线段的和差问题
一次函数综合—线段和差、存在性问题

一次函数的应用—线段和差、存在性问题一、一次函数线段和差最值问题【知识点】1. 最短路径原理【原理1】作法作图原理在直线l 上求一点P,使PA+PB 值最小。
连AB,与l 交点即为P.两点之间线段最短.PA+PB 最小值为AB.【原理2】作法作图原理在直线l 上求一点P,使PA+PB 值最小.作 B 关于l 的对称点B'连A B',与l 交点即为P.两点之间线段最短.PA+PB 最小值为A B'.【原理3】作法作图原理在直线l 上求一点P,使作直线AB,与直线l的交点即为P.三角形任意两边之差小于第三边.≤AB .PBPA-(1)求线段和最小时动点坐标或直线解析式;(2)求三角形周长最小值;(3)求线段差最大时点的坐标或直线解析式。
3. 口诀:“和小异,差大同”(一)一次函数线段和最小值问题【例题讲解】★★☆例题1.在平面直角坐标系xOy中,y轴上有一点P,它到点(4,3)A,(3,1)B 的距离之和最小,则点P的坐标是()A.(0,0)B.4(0,)7C.5(0,)7D.4(0,)5的值最大 .【原理4】作法作图原理在直线l 上求一点P,使的值最大 .作B 关于l 的对称点B'作直线A B',与l交点即为P.三角形任意两边之差小于第三边.≤A B' .PB PA-PB PA-PB PA-★★☆练习1.如图,在平面直角坐标系中,已知点(2,3)B-,在x轴上存在点P到A,B两点的A,点(2,1)距离之和最小,则P点的坐标是.★★☆练习2.如图,直线34120+-=与x轴、y轴分别交于点B、A两点,以线段AB为边在第一象限x y内作正方形ABCD.若点P为x轴上的一个动点,求当PC PD+的长最小时点P的坐标.★★☆例题2.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3∆的周长最小时,求点E OB=,D为边OB的中点,若E为x轴上的一个动点,当CDEOA=,4的坐标()A .(3,0)-B .(1,0)C .(0,0)D .(3,0)★★☆练习1.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,当ABC ∆的周长最小值时,ABC ∆的面积为 .★★☆练习2.如图,在平面直角坐标系中,直线122y x =+与x 轴、y 轴分别交于A 、B 两点,以AB 为边 在第二象限内作正方形ABCD .(1)求点A 、B 的坐标,并求边AB 的长;(2)求点C 和点D 的坐标;(3)在x 轴上找一点M ,使MDB ∆的周长最小,请求出M 点的坐标,并直接写出MDB ∆的周长最小值.(二)一次函数线段差最大值问题【例题讲解】★★☆例题1.已知,如图点(1,1)A,(2,3)B-,点P为x轴上一点,当||PA PB-最大时,点P 的坐标为()A.1(,0)2B.5(,0)4C.1(,0)2-D.(1,0)★★☆练习1.平面直角坐标系中,已知(4,3)A、(2,1)B,x轴上有一点P,要使PA PB-最大,则P点坐标为★★☆练习2.如图,在平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(6,0),点P在一次函数1322y x =+的图象上运动,则PB PA -的最大值为( )A .2B .233C .4D .143【题型知识点总结】一次函数最短路径问题注意事项:1. 根据“和小异,差大同”判断是否需要作对称;2. 作对称时注意要选取动点运动的直线为对称轴作某一定点的对称点。
线段的和差倍分问题的证明

ABE DC线段的和差倍分问题的证明证明线段的倍分问题: 一、运用定理法即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。
此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。
例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM =21AB 二、比例线段法即找出与所证明有关的比例式,通过对比例式进行变形或重新组合,从而得出线段之间的和差倍分关系。
例2 如图,在△ABC 中,BD 是∠B 的平分线,△ABD 的外接园交BC 于E ,若AB =21AC , 求证:CE =2AD 。
