发电机组差动保护
某发电厂1号机组高厂变差动保护动作原因分析与防范措施

某发电厂1号机组高厂变差动保护动作原因分析与防范措施一、动作原因分析:1.供电系统电压异常:高厂变差动保护的主要作用是检测供电系统的电压是否正常,当供电系统的电压超出了设定范围时,保护装置会自动动作。
原因可能包括供电系统电压突然降低或升高,供电系统电压不平衡等问题。
2.发电机故障:高厂变差动保护还能检测发电机的故障情况,如发电机的绝缘损坏、转子短路、接地故障等。
当发电机发生故障时,保护装置会将其断开与电网的连接,以保护设备和人员的安全。
3.电网故障:电网故障包括短路、接地故障等,这些故障会导致系统电压的突变,从而触发高厂变差动保护。
电网的故障通常与其他设备的故障有关,如电缆或绝缘子的损坏、设备的过负荷运行等。
二、防范措施:1.定期检查和维护设备:对高厂变差动保护装置进行定期的检查和维护,确保其正常工作。
检查范围包括外观检查、连接检查、仪表检查等,以及对设备进行及时的维修和更换。
2.加强对供电系统的监控:通过设置电压监控装置,实时监测供电系统的电压波动情况,一旦电压超出设定范围,及时采取措施,防止高厂变差动保护动作。
3.增强电网的可靠性:加强对电网设备的检修和维护工作,确保各设备的正常运行。
特别是对电缆、绝缘子等易损部位进行定期的检查和更换,减少电网故障的发生。
4.加强对发电机的检修和维护工作:对发电机进行定期的巡检和清洁工作,及时发现和排除潜在故障。
此外,还可通过安装振动监测和绝缘监测装置,对发电机的运行状态进行实时监测。
5.提高运维人员的技术水平:培训运维人员,提高其对高厂变差动保护原理和工作原理的掌握程度,以及对故障排查和处理的能力。
只有运维人员具备一定的技术水平,才能有效地防范高厂变差动保护误动作。
总结:针对高厂变差动保护动作的原因,我们可以从加强设备检修和维护、监测电压波动、增强电网可靠性、加强对发电机的检修和维护、提高运维人员的技术水平等多方面进行防范措施的制定和执行。
通过这些措施的合理实施,可以有效地减少高厂变差动保护的误动作,提高发电机组运行的可靠性和稳定性。
差动保护的基本原理

差动保护的基本原理差动保护是电力系统中常用的一种保护方式,用于检测电气设备发生故障时的电流差异,从而及时采取动作措施,防止故障扩大并保护设备安全运行。
本文将从差动保护的基本原理、差动保护的主要应用领域以及差动保护的发展趋势等方面进行详细介绍。
差动保护的基本原理差动保护是基于电流差动原理而建立的。
其基本原理是通过比较电流的进出差异来检测设备是否发生故障。
在理想情况下,正常工作时电流的进出应该是相等的,即电流之差为零。
如果设备发生故障,则电流发生偏差,进出电流之差将不为零,这时差动保护系统将发出动作信号,切断故障部分的电源,保护系统的正常运行。
差动保护系统主要由主保护和备用保护两部分组成。
主保护负责实现差动保护的主要功能,备用保护则在主保护系统发生故障时起到备份作用。
主保护系统通常由差动电流继电器、比较器以及动作执行器等组成。
差动电流继电器负责将进出电流进行比较,发现差异时输出信号给比较器,比较器再将信号转化为动作信号给动作执行器。
差动保护的主要应用领域差动保护广泛应用于电力系统的各个环节,包括发电厂、变电站以及配电网等。
在发电厂中,差动保护用于发电机组、变压器等设备的保护。
在变电站中,差动保护则用于变压器、电缆线路等高压设备的保护。
而在配电网中,差动保护主要应用于低压设备,如配电变压器、电缆线路等。
差动保护的发展趋势随着电力系统的不断发展和现代化要求的提高,差动保护也在不断演变和完善。
目前,差动保护已经实现了微机保护的发展,并结合了现代的通信技术。
微机保护使得差动保护系统的功能更加强大,可实现更精确的测量和判断。
通信技术的应用使得差动保护系统能够实现远程控制和监控,提高了运维效率和安全性。
此外,差动保护系统还在趋向智能化和自适应方向发展。
智能化差动保护系统能够实现自动分析故障类型和区域,准确识别故障类型并采取相应的保护措施。
自适应差动保护系统则能够根据电网的实际运行情况对差动保护参数进行动态调整,提高保护系统的适应性和准确性。
发电机差动保护误动原因分析

发电机差动保护误动原因分析[摘要]差动保护作为发电机的主保护,能否正确动作直接影响到主设备的安全和系统的稳定运行。
