上浮流失, 使UASB不能在较高的负荷下稳定运行。
UASB厌氧反应器工艺原理及特点

UASB厌氧反应器工艺原理及特点1、UASB厌氧反应器的原理升流式厌氧污泥床(UASB)反应器是由Lettinga在七十年代开发的。
废水被尽可能均匀的引入到UASB厌氧反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。
厌氧反应发生在废水与污泥颗粒的接触过程,反应产生的沼气引起了内部的循环。
附着和没有附着在污泥上的沼气向反应器顶部上升,碰击到三相分离器气体发射板,引起附着气泡的污泥絮体脱气。
气泡释放后污泥颗粒将沉淀到污泥床的表面,气体被收集到反应器顶部的三相分离器的集气室。
一些污泥颗粒会经过分离器缝隙进入沉淀区。
UASB厌氧反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器。
在UASB厌氧反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。
2、UASB厌氧反应器的选型UASB厌氧反应器的材料,可采用碳钢、Lipp(或拼装结构)和混凝土结构。
对钢制结构的反应器需进行保温处理,钢池可考虑采用现场4~8mm厚阻燃型聚苯乙烯泡沫板及彩色防护板保温和装饰,碳钢的防腐材料采用环氧树脂加玻璃布三层做法。
混凝土池不考虑保温问题。
附属设备如三相分离器、配水系统、走道、扶手、楼梯暂等不考虑。
对以上三种结构型式进行了技术经济比较。
当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。
当建造多个矩形反应器时有其优越性。
对于大型UASB厌氧反应器建造多个池子的系统是有益的,这可以增加处理系统的适应能力。
如果有多个反应池的系统,则可能关闭一个进行维护和修理,而其他单元的反应器继续运行。
通过综合比较,钢结构和混凝土的投资相差不大,从整体比较来看,拼装结构或Lipp罐从投资上和年经常费用上均较低。
且且具有安装方便,施工周期短的优点。
但混凝土使用寿命远远高于碳钢结构池体,且无需考虑保温问题。
目前,我国的UASB厌氧反应器大多以钢筋混凝土为材料。
3、UASB厌氧反应器的特点UASB内厌氧污泥浓度高,平均污泥浓度为20-40gMLVSS/L;有机负荷高,水力停留时间短,例如采用中温发酵时,容积负荷一般为5-10kgCOD/(m3.d)左右;无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;污泥床不设载体,节省造价及避免因填料发生堵塞问题;UASB内设三相分离器,通常不设高效澄清池,被沉淀区分离出来的污泥重新回到污泥床反应区内,通常可以不设污泥回流设备,运行动力较小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UASB厌氧反应器的结构和原理
IC和UASB是厌氧反应器中最常见的两种结构形式。
在之前的文章中,我们详细介绍了厌氧反应器-IC的结构,今天我们就来讲一讲UASB的结构和原理。
1. UASB厌氧反应器的原理
在UASB反应器中,废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。
厌氧反应发生在废水和污泥颗粒接触的过程中。
在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这有利于颗粒污泥的形成和维持。
在污泥层形成的一些气体附着在污泥颗粒上,向反应器顶部上升,上升到表面的污泥撞击三相分离器气体发射板的底部,引起附着气泡的污泥絮体脱气。
气泡释放后污泥颗粒将沉淀到污泥床的表面,而气体则被收集到三相分离器的集气室。
在集气室单元缝隙之下设置挡板(气体反射器),其作用是为了防止沼气气泡进入沉淀区,否则将引起沉淀区的紊动,而阻碍颗粒沉淀。
包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。
由于三相分离器斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。
同时随着流速降低,污泥絮体在沉淀区可以絮凝和沉淀。
累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,而滑回反应区,这部分污泥又将与进水有机物发生反应。
2. UASB反应器的构成
USAB反应器包括进水和配水系统、反应器的池体和三相分离器。
如果考虑整个厌氧系统,还应该包括沼气收集和利用系统。
但是由于沼气利用的途径和目标不确定,其利用系统也有很大的差别。
在USAB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。
为了在沉淀器中取得对上升流中污泥絮体颗粒的沉淀效果,三相分离器最主要的目的就是尽可能有效地分离从污泥床中产生的沼气。
特别是在高负荷的情况下,在集气室下面设置反射板,是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高产气量所造成的液体紊动。
三相分离器的设计,应该是只要污泥层没有膨胀到沉淀器,污泥颗粒或絮状污泥就能滑回到反应室。
应该认识到有时污泥膨胀到沉淀器中不是一件坏事。
相反,存在于沉淀器内的膨胀污泥层将网捕分散的污泥颗粒/絮体,同时它还对可生物降解的溶解性COD起到一定的去除作用。
另一方面,存在一定可供污泥层膨胀的自由空间,以防止较重的污泥在暂时性有机或水力负荷冲击下流失是很重要的。
水力和有机(产气率)负荷率两者都会影响到污泥层以及污泥床的膨胀。
USAB系统原理是在形成沉降性能良好的污泥絮体的基础上,并结合在反应器内设置污泥沉淀系统,使气体、液体和固体得到分离,形成和保持沉淀性能良好的污泥(颗粒或者絮状污泥),是USAB系统良好运行的根本点。