对应练习1、已知:如图所示,点D 、E 分别是等边ABC ∆的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 21=.2、如图所示,在ABC ∆中,AB=AC ,︒=∠90BAC ,BE 平分ABC ∠,交AC 于D ,BE CE ⊥于E 点,求证:BD CE 21=. Q A DP C B E AEADF3、已知:如图所示,锐角ABC ∆中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD .4、如图,在ABC ∆中,延长BC 到D ,使CD=2BC ,E 在AC 上,且AE=2EC ,D 的延长线交AB 于F ,求证:EF DE 27=二、割补法证明线段的和差问题:这是证明线段的和差倍分问题的一种重要方法。
即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍分关系,从而将多线段问题转化为两线段问题。
在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差倍分关系的线段,促使问题的转化。
但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。
线段的和差归纳总结

线段的和差归纳总结线段是数学中常见的几何图形,它由两个端点组成,并且在两个端点之间延伸出一段直线。
在数学中,我们经常会遇到线段的和差问题,即两个线段进行运算后所得到的结果。
本文将对线段的和差进行归纳总结,帮助读者更好地理解和应用于解题过程中。
一、线段的加法在线段的加法中,我们将两个线段的长度进行相加,并得到一个新的线段。
设有线段AB和线段CD,其长度分别为a和b,则线段AB与线段CD的和为线段EF。
根据加法运算的定义,有以下关系:EF = AB + CD二、线段的减法在线段的减法中,我们将一个线段的长度减去另一个线段的长度,得到一个新的线段。
设有线段AB和线段CD,其长度分别为a和b,则线段AB与线段CD的差为线段EF。
根据减法运算的定义,有以下关系:EF = AB - CD三、线段的性质1. 线段的加法和减法都满足结合律。
即,将三个及以上的线段按照一定顺序进行加法或减法运算,得到的结果与加法或减法的运算顺序无关。
2. 线段的加法满足交换律。
即,将线段进行加法运算时,可以改变加法的顺序而不改变结果。
3. 线段的减法不满足交换律。
即,线段的减法运算与减法的顺序相关,改变减法的顺序会改变结果。
四、线段的和差的应用线段的和差在数学中有广泛的应用场景,其中包括:1. 几何图形的拼凑:通过对不同长度的线段进行加法运算,可以组合成各种形状的图形,如正方形、长方形等。
2. 距离的计算:在空间几何中,线段的和差可以用于计算两个点之间的距离。
通过将两个点的坐标表示为线段的长度,可以借助线段的加法和减法来得到两点之间的距离。
3. 函数图像的变换:线段的和差可以用于描述函数图像在x轴和y 轴方向的平移和拉伸。
通过对线段进行加法和减法运算,可以得到新的图像和函数表达式。
五、总结在数学中,线段的和差是一种常见的运算方式。
通过对线段进行加法和减法运算,可以得到新的线段,并应用于几何图形拼凑、距离计算和函数图像变换等方面。
掌握线段的和差的性质和应用,对于解决数学问题具有重要意义。
4.2.2线段中点和差问题

设M地距离工厂5km, N地距M地10km, 那么N地到工厂的距离为 ( D )
A5km B15km C5km或15km D不能确定
M,N,工厂,不在一条直线上
AC=6cm,点D是线段AC的三等分点, 则AD= ___2_或__4___ cm
画图能力 (1)点D靠近A或点D靠近C
点C是线段AB的三等分点, AB=6cm,则AC= __2_或__4____ cm
1、在已知线段上。
2、把已知线段分成两条相等线段的点
在一条直线上顺次取A、B、C三点, 使AB=4cm,BC=3cm,如果点O是 线段AC的中点O,求线段OB的长度是多少?
变式:将上题中的“顺次”去掉, 又会是怎样的结果呢?
直线l上有A、B、C三点,且AB=8cm,BC=5cm, 求线段AC的长。
A
B
C
A,B,C是一条公路上的三个村庄, A,B间路程为100 km,A,C间路程为40 km, 现在A,B之间建一个车站P, 设P,C之间的路程为x km. (1)用含x的代数式表示车站到三个村庄的路程之和; (2)若路程之和为102 km,则车站应建在何处? (3)若要使车站到三个村庄的路程总和最小,
(2)100+x=102,x=2,车站在 C 左、右两侧 2 km 处均 可;
(3)当 x=0 时,x+100=100,车站建在 C 处时路程和最 小,路程和为 100 km.
