九年级上(期中A班)数学试卷
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程2410x x --=的左边变成平方的形式是()A .2(2)1x -=B .2(4)1x -=C .2(2)5x -=D .2(1)4x -=3.二次函数y=ax 2+bx+c 的图象如图所示,则该二次函数的顶点坐标为()A .(1,3)B .(0,1)C .(0,—3)D .(2,1)4.关于方程2450x x -+=的根的情况,下列说法正确的是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法判断5.在平面直角坐标系中,将点M (0,3-)绕原点顺时针旋转90°后得到的点的坐标为()A .(0,3-)B .(3,0)C .(3-,0)D .(0,3)6.如图,ABCDE 是正五边形,该图形绕它的中心至少旋转()可以跟自身重合。
A .60︒B .120︒C .75︒D .72︒7.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是()A .y =(x +2)2+1B .y =(x -2)2+1C .y =(x +2)2-1D .y =(x -2)2-18.关于x 的一元二次方程x 2+px +q =0的两根同为负数,则()A .p >0且q >0B .p >0且q <0C .p <0且q >0D .p <0且q <09.在同一坐标系内,一次函数y ax b =+与二次函数28y ax x b =++的图象可能是A .B .C .D .10.如图,已知△ABC 的顶点坐标分别为A(0,2),B(1,0),C(2,1).若二次函数y=x 2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A .b≤-2B .b<-2C .b≥-2D .b>-2二、填空题11.已知点(2,1)在抛物线y=ax 2上,则此函数的开口方向___________12.若关于x 的一元二次方程(m ﹣2)x 2+x+m 2﹣4=0的一个根为0,则m 值是_____.13.在平面直角坐标系中,点P (—10,a )与点Q (b ,b+1)关于原点对称,则a+b=____14.二次函数y=ax 2+bx+c (a≠0)图象上部分点的坐标(x ,y )对应值列表如下:x…-3-2-101…y…-4-3-4-7-12…则该图象的对称轴是___________15.如图,在等腰直角三角形△ABC中,∠C=90°,AC=,将△ABC绕点B顺时针旋转60°得到△DBE,连接DC,则线段DC=_____________cm.三、解答题16.抛物线y=-x2+bx+c的部分图象如图所示,若y≥0,则x的取值范围是___________17.解方程(1)x2+2x—8=0(2)2x2+3x+1=018.在正方形网格中建立平面直角坐标系xOy,△ABC的三个顶点均在格点上,(1)画出△ABC关于点O的中心对称图形△A1B1C1(2)线段AC与线段A1C1的位置关系是______________19.王师傅开了一家商店,七月份盈利2500元,九月份盈利3600元,且每个月盈利的平均增长率都相等,求每月盈利的平均增长率.20.已知关于x的方程x2+5x﹣p2=0.(1)求证:无论p取何值,方程总有两个不相等的实数根;(2)设方程的两个实数根为x1、x2,当x1+x2=x1x2时,求p的值.21.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.(1)求此抛物线的解析式;(2)求△BCD的面积.22.如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A 逆时针旋转后,得到△P AB(1)点P与点P’之间的距离;(2)∠APB的度数.23.已知某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售的单价每降低1元,每天就多卖5件,但要求销售单价不得低于成本.(1)设降价x元,求出每天的销售利润y(元)与x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元时,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)24.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.(1)当DF⊥AC时,求证:BE=CF;(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由;(3)在旋转过程中,连接EF,设BE=x,△DEF的面积为S,求S与x之间的函数解析式,并求S的最小值.25.已知:抛物线l1:y=—x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为直线x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5—2)(1)求抛物线2l 的函数表达式;(2)P 为直线1x =上一动点,连接PA ,PC ,当PA PC =时,求点P 的坐标;(3)M 为抛物线2l 上一动点,过点M 作直线//MN y 轴,交抛物线1l 于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.参考答案1.C【详解】解:A 、是中心对称图形,不是轴对称图形,故选项错误;B 、是轴对称图形,不是中心对称图形,故选项错误;C 、既是轴对称图形,又是中心对称图形,故选项正确;D 、是中心对称图形,不是轴对称图形,故选项错误.故选C.2.C【详解】2410x x --=2445x x +=-()225x -=故答案为:C .【点睛】本题考查了一元二次方程的转换问题,掌握配方法是解题的关键.3.D【解析】【分析】根据抛物线与x 轴的两个交点坐标确定对称轴后即可确定顶点坐标.【详解】解:观察图象发现图象与x 轴交于点(1,0)和(3,0),∴对称轴为2x =,∴顶点坐标为(2,1),故选:D .【点睛】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大.4.B【解析】【分析】根据一元二次方程根的判别式直接判断即可.