本篇主要介绍因线路遭受雷击引起发电机组差动保护误动原因进行分析并提出相应的整改措施及电流互感器对差动保护动作的影响进行分析。
[关键词]差动保护;电流互感器;原因分析;整改措施0 引言多年来,作为主设备主保护的纵联差动(简称纵差或差动)保护,正确动作率始终在50%~60%徘徊,而零序差动保护甚至低到30%左右,这对主设备的安全和系统的稳定运行都很不利。
造成这种局面的原因是多方面的,主要有设计、制造、安装调试和运行维护等。
各部门都有或多或少的责任,实际工作中也在不断改进,但是“原因不明”的主设备保护不正确动作事例仍然为数不少。
发电机纵差保护可以说是最简单的应用,但仍然存在“原因不明”的误动事故发生,比如在同期操作(人工或自动)过程,主要现象是由于操作不规范,偏离同期三要素(频率、电压幅值、相位)的要求,合闸时发电机发出轰鸣声,随即纵差保护跳闸。
1 发电机差动保护动作情况山美水电站#1发电机技术改造后于2005年8月投入运行,运行后一切正常。
发电机所采用的保护为河南许继集团生产的WFB-800系列保护装置。
中性点和机端差动保护电流互感器均为LZZBJ9-10 A2型,10P15 /10P15 级,变比为1500/5,其中中性点电流互感器安装在发电机现场,机端电流互感器安装在新高压开关室,两者相距350m 。
如图1图18月23日由于35KV线路遭受雷击,A、B两相短路,雷电波虽经过了一台110KV三卷变的隔离,但还是引起发电机差动保护范围外的区外短路,导致机能差动保护动作。
差动保护回路因差流存在并达到动作限值引起差动保护动作,装置动作正确。
但因区外短路,故本不应引起发电机差动保护动作。
保护装置记录当时的动作数据如下:机端A相电流13.97∠090°A机端B相电流18.13∠322°A机端C相电流16.52∠175°A中性点A相电流18.91∠252°A中性点B相电流21.92∠117°A中性点C相电流15.62∠354°AA相差动电流8.30AA相制动电流16.10AB相差动电流9.42AB相制动电流19.55AC相差动电流0.14AC相制动电流15.57A2保护动作原因分析2.1客观原因:发电机组中性点电流互感器与机组出口电流互感器距离为350米,两电流互感器间有一段300米的汇流母排,外部设备雷击后,多次谐波被母排及发电机吸收,使机端与发电机中性点电流互感器的一次电流差异较大,引起差动动作,造成发电机事故停机。
发电机差动、转子接地、定子接地保护

发电机差动、转子接地、定子接地保护1、工频变化量反应匝间短路的灵敏度,工频变化量比率差动保护,它利用工频故障分量构成的工频变化量比率差动保护,不受负荷电流影响,灵敏度高,抗TA 饱和能力强,具有很高的检测变压器内部小电流故障(如中性点附近的单相接地及相间短路,单相小匝间短路)的能力。
根据研究单位各种动模与静模试验统计表明:在变压器正常运行工况下发生1.5%的匝间故障时,工频变化量差动保护都能灵敏动作。
2、为何要采用变斜率比率差动原理?答:(1)变斜率比率差动一开始就带制动特性,可以很好地与CT不平衡电流匹配,防止了两折线比率差动拐点设置不合理产生的问题;(2)与普通比率差动比较,增加了灵敏动作区,提高了轻微内部故障时保护的灵敏度;同时,变斜率比率差动在制动电流很大时,减小一块易误动区,提高了安全性。
3、差动保护采用何种原理防止励磁涌流时误动?答:差动保护采用二次谐波原理及波形判别原理防止励磁涌流时差动的误动。
4、变压器差动保护对YD变压器电流的幅值和相位如何调整?RCS-985采用软件实现Y->Δ变换调整变压器各侧TA二次电流相位。
同时,通过软件自动平衡各侧的变比差别,最大的调整倍数:各侧均为5A的CT,相对于标准侧,调整系数范围0.01-6.4倍。
对于标准侧为5A的CT,调整侧为1A的CT,调整系数范围0.01–32倍。
5、定子匝间保护如何实现?如发电机中性点能引出6个端子,定子匝间保护由裂相横差和单元件横差保护实现,灵敏度最高;如发电机中性点只能引出3个端子时,机端配置匝间保护专用PT,采用纵向零序电压匝间保护方案,RCS-985中采用电流比率制动方案区分区外故障;如没有专用PT,采用工频变化量负序功率方向匝间保护。