数学·课标版(BS)
第四章复习
2.如图 4-4,A、B、C 是三个居住人口数量相同的住 宅小区的大门所在位置,且 A、B、C 三点共线,已知 AB =120 米,BC=200 米,E、F 分别是 AB、BC 的中点,为 了方便三个小区的居民出行,公交公司计划在 E 点或 F 点 设一公交停靠站点,为使从三个小区大门步行到公交停靠点 的路程之和最小,你认为公交车停靠点的位置应设在哪里, 为什么?
线段和差问题归类

线段和差最值问题知识储备:1、两点之间线段最短2、轴对称的性质3、垂线段最短4、线段中垂线上的点到线段两端点的距离相等。
5、线段和最小:把直线同侧两点转化为异侧两点,方法是求两点中随便哪一点关于直线的对称点。
利用“三角形两边之和大于第三边”原理。
当直线上的点位于某一点与另一点的连线与直线交点时,和最小。
线段差最大:把异侧两点化为同侧两点进行考察。
利用“三角形两边之差小于第三边”原理突出转化的数学思想,使学生会由两点一线的问题向一点两线、两点两线转化,从在直线上找一点求最短距离向在直线上找两点求最短距离转化。
一、以正方形为载体,求线段和的最小值例1. 四边形ABCD是正方形,边长是4,E是BC上一点,且CE=1,P是对角线BD上任一点,则PE+PC的最小值是_____________。
例2. 正方形ABCD的边长为8,点E、F分别在AB、BC上,AE=3,CF=1,P 是对角线AC上的一个动点,则PE+PF的最小值是()二、以菱形为载体,求线段和的最小值例4(南充)点P是边长为1的菱形ABCD对角线AC上一个动点,M、N分别是AB,BC边上的中点,PM+PN的最小值是()三、以等腰梯形为载体,求线段和的最小值例5 (河南)在梯形ABCD中,AD∥BC,AB=CD=AD=1,∠B=60°,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PC+PD的最小值为_____________。
四、以任意四边形为载体,求线段和的最小值例6已知:在四边形ABCD中,AD、BC不平行,F、E分别是AB、CD 的中点,若EF=m,则 m的取值范围是_____________。
练习1 如图,矩形ABCD中,AB=20cm,BC=10cm,若在AC、AB上各取一点M、N,使BM+MN的值最小,求这个最小值.练习1 练习2练习 2 图所示,在锐角三角形ABC中,AB=4倍根号2,角BAC=45度,角BAC的平分线交BC于点D,MN分别是AD和AB上动点,则BM+MN最小值是练习3 如图:角AOB=45°角内有一点P,PO=10,两边上各有点Q,R(不同O),求三角型PQR的周长最小值。
线段与角的和差倍分计算

线段与角的和差倍分计算
在几何学中,我们经常遇到线段与角之间的和、差和倍分计算问题。
这些计算方法是为了帮助我们更好地理解图形的性质和关系。
本文将详细
介绍线段与角之间的和、差和倍分计算方法。
一、线段的和、差计算
1.线段的和计算:给定线段AB和线段BC,我们需要计算出两个线段
的和,即线段AB+BC。
计算方法是将线段AB和BC的长度相加,即AB+BC。
2.线段的差计算:给定线段AB和线段BC,我们需要计算出两个线段
的差,即线段AB-BC。
计算方法是将线段AB的长度减去线段BC的长度,
即AB-BC。
二、角的和、差计算
1.角的和计算:给定角α和角β,我们需要计算出两个角的和,即
角α+角β。
计算方法是将两个角的度数相加,即α+β。
2.角的差计算:给定角α和角β,我们需要计算出两个角的差,即
角α-角β。
计算方法是将角α的度数减去角β的度数,即α-β。
三、线段与角的倍分计算
1.线段的倍分计算:给定线段AB,我们需要计算出线段AB的一半或
一四分之一的长度。
计算方法是将线段AB的长度除以2或4,即AB/2或AB/4
2.角的倍分计算:给定角α,我们需要计算出角α的一半或一四分
之一的度数。
计算方法是将角α的度数除以2或4,即α/2或α/4
以上是线段与角的和、差和倍分计算的基本方法。
在实际应用中,我们还可以利用一些几何定理和性质来简化计算,例如角的补角、互补角和对应角等关系。
线段和差最值问题解题技巧
线段和差最值问题解题技巧
1. 嘿,你知道吗?平移线段有时就像变魔术一样神奇!比如在这个问题里,把这两条线段平移到一起,你看,是不是一下子就找到答案啦!