【详解】解:关于方程2450x x -+=,∵1,4,5a b c ==-=,∴224(4)41540b ac -=--⨯⨯=-<,∴方程2450x x -+=没有实数根,故选:B .【点睛】本题主要考查一元二次方程根的判别式,熟知240b ac ->,有两个不相等的实数根;240b ac -=,有两个相等的实数根;24<0b ac -,没有实数根;是解题的关键.5.C【解析】【分析】根据旋转的性质即可确定点坐标.【详解】解:点(0,3)M -绕原点O 顺时针旋转90︒,得到的点的坐标为(3,0)-,故选:C .【点睛】本题考查了坐标与图形变化-旋转,解题的关键是掌握图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45︒,60︒,90︒,180︒.6.D【解析】【分析】根据正五边形的每个中心角相等且其和为360°即可得到结论.【详解】根据正五边形的性质,每个中心角的相等,则每个中心角的度数为360°÷5=72°,故该图形绕它的中心至少旋转72度可以跟自身重合.故选:D .【点睛】本题考查了图形的旋转及正多边形的性质,关键是抓住正多边形的中心角相等这一性质,问题即解决.7.B【解析】【分析】根据抛物线的平移规律“上加下减,左加右减”解答即可.【详解】将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是y =(x -2)2+1.故选B.本题考查了抛物线的平移规律,熟记抛物线的平移规律“上加下减,左加右减”是解决问题的关键.8.A【解析】【详解】试题解析:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=-p,x1x2=q∴-p<0,q>0∴p>0,q>0.故选A.9.C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一、三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点睛】=+在不同情况下所在本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y kx b的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10.C【解析】根据y=x 2+bx+1与y 轴交于点(0,1),且与点C 关于x=1对称,则对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,据此可求出b 的取值范围.【详解】当二次函数y=x 2+bx+1的图象经过点B (1,0)时,1+b+1=0.解得b=-2,故排除B 、D ;因为y=x 2+bx+1与y 轴交于点(0,1),所以(0,1)与点C 关于直线x=1对称,当对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,所以-2b ≤1,解得b≥-2,故选C.【点睛】本题考查二次函数图象,解题的关键是利用特殊值法进行求解.11.向上【解析】【分析】根据二次函数图象上点的坐标特征,将点(2,1)代入抛物线方程,然后解关于a 的方程,求得a 的值,从而可以确定抛物线方程的二次项系数,即可以判断这条抛物线的开口方向.【详解】解:∵点(2,1)在抛物线y=ax 2上,∴点(2,1)满足抛物线方程y=ax 2,∴1=4a ,解得a =14;∴抛物线方程y =14x 2的二次项系数a =14>0,∴这条抛物线的开口方向向上.故答案是:向上.【点睛】本题考查了二次函数图象上点的坐标特征.经过图象上的某点时,该点一定满足该函数的关系式.12.-2【解析】【分析】根据一元二次方程的解的定义把x=0代入方法解得m=±2,然后根据一元二次方程的定义确定m 的值.【详解】把x=0代入方程(m-2)x 2+(2m-1)x+m 2-4=0得m 2-4=0,解得m=2或m=-2,而m-2≠0,所以m=-2.故答案为-2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.1-【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得10b =,11a =-,进而可得a b +的值.【详解】解: 点(10,)P a -与点(,1)Q b b +关于原点对称,10b ∴=,111a b =--=-,11101a b ∴+=-+=-,故答案为:1-.【点睛】本题主要考查了两个点关于原点对称,解题的关键是掌握点的坐标的变化规律:点关于原点对称时,它们的坐标符号相反.14.2x =-【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴.【详解】解:由表格可得,当x 取-3和-1时,y 值相等,该函数图象的对称轴为直线3(1)22-+-==-x ,【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答.15.2##2-+【解析】【分析】连接CE,延长DC交AB于H,先证明CH⊥AB,由直角三角形的性质可求解.【详解】如图,连接CE,延长DC交AB于H,∵将△ABC绕点B顺时针旋转60°得到△DBE,∴∠ABD=∠CBE=60°,BC=BE=AC=DE,∠ACB=∠DEB=90°,∴△BCE是等边三角形,∠EDB=45°,∴CE=BC,∠CEB=60°,∴CE=DE,∠DEC=30°,∴∠EDC=∠ECD=75°,∴∠BDH=∠EDC−∠EDB=30°,∵∠BDH+∠DBA=90°,∴CH⊥AB,又∵∠ACB=90°,BC=AC=2cm,∴AB AC=4(cm),CH=AH=BH=2(cm),∵CH⊥AB,BH=2cm,∠BDH=30°,∴BD=2BH=4cm,=(cm),)(cm),∴DC=DH−CH=(【点睛】本题考查了旋转的性质,等边三角形的性质,等腰直角三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.16.−3≤x≤1【解析】【分析】函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),即可求解.【详解】解:函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),故:y≥0时,−3≤x≤1,故答案为:−3≤x≤1.