6、发电机是否具备“低电压保持记忆过流保护”,作为自并励机组的后备保护?答:RCS-985装置发电机复合电压过流保护具备“低电压保持记忆过流保护”功能,记忆时间足够保护动作(记忆时间为15S)。
京玉发电关于2机组发电机差动保护动作故障停机的分析报告

附件3:山西京玉发电有限责任公司关于#2机组发电机差动保护动作故障停机的分析报告一、事故经过1、事故前机组运行工况:2014年03月29日,二号机组负荷245MW,发电机电压22.83kV,定子电流6200A,转子电压256.41V,转子电流1428.90A,二号机组正常运行。
2、事故发生过程:2014年03月29日,12:43:43:230,二号机发变组A屏(RCS-985南瑞)首出“发电机差动保护”动作,跳开2号主变高压侧断路器202、灭磁开关、二号机6kV1、2段工作电源进线开关、关闭主汽门并启动厂用电切换。
12:43;43:722二号机组快切装置正确动作,厂用电切换正常。
12:43:43:303,二号汽轮机跳闸,12:43:44:474,二号锅炉BT保护动作。
具体故障数据及波形如下:图1:保护A屏(RCS-985)发电机差动动作报告及波形二、现场检查及处理情况2014年3月29日,12点50分,电气二次专业人员接到值长通知二号机组发电机差动保护动作。
到现场检查情况如下:1、保护装置及保护定值检查:现场检查二号机发变组保护A屏保护装置(RCS985)报“发电机差动TA 断线”、“主变差动TA断线”、“发电机差动保护动作”。
从保护动作报告上可以看出2号发电机机端电流B相(回路号B4081)差动电流达到动作定值。
发电机差动保护定值及保护动作分析计算如下:发电机差动保护定值:发电机差动启动定值(Icdqd):0.2Ⅰe 比率制动最大斜率(Kbl2):0.5 比率制动起始斜率(Kbl1):0.05 差动保护跳闸控制字:1E3F(全停)发电机二次额定电流(Ie):3.73A 保护CT变比:12500/5发电机差动速断投入:1 发电机比率差动投入:1TA断线闭锁比率差动:0 发电机工频变化量差动投入:1故障波形记录机端B相故障差动电流:0.64I eB相机端电流:0.01I eB相中性点电流:0.65I e比例差动保护的动作方程如下:由以上公式计算故障时电流为:I d=0.64I e=2.46A I r=0.66I e/2=1.19A由差动保护动作方程(Ir<nI e,n为最大斜率时的制动电流倍数,厂家固定取4)计算可得:K bl=0.068 , I d>0.22I e时,比例差动保护动作。
纵联差动保护原理

一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1与I2反向流入,KD的电流为11TAIn-22TAIn=1I'-2I'≈0 ,故KD不会动作。
当在保护区内K2点故障时,I1与I2 同向流入,KD的电流为:11TAIn+22TAIn=1I'+2I'=2kTAIn当2kTAIn大于KD的整定值时,即1I'-(3)max max/unb st unp i k TAI K K f I n=≠0 ,KD动作。
这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2kTAIn≥I set,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb表示。
通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA的误差增大,再加上短路电流中非周期分量的影响,Iunb增大,一般外部短路电流越大,Iunb就可能越大,其最大值可达:.min.min.min()brk brkop ork brk opI II K I I I>≥≤+式中:Kst——同型系数,取0.5;Kunp——非周期性分量影响系数,取为1~1.5;fi ——TA的最大数值误差,取0.1。
为使KD在发电机正常运行及外部故障时不发生误动作,KD的动作值必须大于最大平衡电流Iunb.max,即Iop=KrelIunb.max(Krel为可靠系数,取1.3)。
Iunb.max越大,动作值Iop就越大,这样就会使保护在发电机内部故障的灵敏度降低。