2. 哇塞,利用对称性质来解决线段和差最值问题,那可真是绝了呀!就像给问题找到了一把万能钥匙。
比如这个图形,通过对称,一下子就柳暗花明了呢!
3. 哎呀呀,有时候转换思维超重要的啦!别死磕一种方法呀,就像走不通的路咱就换一条呗。
像这个例子,转换一下思考角度,答案不就出来啦!
4. 嘿,当遇到难题不要慌,想想三角形三边关系呀!这就好比给你指了一条明路。
比如看到这样的条件,马上想起三边关系,难题迎刃而解咯!
5. 哇哦,构造辅助线简直就是秘密武器呀!就如同给问题搭了一座桥。
像这个情况,构造出合适的辅助线,一下子就突破难关啦!
6. 哈哈,把复杂问题简单化,不就轻松多了吗?就像把一大团乱麻理清楚。
看这个例子,简单化之后,答案显而易见呀!
7. 哟呵,关注特殊点和特殊位置呀,这可是关键呢!如同发现了宝藏的线索。
像这个情况,抓住特殊点,难题瞬间攻克啦!
8. 嘿呀,寻找等量关系也很重要呀,就像在迷宫里找到了正确的路线。
看看这个例子,一旦找到等量关系,答案就水到渠成啦!
9. 最后我想说,掌握了这些解题技巧,遇到线段和差最值问题根本不用怕呀!它们就是我们的得力助手,能让我们在数学的海洋里畅游无阻呀!。
专题:线段的和差问题
F E DBGA C 线 段 的 和 差 问 题几何中有许多题目要证明一线段等于另两线段的和(或差),解决这类问题常用的方法大体有五种,即,利用等量线段代换、截短法、接长法、利用面积证明、旋转等五种。
一、利用等量线段代换:证一线段等于另两线段的和(或差),只需证这条全线段的两部分,分别等于较短的两条线段,问题就解决了。
例1 已知:已知:如图,在△ABC 中,∠B 和∠C 的角平分线BD 、CD 相交于一点D ,过D 点作EF ∥BC 交AB 与点E ,交AC 与点F 。
求证:EF=BE+CF例2 已知:如图,在△ABC 中,∠ABC 的平分线与∠ACB 相邻外角∠ACG 的平分线相交于D ,DE∥BC 交AB 于E ,交AC 于F .求证:EF=BE-CF .二、截长法(在第三条线段上截取一段等于第一条线段,然后证明余下的线段等于第二条线段)三、补短法(延长一条线段,作出两条线段的和,然后证明这条线段等于第三条线段)例3 如图所示,已知三角形ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.四、旋转法:通过旋转变换,而得全等三角形是解决正方形中有关题目类型的一种技巧。
例4 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,求证:EF=BE+FD五、等积变换法:利用三角形的面积进行证明。
例5 已知:如图,已知在△ABC 中,AB=AC ,BD 为AC 边上的高,如果在BC 上取一点F ,过F 作FG ⊥AB 于G ,作FH ⊥AC 于H.求证:FG+FH=BD.练习:1、 已知:如图,△ABC 中,∠BAC=90o ,AB=AC ,AE 是过点A 的一条直线且B ,C 在AE 的异侧,BD⊥AE 于D ,CE⊥AE 于E 。
求证:BD=DE+CE . E DCAB2、 如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于 D .求证:AD+BC=AB .3、如图,已知在△ABC中,∠BAC为直角,AB=AC,BD平分∠ABC,CE⊥BD于E.求证CE=1/2 BD4、已知:如图,在△ABC中,∠A=90º,D是AC上一点,BD=CD,P是BC上任一点,PE⊥BD于E,PF⊥AC于F.求证:PE+PF=AB.。
二次函数下的线段和差问题
类型一、二次函数中的“饮马问题”基本原理:两点之间,线段最短。
解题思路:利用函数自身的对称性找到某点关于直线的对称点,实现“折”转“直”,再结合函数的相关知识解题。
例题1、如图,抛物线y=x2﹣2x与直线y=3相交于点A、B,P是x轴上一点,若PA+PB最小,则点P的坐标为()A.(﹣l,0)B.(0,0) C.(1,0) D.(3,0)【考点】HF:二次函数综合题.菁优网版权所有.【分析】把直线y=3代入抛物线解析式得到A,B点的坐标,根据两点之间线段最短,作点B关于x轴的对称点B′,连接AB′,则与x轴的交点即为点P的坐标.【解答】解:如图,作点B关于x轴的对称点B′,连接AB′与x轴的交点即为点P.当y=3时代入到抛物线解析式得:x2﹣2x﹣3=0,解得x=3或x=﹣1.则由图可知点A(﹣1,3),点B(3,3),∴B′(3,﹣3).设直线AB′的解析式为:y=kx+b.代入A,B′求得:y=,则该直线与x轴的交点为:当y=0时,x=1.∴点P(1,0).故选C.【点评】本题考查了二次函数的综合运用,交点坐标的求法,也灵活地考查了两点之间线段最短,难度中等.例题2、如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【考点】HF:二次函数综合题.