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点,及这些点代表的意义及函数特征.17.(1)x1=2,x2=-4(2)x1=-1,x2=-1.2【解析】【分析】(1)利用因式分解法即可求解;(2)利用因式分解法即可求解.【详解】(1)x2+2x—8=0(x-2)(x+4)=0∴x-2=0或x+4=0∴x1=2,x2=-4(2)2x2+3x+1=0(2x+1)(x+1)=0∴2x+1=0或x+1=0∴x1=-12,x2=-1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)见解析;(2)平行【解析】【分析】(1)分别作出三顶点关于原点的对称点,再顺次连接即可得;(2)根据中心对称的性质,即可得出平行且相等的关系.【详解】A B C即为所求.解:(1)如图所示,△111(2)由中心对称的性质可知:线段AC与线段A1C1平行且相等,线段AC与线段A1C1的位置关系是平行,故答案是:平行.【点睛】本题考查了利用旋转变换作图、中心对称图形,解题的关键是熟练掌握网格结构准确找出对应点的位置.19.20%【解析】【分析】设从七月到九月,每月盈利的平均增长率为x,根据该商店七月份及九月份的盈利额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设从七月到九月,每月盈利的平均增长率为x ,依题意,得:22500(1)3600x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:从从七月到九月,每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.20.(1)证明见解析;(2)p =【解析】【分析】(1)求出根的判别式△=25+p 2,根据判别式的意义即可得出无论p 取何值,方程总有两个不相等的实数根;(2)根据根与系数的关系求出两根和与两根积,再代入x 1+x 2=x 1x 2,得到一个关于p 的一元二次方程,解方程即可.【详解】(1)证明:△=52﹣4(﹣p 2)=25+4p 2,∵无论p 取何值时,总有p 2≥0,∴25+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)解:由题意可得,x 1+x 2=﹣5,x 1x 2=﹣p 2,∵x 1+x 2=x 1x 2,∴﹣5=﹣p 2,∴p =【点睛】本题考查了根的判别式和根与系数的关系,注意熟记以下知识点:(1)一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(2)一元二次方程ax 2+bx+c =0(a≠0)的两实数根分别为x 1,x 2,则有x 1+x 2=﹣a b ,x 1•x 2=c a.21.(1)2(1)4y x =--+;(2)6【解析】【分析】(1)设抛物线顶点式解析式2(1)4y a x =-+,然后把点B 的坐标代入求出a 的值,即可得解;(2)令0y =,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论.【详解】解:(1) 抛物线的顶点为(1,4)A ,∴设抛物线的解析式2(1)4y a x =-+,把点(0,3)B 代入得,43a +=,解得1a =-,∴抛物线的解析式为2(1)4y x =--+;(2)由(1)知,抛物线的解析式为2(1)4y x =--+;令0y =,则20(1)4x =--+,1x ∴=-或3x =,(1,0)C ∴-,(3,0)D ;4CD ∴=,11||43622BCD B S CD y ∆∴=⨯=⨯⨯=.【点睛】本题二次函数综合题,主要考查了待定系数法,坐标轴上点的特点,三角形的面积公式,解本题的关键是求出抛物线解析式,是一道比较简单的中考常考题.22.(1)6;(2)150︒【解析】【分析】(1)由已知PAC ∆绕点A 逆时针旋转后,得到△P AB ',可得PAC ∆≅△P AB ',PA P A =',旋转角60P AP BAC ∠'=∠=︒,所以APP ∆'为等边三角形,即可求得PP ';(2)由APP ∆'为等边三角形,得60APP ∠'=︒,在△PP B '中,已知三边,用勾股定理逆定理证出直角三角形,得出90P PB ∠'=︒,可求APB ∠的度数.【详解】解:(1)连接PP ',由题意可知10BP PC '==,AP AP '=,PAC P AB ∠=∠',而60PAC BAP ∠+∠=︒,所以60PAP ∠'=度.故APP ∆'为等边三角形,所以6PP AP AP '=='=;(2)利用勾股定理的逆定理可知:222PP BP BP '+=',所以∆'BPP 为直角三角形,且90BPP ∠'=︒可求9060150APB ∠=︒+︒=︒.【点睛】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,解题的关键是你掌握旋转的图形的大小、形状都不改变.23.(1)252002500,(050)y x x x =-++≤≤;(2)销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)销售单价应该控制在82元至90元之间【解析】【分析】(1)根据“利润=(售价-成本)⨯销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)每天的销售利润不低于4000元,根据二次函数与不等式的关系求出x 的取值范围,再根据每天的总成本不超过7000元,以及50100100x ≤-≤,列不等式组即可.【详解】解:(1)由题意得:(10050)(505)y x x =--+,(50)(505)x x =-+,252002500,(050)x x x =-++≤≤,所以252002500,(050)y x x x =-++≤≤;(2)22520025005(20)4500y x x x =-++=--+ ,50a =-< ,∴抛物线开口向下.050x ≤≤Q ,对称轴是直线20x =,∴当20x =时,即销售单价是80元,每天的销售利润最大,最大利润是4500y =最大值;即销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)当4000y =时,2400052002500x x =-++,解得:110x =,230x =,∴当1030x ≤≤时,即销售单价在7010090x ≤-≤,每天的销售利润不低于4000元,由每天的总成本不超过7000元,得50(550)7000x + ,解得:18x ≤,82100x ∴≤-,50100100x ≤-≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题主要考查二次函数的实际应用,解题的关键是弄清题意,列出相应等式,借助二次函数解决实际问题.24.