此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg短路时,保护不能动作。
对于大、中型发电机,即使轻微故障也会造成严重后果。
发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。
(1)纵联差动保护:为定子绕组及其引出线的相间短路保护。
(2)横联差动保护:为定子绕组一相匝间短路保护。
只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。
(3)单相接地保护:为发电机定子绕组的单相接地保护。
(4)励磁回路接地保护:为励磁回路的接地故障保护。
(5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。
(6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。
中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。
(7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。
(8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。
(9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。
(10)失步保护:反应大型发电机与系统振荡过程的失步保护。
(11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。
发电机保护简介1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
大型电动机高阻抗差动保护原理、整定及应用

大型电动机高阻抗差动保护原理、整定及应用大型电动机高阻抗差动保护原理、整定及应用一、引言随着电力系统的发展和电动机的广泛应用,电动机保护也变得越来越重要。
其中差动保护是电动机保护中常用的一种方法,它可以有效地检测电动机的故障并及时采取保护措施。
本文将介绍一种常用的差动保护方案——大型电动机高阻抗差动保护,包括其原理、整定方法以及应用。
二、大型电动机高阻抗差动保护原理大型电动机高阻抗差动保护是一种基于电流差动原理的保护方案。
它通过比较电动机的输入和输出电流来检测电动机的故障。
具体原理如下:1. 故障前状态:电动机的输入和输出电流应该是相等的,差动电流为零。
2. 故障发生:当电动机发生故障时,比如转子绕组短路或绝缘损坏,会导致差动电流增大。
3. 保护动作:差动保护装置会监测输入和输出电流的差值,当差值超过设定的阈值时,会发出保护信号,触发断路器断开电路,以保护电动机不受进一步损坏。
三、大型电动机高阻抗差动保护整定方法1. 阻抗整定:大型电动机高阻抗差动保护的阻抗整定是非常关键的一步。
阻抗整定的目的是确定差动电流的阈值,使其能够准确地检测电动机的故障。
阻抗整定一般通过实验来进行,根据电动机的特性和运行状态来确定阈值。
2. 故障判据:大型电动机高阻抗差动保护的故障判据一般是根据电动机的额定电流和差动电流的比值来确定的。
当差动电流与额定电流的比值超过一定的阈值时,就判定为电动机故障。
3. 阈值设定:阈值设定是根据电动机的特性和运行条件来确定的。
一般来说,阈值设定应该略大于电动机在正常运行状态下的差动电流,以确保能够准确地检测到故障。
四、大型电动机高阻抗差动保护应用大型电动机高阻抗差动保护广泛应用于各种大型电动机的保护中,尤其是对于容易发生故障的电动机,如高压电机、重载电机等。
它可以有效地检测电动机的故障,避免因故障而导致设备损坏甚至事故发生。
大型电动机高阻抗差动保护还可以与其他保护装置相结合,形成多重保护,提高电动机的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
If:机端电流,Icd:差动电流,Igd:制动拐点电流
Icdqd:差动保护门坎定值,K:比率差动制动系数
4.1.2 CT
正常运行时,发电机机端CT或中性点CT均无负序电流,无论是机端侧还是中性点侧出现CT断线,只要不是三相断线,均会产生负序电流,故可用负序电流作为CT断线的判据。当单侧负序电流大于0.1A时,则认为CT断线,并闭锁比率差动保护。由于CT断线闭锁功能是比率差动保护的辅助功能,必须是比率差动保护投入,该功能才起作用。