菁优网版权所有【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M 点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线y=ax2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣2x﹣3.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=﹣=1,故P(1,0);(3)如图所示:抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:MA2=m2+4,MC2=(3+m)2+1=m2+6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2+6m+10,解得:m=﹣1,②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2+6m+10=10,得:m1=0,m2=﹣6;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,﹣1)(1,0).【点评】此题主要考查了二次函数综合题涉及了抛物线的性质及解析式的确定、等腰三角形的判定等知识,在判定等腰三角形时,一定要根据不同的腰和底分类进行讨论,以免漏解.例题3、如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.【考点】PA:轴对称﹣最短路线问题;H8:待定系数法求二次函数解析式.菁优网版权所有【专题】31 :数形结合.【分析】(1)设抛物线顶点式解析式y=a(x﹣1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)先求出点B关于x轴的对称点B′的坐标,连接AB′与x 轴相交,根据轴对称确定最短路线问题,交点即为所求的点P,然后利用待定系数法求一次函数解析式求出直线AB′的解析式,再求出与x轴的交点即可.【解答】解:(1)∵抛物线的顶点为A(1,4),∴设抛物线的解析式y=a(x﹣1)2+4,把点B(0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4;(2)点B关于x轴的对称点B′的坐标为(0,﹣3),由轴对称确定最短路线问题,连接AB′与x轴的交点即为点P,设直线AB′的解析式为y=kx+b(k≠0),则,解得,∴直线AB′的解析式为y=7x﹣3,令y=0,则7x﹣3=0,解得x=,所以,当PA+PB的值最小时的点P的坐标为(,0).【点评】本题考查了轴对称确定最短路线问题,待定系数法求二次函数解析式,待定系数法求一次函数解析式,(1)利用顶点式解析式求解更简便,(2)熟练掌握点P的确定方法是解题的关键.例题4、如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.【考点】HF:二次函数综合题.菁优网版权所有【分析】(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x的方程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD 的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).【点评】本题主要考查二次函数的综合应用,涉及知识点有待定系数法、矩形的性质、勾股定理、轴对称的性质及方程思想.在(2)中注意方程思想的应用,在(3)中确定出满足条件的P点的位置是解题的关键.本题考查知识点虽然较多,但题目属于基础性的题目,难度不大.例题5、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC 为直角三角形的点P的坐标.【考点】HF:二次函数综合题.菁优网版权所有【专题】16 :压轴题.【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a 和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P 的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【点评】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.类型二、二次函数与线段差最大问题基本原理:三角形任何两边之差小于第三边。
线段的和差倍分专项训练题1精编版