(1)见解析;(2)BE+CF =2,是为定值;(3)S x ﹣1)2,当x =1时,S最小值为4.【解析】【分析】(1)根据四边形内角和为360°,可求∠DEA =90°,根据“AAS”可判定△BDE ≌△CDF ,即可证BE =CF ;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可证到△EMD ≌△FND ,则有EM =FN ,就可得到BE+CF =BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=12BC=2;(3)过点F作FG⊥AB,由题意可得S△DEF=S△ABC﹣S△AEF﹣S△BDE﹣S△BCF,则可求S与x 之间的函数解析式,根据二次函数最值的求法,可求S的最小值.【详解】(1)∵△ABC是边长为4的等边三角形,点D是线段BC的中点,∴∠B=∠C=60°,BD=CD,∵DF⊥AC,∴∠DFA=90°,∵∠A+∠EDF+∠AFD+∠AED=180°,∴∠AED=90°,∴∠DEB=∠DFC,且∠B=∠C=60°,BD=DC,∴△BDE≌△CDF(AAS)(2)过点D作DM⊥AB于M,作DN⊥AC于N,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,BMD CNDB CBD DC∠=∠⎧⎪∠∠⎨⎪⎩==∴△MBD≌△NCD(AAS)BM=CN,DM=DN.在△EMD 和△FND 中,EMD FND DM DN MDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMD ≌△FND (ASA )∴EM =FN ,∴BE+CF =BM+EM+CF =BM+FN+CF =BM+CN=2BM =2BD×cos60°=BD =12BC =2(3)过点F 作FG ⊥AB ,垂足为G,∵BE =x∴AE =4﹣x ,CF =2﹣x ,∴AF =2+x ,∵S △DEF =S △ABC ﹣S △AEF ﹣S △BDE ﹣S △BCF ,∴S =12BC×AB×sin60°﹣12AE×AF×sin60°﹣12BE×BD×sin60°﹣12CF×CD×sin60°=12×(4﹣x )×(2+x )1212×(2﹣x )∴Sx ﹣1)2(∴当x =1时,S【点睛】本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM =CN ,DM =DN ,EM =FN 是解决本题的关键.25.(1)215222y x x =--;(2)(1,1);(3)12【解析】【分析】(1)由对称轴可求得b ,可求得1l 的解析式,令0y =可求得A 点坐标,再利用待定系数法可求得2l 的表达式;(2)设P 点坐标为(1,)y ,由勾股定理可表示出2PC 和2PA ,由条件可得到关于y 的方程可求得y ,可求得P 点坐标;(3)可分别设出M 、N 的坐标,可表示出MN ,再根据函数的性质可求得MN 的最大值.【详解】解:(1) 抛物线21:3l y x bx =-++的对称轴为1x =,12b∴-=-,解得2b =,∴抛物线1l 的解析式为2y x 2x 3=-++,令0y =,可得2230x x -++=,解得1x =-或3x =,A ∴点坐标为(1,0)-,抛物线2l 经过点A 、E 两点,∴可设抛物线2l 解析式为(1)(5)y a x x =+-,又 抛物线2l 交y 轴于点(20,5)D -,552a ∴-=-,解得12a =,2115(1)(5)2222y x x x x ∴=+-=--,∴抛物线2l 的函数表达式为215222y x x =--;(2)设P 点坐标为(1,)y ,由(1)可得C 点坐标为(0,3),22221(3)610PC y y y ∴=+-=-+,2222[1(1)]4PA y y =--+=+,PC PA = ,226104y y y ∴-+=+,解得1y =,P ∴点坐标为(1,1);(3)由题意可设215(,2)22M x x x --,//MN y 轴,2(,23)N x x x ∴-++,令221523222x x x x -++=--,可解得1x =-或113x =,①当1113x -< 时,2222153113449(23)(2)4()2222236MN x x x x x x x =-++---=-++=--+,显然411133-< ,∴当43x =时,MN 有最大值496;②当1153x < 时,2222153113449(2)(23)4()2222236MN x x x x x x x =----++=--=--,显然当43x >时,MN 随x 的增大而增大,∴当5x =时,MN 有最大值,23449(512236⨯--=;综上可知在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.【点睛】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理等知识点,在(1)中求得A 点的坐标是解题的关键,在(2)中用P 点的坐标分别表示出PA 、PC 是解题的关键,在(3)中用M 、N 的坐标分别表示出MN 的长是解题的关键,注意分类讨论.。
最新人教版九年级上期中考试数学试题(A卷)及答案