子绕组发生短路和匝间短路时,TAO上会流过较大的基频零序短路流过电流大于动作门槛电压时,横差保护出口, 即Id> Id.set(Id为横差电流的基波分量, Id.set为横差保护电流定值)。
2 比率制动式微机
为了防止差动保护在外部短路时,发电机有很大穿越电流使CT误差增大时误动作,采用比率差动原理。该保护采用机端电流If作为制动电流,而不采用中性点侧电流或两侧电流的综和电流作为制动电流。这样既能在外部短路时取得足够的制动电流,又能在内部短路时减少中性点电流的制动作用,特别是发电机尚未与系统并联运行而发生内部短路时,机端三相没有电流,中性点侧电流只作为动作电流,因此提高了内部短路的灵敏度。为防止因CT断线引起比率差动保护误动该保护带有CT断线闭锁功能。该保护采用分相式,即A、B、C任一相保护动作均出口,以下判据均以一相为例。
Icd:差动电流;Icdset:差动电流告警整定值
4.3
ISET:过负荷电流整定值,Tset:动作延时
发电机差动保护动作后的处理
若差动保护动作,发电机跳闸,应测量静子电阻绝缘,并对发电机及其保护区内一切设备回路状况进行全面检查,检查发电机内部有无烟火,焦糊气味或局部过热现象。同时,还要检查实验保护装置,是否是保护装置误动作,并询问调度电网系统有无故障
发电机组差动保护
发电机的纵差动保护
发电机相间短路是发电机内部最严重的故障,因此要 定子绕组装设快速动作的保护装置,当发电机的中性点侧又分相引出线时,可装设纵差保护作为发电机相间短路的主保护。总差动保护是根据比较被保护元件始端及末端电流数值和相位的原理而构成,见图3,为了实现次保护在发电机中性点侧和靠近发电机出口断路器处装设同一变比的电流互感器1LH和2LH,两侧的电流互感器按环流法连接,即两侧电流互感器二次侧极相连,并在其差回路中接入电流继电器。
结束语:发电机纵差保护是电力系统中发电机最常用的主保护,微机保护大量在现场运用,为保护不同的动作特性和出口方式提供了有利条件,我们可根据自己的实际情况,以及对灵敏度要求的侧重点进行选择。在现场维护过程中,我们除了对保护功能及整定关注的同时,应注意二次回路的维护,提高其可靠性。
1)当发电机定子三相电流不平衡度超过10%或负序电流超过8%时,应汇报值长降低无功负荷,同时立即向调度汇报,要求降低机组有功负荷,使不平衡度降到允许值以内。若无法降低定子电流三相电流的不平衡程度,应设法将机组解列。2)核对发电机、主变三相电流表,以判断是否由表计失常引起。3)若不平衡电流是由于机组内部故障引起的,则应立即将故障的机组解列。4)若由于系统原因引起不平衡时,应立即汇报调度设法消除,拉开非全相运行的线路,以保证发电机继续运行。5)发电机在带不平衡电流期间,应加强对发电机温度巡测仪及机组振动的监视。
护不会误动作。
(3)、保护范围内短路时,如图4(3)中的D2 点短路时,则电流进电流互感器的电流为两侧电流互感器的二次电流之
和,即Ij=I1 +I2 ,这时Ij> Id ,保护动作。
发电机定子绕组匝间短路,定子绕组匝间开焊故障,也可兼顾定子绕组相间短路的故障。一般汽轮发电机大多为每相两并联分支绕组,当三相第一分支的中性点和三相第二分支的中性点可分别引出机外时,可用单元件横差动保护,原理接线如图6所示。在01和02连线上接入横差电流互感器TAO。横 差保护反映具有零序性质的中性点连线上的基频电流,因此可以称为零序横差保护。当发电机正常运行时,流过TAO的电流很小(仅为不平衡电流),而当定
(1)、正常运行时,在发电机的中性点侧与出口侧的电 流数值和相位均相同,即I1=I2,由图4(1)可见, 流进电流继电器的电流为两侧二次电流差, Ij=I1-I2 ,若两边电流互感器的特性完全相同,则Ij=0,继电器不会动。
(2)、 在保护范围外短路时,如图4(2)所示的D1 点发生 短路,情况和正常运行时相似,即Ij=I1-I2 ,当电流互感器的特性完全相同时,Ij=0。但实际上电流互感器的特性不完全相同,因此, Ij=I1-I2 ≠0 ,有电流流过继电器,这个电流叫做不平衡电流,用Ibp 表示,当继电器的动作电流Id>Ibp 时,保