线段的和差倍分专项训练题11.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF2.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长3.在直线l上取 A,B两点,使AB=10厘米,再在l上取一点C,使AC=2厘米,M,N分别是AB,AC中点.求MN 的长度4.如图,已知线段AB和CD的公共部分BD=31AB=41CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长5.如图,点C在线段AB上,AC=8厘米,CB=6厘米,点M、N分别是AC、BC的中点.①求线段MN的长;②若C 为线段AB上任一点,满足AC+CB=a厘米,其它条件不变,你能猜想MN的长度吗?并说明理由6.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度7.如图AD=0.5BD,E是BC的中点,BE=2cm, AC=10cm,求线段DE的长8.已知B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD的中点,CD=6cm,求线段MC的长9.如图,点C、D在线段AB 上.AC=6cm,CD=4cm,AB=12cm,则图中所有线段的和是________cm10.线段AB=12.6 cm,点C 在BA 的延长线上,AC=3.6 cm,M 是BC 中点,则AM 的长是________cm11.如图,线段AB被点C、D分成了4︰5:6三部分,且AC的中点M和DB的中点N之间的距离是40 cm,求AB 的长12.如图,线段AC∶CD∶DB=3∶4∶5,M,N分别是CD,AB的中点,且MN=2 cm,求AB的长13.如图,点C分线段AB为5∶7,点D分线段AB为5∶11,已知CD=10 cm,求AB的长14.如图,已知线段AB上有两点C、D,且AC=BD,M,N分别为AC、AD的中点,若AB=acm,AC=BD=bcm,且a,b 满足(a-10)2+︱0.5b-4︱=0.(1)求AB,AC的长;(2)求线段MN的长15.已知线段AB=4,在线段AB的延长线上取一点C,使AC=5BC/3,在线段AB的反向延长线上取一点D,使BD=4DC /7,若E为DC的中点,求BE的长16.已知C为线段AB的中点,D为线段AC的中点,解答下列问题:①画出相应的图形,并写出图中所有的线段;②若图中所有线段的长度和为26,求线段AC的长度;③若E为线段BC上的点,M为线段EB的中点,DM=a,CE=b,求线段AB的长度(用含有a,b的代数式表示)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何证明方法探究
线 段 的 和 差 问 题
辅导时间 姓名
1、已知如图,在ΔABC 中,∠B = 2∠C ,AD 平分∠BAC 。
求证:AC = AB + BD
2、已知如图,AD ∥BC ,∠C = 90°,∠B = 60°,求证:BC = AD +
12AB
3、已知如图,AD ∥BC ,AE 平分∠DAB ,EB 平分∠ABC ,E 点在CD 上, 求证:AB = AD + BC
B A D
C B A
D C
A D E
C B
4、已知如图,在ΔABC 中,AD ⊥BC ,AB + BD = DC ,求证:∠B = 2∠C
5、已知如图,AD 是BC 边上的高,AB = AC = 2AD ,DE ⊥AB 于E ,DF ⊥AC 于F , 求证:DE + DF = 12BC
6、已知如图,ΔABC 中,∠ABC 和∠ACB 的平分线相交于点D ,过点D 的直线EF ∥BC ,交AB 于E ,交AC 于F ,求证:EF = BE + CF
B D
C A B
D
E
A
F C B E A D F C
7、已知如图,正方形ABCD 中,E 、F 分别是AD 、DC 上的点,且∠EBF = 45°,
求证:AE + FC = EF
8、已知如图,ΔABC 中,∠B = 60°,角平分线AD 、CE 交于点O ,求证:AE + CD = AC
9、已知如图,AM ∥BN ,∠MAB 与∠NBA 的平分线交于点E ,过点E 的直线交AM 于D ,交BN 于C ,求证:(1) DE = CE (2) AD + BC = AB
B A E D F
C O B E A
D C B
A C E D
M
N
10、已知如图,在ΔABC 中,AB = AC ,点D 在ΔABC 外,且∠ABD = 60°,2∠ADB+∠BDC = 180°。
求证:AB = BD + DC
11、已知如图,在Rt ΔABC 中,∠C = 90°,∠A = 45°,AE = AC ,DE ⊥AB ,
求证:AB = AC + CD
12、已知如图,在ΔABC 中,∠ACB = 90°,AC = BC ,D 为ΔABC 外一点,且AD = BD ,DE ⊥AC 交CA 的延长线于点E ,求证:DE = AE + BC
B A
D C B
E D C A E
A C D B。