九年级数学期中试卷24分)1、一元二次方程2(1)2x -=的解是( )A.11x =-21x =- B.11x =21x = C.13x =,21x =-D.11x =,23x =-2、下列各式中,y 是x 的二次函数的是 ( ) A .2y ax bx c =++ B . 220x y +-= C . 22y ax -=- D .2210x y -+=15. 3下列标志中,可以看作是中心对称图形的是 ( )4.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++=D.2210x x +-=5、已知函数 y =(m +2) 22-mx 是二次函数,则 m 等于( )A 、±2B 、2C 、-2D 、±26、 如图,A 、B 、C 是⊙O 上的三点,已知∠O=60°,则∠C=( )A 、20°B 、25°C 、30°D 、45° 7、 函数y =-x 2-4x -3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1) 8、 下列三个命题:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直平分弦并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④只有在同圆或等圆中,才会存在等弧.其中真命题的是( )A. ① ②B. ②③C. ①③D. ①④9、大理市某广场准备修建一个面积为200平方米的矩形草坪,它的长比宽多10米,设草坪的宽为x 米,则可列方程为( )A .x(x-10)=200B .2x-2(x-10)=200C .2x+2(x+10)=200D .x(x+10)=20010、 如图,若正六边形ABCDEF 绕着中心O 旋转角α得到的图形与原来的图形重合,则α最小值为( )A.180° B.120° C.90° D.60°11、 ⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A 1 cm B 7cm C 3 cm 或4 cm D 1cm 或7cm12、如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =( ).A . 4 B.5 C . 6 D.7二、填空题(每小题3分,共18分)13、 关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2,则b = ,c =14、抛物线()b x b x y 322+--=的顶点在y 轴上,则b 的值为 。
2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。
人教版数学九年级上册期中考试数学试卷及答案

人教版九年级上册期中考试数学试卷一、选择题(以下每题只有一个答案是正确的,请把正确答案的代号填在相应的表格里,每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的是()A.x2+2x+y=1B.x2+﹣1=0C.x2=0D.(x+1)(x+3)=x2﹣12.(3分)抛物线y=3(x﹣2)2+3的顶点坐标为()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)将抛物线y=2x2向左平移1个单位,再向下平移2个单位,得到的抛物线是()A.y=2(x+1)2+2B.y=2(x﹣1)2+2C.y=2(x﹣1)2﹣2D.y=2(x+1)2﹣2 5.(3分)方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=0,x2=2C.x=0D.x=26.(3分)用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2=B.3(x﹣1)2=C.(3x﹣1)2=1D.(x﹣1)2=7.(3分)若A(﹣3,y1),B(﹣1,y2),C(2,y3)为二次函数y=x2﹣2x﹣3的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y28.(3分)贞丰县享有“中国花椒之乡”的赞誉,其中以北盘江镇顶坛花椒的品质最为出名.据统计,2014年贞丰北盘江镇花椒总产量约为4000吨,经种植技术和管理水玉提高后,2016年的总产量增长到6000吨,设平均每年的年平均增长率均为x,则下列方程正确的是()A.6000(1+x)2=4000B.4000(1+x)2=6000C.4000(1﹣x)2=6000D.6000(1﹣x)2=40009.(3分)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.10.(3分)如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,第小题3分,共30分)11.(3分)把方程x(x+3)﹣2x+1=5x﹣1化成一般形式为:.12.(3分)方程(x+2)2﹣9=0的解为:.13.(3分)抛物线y=﹣2(x﹣1)2+3可以通过抛物线y=向平移个单位、再向平移个单位得到,其对称轴是.14.(3分)中心对称图形的旋转角是.15.(3分)方程x2+3x+1=0的根的情况是:.16.(3分)设x1、x2是方程2x2﹣x﹣1=0的两个根,则x1+x2=,x1•x2=.17.(3分)若y=(n2+n)x是二次函数,则n=.18.(3分)如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).19.(3分)请写出一个开口向下,对称轴为直线x=1,且与y轴的交点坐标为(0,2)的抛物线的解析式.20.(3分)如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点,容易看出,10是三角点阵中前4行的点数和,则300个点是前行的点数和.三、解答题(本大题共8大题,共60分)21.(15分)解下列方程(1)x2﹣5x﹣6=0(2)2(x﹣3)2=8(3)4x2﹣6x﹣3=0(4)(2x﹣3)2=5(2x﹣3)22.(9分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.23.(10分)阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即|a|=问:(1)这种分析方法涌透了数学思想.(2)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(3)猜想与|a|的大小关系.(4)尝试用从以上探究中得到的结论来解决下面的问题:化简(﹣3≤x≤5).24.(14分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?25.(12分)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.参考答案与试题解析一、选择题(以下每题只有一个答案是正确的,请把正确答案的代号填在相应的表格里,每小题3分,共30分)1.(3分)(2014秋•抚顺期末)下列方程中,是一元二次方程的是()A.x2+2x+y=1B.x2+﹣1=0C.x2=0D.(x+1)(x+3)=x2﹣1【分析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程,运用定义对每个方程进行分析,再作出准确的判断.【解答】解:A:含有两个未知数,不是一元二次方程;B:含有分母,是分式方程,不是整式方程,所以不是一元二次方程;C:符合一元二次方程的定义,是一元二次方程;D:化简后不含二次项,不是一元二次方程;故本题选C.【点评】本题考查的是一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程.2.(3分)(2012秋•东阳市期末)抛物线y=3(x﹣2)2+3的顶点坐标为()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【分析】根据抛物线顶点式解析式写出顶点坐标即可.【解答】解:抛物线y=3(x﹣2)2+3的顶点坐标为(2,3).故选B.【点评】本题考查了二次函数的性质,熟练掌握二次函数顶点式解析式是解题的关键.3.(3分)(2015•呼和浩特一模)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】中心对称图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合;轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合;据此判断出既是轴对称图形,又是中心对称图形的是哪个即可.【解答】解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项D不正确.故选:B.【点评】(1)此题主要考查了中心对称图形问题,要熟练掌握,解答此题的关键是要明确:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.(2)此题还考查了轴对称图形,要熟练掌握,解答此题的关键是要明确:轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.4.(3分)(2016秋•贞丰县校级期中)将抛物线y=2x2向左平移1个单位,再向下平移2个单位,得到的抛物线是()A.y=2(x+1)2+2B.y=2(x﹣1)2+2C.y=2(x﹣1)2﹣2D.y=2(x+1)2﹣2【分析】求出抛物线平移后的顶点坐标,然后利用顶点式写出即可.【解答】解:∵抛物线y=2x2向左平移1个单位,再向下平移2个单位后的顶点坐标为(﹣1,﹣2),∴得到的抛物线是y=2(x+1)2﹣2.故选D.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定抛物线解析式求解更简便.5.(3分)(2013秋•重庆期末)方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=0,x2=2C.x=0D.x=2【分析】利用因式分解法解方程.【解答】解:x(x﹣2)=0,x=0或x﹣2=0,所以x1=0,x2=2.故选B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.(3分)(2009•呼和浩特)用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2=B.3(x﹣1)2=C.(3x﹣1)2=1D.(x﹣1)2=【分析】本题考查分配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:原方程为3x2﹣6x+1=0,二次项系数化为1,得x2﹣2x=﹣,即x2﹣2x+1=﹣+1,所以(x﹣1)2=.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.7.(3分)(2016秋•贞丰县校级期中)若A(﹣3,y1),B(﹣1,y2),C(2,y3)为二次函数y=x2﹣2x﹣3的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2【分析】根据二次函数图象上点的坐标特征,将A(﹣3,y1),B(﹣1,y2),C(2,y3)分别代入二次函数的关系式,分别求得y1,y2,y3的值,最后比较它们的大小即可.【解答】解:∵A(﹣3,y1),B(﹣1,y2),C(2,y3)为二次函数y=x2﹣2x﹣3的图象上的三点,∴y1=9+6﹣3=12,即y1=12,y2=1+2﹣3=0,即y2=0,y3=4﹣4﹣3=﹣3,即y3=﹣3,∵﹣3<0<12,∴y3<y2<y1.故选C.【点评】本题考查了二次函数图象上点的坐标特征.经过图象上的某点,该点一定在函数图象上.8.(3分)(2016秋•贞丰县校级期中)贞丰县享有“中国花椒之乡”的赞誉,其中以北盘江镇顶坛花椒的品质最为出名.据统计,2014年贞丰北盘江镇花椒总产量约为4000吨,经种植技术和管理水玉提高后,2016年的总产量增长到6000吨,设平均每年的年平均增长率均为x,则下列方程正确的是()A.6000(1+x)2=4000B.4000(1+x)2=6000C.4000(1﹣x)2=6000D.6000(1﹣x)2=4000【分析】设平均年增长的百分率为x,根据增长后=增长前的×(1+增长率),即可得到2015年的产量是4000(1+x),2016年的产量是4000(1+x)2,由题意得出题中的等量关系列出方程即可.【解答】解:设平均年增长的百分率为x,由题意得4000(1+x)2=6000故选B.【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.9.(3分)(2015•潮阳区一模)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c 的图象大致为()A.B.C.D.【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.【点评】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.10.(3分)(2013•黔西南州)如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:(1)图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,正确;(2)图象与y轴的交点在1的下方,所以c<1,错误;(3)∵对称轴在﹣1的右边,∴﹣>﹣1,又∵a<0,∴2a﹣b<0,正确;(4)当x=1时,y=a+b+c<0,正确;故错误的有1个.故选:A.【点评】本题主要考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共10小题,第小题3分,共30分)11.(3分)(2016秋•贞丰县校级期中)把方程x(x+3)﹣2x+1=5x﹣1化成一般形式为:x2﹣4x+2=0.【分析】把方程经过整理化成ax2+bx+c=0(a≠0)的形式即可.【解答】解:x(x+3)﹣2x+1=5x﹣1,x2+3x﹣2x+1﹣5x+1=0,x2﹣4x+2=0,故答案为:x2﹣4x+2=0.【点评】此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.12.(3分)(2016秋•贞丰县校级期中)方程(x+2)2﹣9=0的解为:x1=1,x2=﹣5.【分析】直接开平方法求解可得.【解答】解:(x+2)2=9,∴x+2=±3,∴x=﹣2±3,即x1=1,x2=﹣5,故答案为:x1=1,x2=﹣5.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.13.(3分)(2016秋•贞丰县校级期中)抛物线y=﹣2(x﹣1)2+3可以通过抛物线y=y=﹣2x2向右平移1个单位、再向上平移3个单位得到,其对称轴是x=1.【分析】确定出y=﹣2(x﹣1)2+3的顶点坐标,再根据顶点的变化确定出平移方法,然后根据二次函数的性质分别写出开口方向,对称轴,顶点坐标和最值即可.【解答】解:∵y=﹣2(x﹣1)2+3的顶点坐标为(1,3),y=﹣2x2的顶点坐标为(0,0),∴二次函数y=﹣2(x﹣1)2+3的图象是由抛物线y=﹣3x2向右平移1个单位,再向上平移3个单位得到的;对称轴是直线x=1,故答案为:y=﹣2x2,右,1,上,3,x=1.【点评】本题考查了二次函数的图象与几何变换,二次函数的性质,根据两个函数图象的顶点坐标确定平移方法更简便.14.(3分)(2016秋•贞丰县校级期中)中心对称图形的旋转角是180°.【分析】利用中心对称图形的定义解答即可;【解答】解:中心对称图形的旋转角是180°,故答案为:180°.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.15.(3分)(2016秋•贞丰县校级期中)方程x2+3x+1=0的根的情况是:有两个不相等的实数根.【分析】求出根的判别式的值即可得.【解答】解:∵b2﹣4ac=32﹣4×1×1=5>0∴有两个不相等的实数根,故答案为:有两个不相等的实数根.【点评】本题考查利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.16.(3分)(2016秋•贞丰县校级期中)设x1、x2是方程2x2﹣x﹣1=0的两个根,则x1+x2=,x1•x2=﹣.【分析】根据一元二次方程根与系数的关系计算即可.【解答】解:∵x1、x2是方程2x2﹣x﹣1=0的两个根,∴x1+x2=,x1•x2=﹣,故答案为:,﹣.【点评】本题考查了一元二次方程根与系数的关系,设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=.17.(3分)(2016秋•贞丰县校级期中)若y=(n2+n)x是二次函数,则n=2.【分析】根据二次函数定义可得n2﹣n=2,且n2+n≠0,再解即可.【解答】解:由题意得:n2﹣n=2,且n2+n≠0,解得:n=2,故答案为:2.【点评】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a ≠0)的函数,叫做二次函数.18.(3分)(2008秋•安庆期末)如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)①③②.【分析】抛物线的形状与|a|有关,根据|a|的大小即可确定抛物线的开口的宽窄.【解答】解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.【点评】抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.19.(3分)(2016秋•贞丰县校级期中)请写出一个开口向下,对称轴为直线x=1,且与y 轴的交点坐标为(0,2)的抛物线的解析式y=﹣x2+2x+2.【分析】可设抛物线解析式为y=ax2+bx+c,由开口向下可取a的值为﹣1,由对称轴可求得b,由过(0,2)可求得c,可求出答案.【解答】解:设抛物线解析式为y=ax2+bx+c,∵开口向下,∴可取a=﹣1,∵对称轴为直线x=1,∴﹣=1,解得b=2,∵与y轴的交点坐标为(0,2),∴c=2,∴抛物线解析式为y=﹣x2+2x+2,故答案为:y=﹣x2+2x+2.【点评】本题主要考查二次函数的性质,掌握a决定抛物线的开口方向、a和b决定对称轴、c与y轴的交点有关是解题的关键.20.(3分)(2016秋•贞丰县校级期中)如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点,容易看出,10是三角点阵中前4行的点数和,则300个点是前24行的点数和.【分析】由于第一行有1个点,第二行有2个点…第n行有n个点…,则前n行共有(1+2+3+4+5+…+n)个点,然后求它们的和,前n行共有个点,则=300,然后解方程得到n的值;【解答】解:设三角点阵中前n行的点数的和为300,则有n(n+1)=300整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=﹣25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.故答案为:24.【点评】此题主要考查了一元二次方程的应用以及规律型:图形的变化,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本大题共8大题,共60分)21.(15分)(2016秋•贞丰县校级期中)解下列方程(1)x2﹣5x﹣6=0(2)2(x﹣3)2=8(3)4x2﹣6x﹣3=0(4)(2x﹣3)2=5(2x﹣3)【分析】(1)因式分解法求解可得;(2)直接开平方法求解可得;(3)公式法求解可得;(4)因式分解法求解可得.【解答】解:(1)原方程可化为:(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x=6或x=﹣1;(2)方程两边同除以2,得:(x﹣3)2=4,∴x﹣3=±2,∴x﹣3=2或x﹣3=﹣2;∴x1=5,x2=1;(3)∵a=4,b=﹣6,c=﹣3∴△=b2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84>0,∴x===,∴x1=,x2=;(4)移项,得:(2x﹣3)2﹣5(2x﹣3)=0,∴(2x﹣3)〔(2x﹣3)﹣5〕=0,∴2x﹣3=0或2x﹣8=0,∴x=或x=4.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.22.(9分)(2014•黑龙江)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【分析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.【解答】解:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).【点评】此题主要考查了旋转的性质以及图形的平移等知识,根据题意得出对应点坐标是解题关键.23.(10分)(2016秋•贞丰县校级期中)阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即|a|=问:(1)这种分析方法涌透了分类讨论数学思想.(2)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(3)猜想与|a|的大小关系.(4)尝试用从以上探究中得到的结论来解决下面的问题:化简(﹣3≤x≤5).【分析】(1)根据数学上的分类讨论思想得出即可;(2)利用利用分类讨论得出即可;(3)利用化简结果得出即可;(4)利用(2)中所求进而化间得出即可.【解答】解:(1)分类讨论;(2)当a>0时,如a=5则,故此时展开后是它本身,当a=0时,,故此时是零,当a<0时,如a=﹣6,则,故此时的展开后是它的相反数,∴综合起来一个数的绝对值要分三种情况,=;(3);(4)(﹣3≤x≤5)=|x﹣5|+|x+3|=5﹣x+x+3=8.【点评】此题主要考查了二次根式的化简求值,正确化简二次根式利用分类讨论得出是解题关键.24.(14分)(2016秋•贞丰县校级期中)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?【分析】(1)设每件衬衫应降价x元,根据每件的利润×销售量=平均每天的盈利,列方程求解即可;(2)根据:总利润=单件利润×销售量列出函数关系式,配方成二次函数顶点式可得函数最值情况.【解答】解:(1)设每件衬衫应降价x元,则依题意,得:(40﹣x)(20+2x)=1200,整理,得,﹣2x2+60x+800=1200,解得:x1=10,x2=20,答:若商场平均每天赢利1200元,每件衬衫应降价10元或20元;(2)设每件衬衫降价x元时,商场平均每天赢利最多为y,则y=(40﹣x)(20+2x)=﹣2x2+60x+800=﹣2(x2﹣30x)+800=﹣2(x﹣15)2+1250∵﹣2(x﹣15)2≤0,∴x=15时,赢利最多,此时y=1250元,答:每件衬衫降价15元时,商场平均每天赢利最多.【点评】主要考查你对一元二次方程的应用,求二次函数的解析式及二次函数的应用等考点的理解,根据题意准确抓住相等关系式并加以应用是关键.25.(12分)(2016秋•秀峰区校级期中)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.【分析】(1)把A、D两点坐标代入二次函数y=x2+bx+c,解方程组即可解决.(2)利用轴对称找到点P,用勾股定理即可解决.(3)根据三角形面积公式,列出方程即可解决.【解答】解:(1)因为二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),所以,解得.所以一次函数解析式为y=x2+2x﹣3.(2)∵抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3),∴C、D关于x轴对称,连接AC与对称轴的交点就是点P,此时PA+PD=PA+PC=AC===3.(3)设点P坐标(m,m2+2m﹣3),令y=0,x2+2x﹣3=0,x=﹣3或1,∴点B坐标(1,0),∴AB=4=6,∵S△P AB∴•4•|m2+2m﹣3|=6,∴m2+2m﹣6=0,m2+2m=0,∴m=0或﹣2或1+或1﹣.∴点P坐标为(0,﹣3)或(﹣2,﹣3)或(1+,3)或(1﹣,3).【点评】本题考查待定系数法确定二次函数解析式、轴对称﹣最短问题,解题关键是熟练掌握待定系数法求抛物线解析式,学会利用对称解决最短问题,用方程的思想去思考问题,属于中考常考题型.。
2023-2024学年河北省石家庄九中九年级(上)期中数学试卷+答案解析

一、选择题:本题共16小题,每小题3分,共48分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一组数据4,5,x ,7,9的平均数为6,则这组数据的众数为( )A. 4 B. 5C. 7D. 92.在中,,,,则( )A.B. C.D. 3.如图,已知和的相似比是1:2,且的面积是1,则四边形DBCE 的面积是( )A. 2B. 3C. 4D. 54.代数式的最小值是( )A. B. 1C. 2D. 55.如果,那么的值为( )A.B.C.D.6.关于x 的一元二次方程有实数根,则a 的取值范围是2023-2024学年河北省石家庄九中九年级(上)期中数学试卷( )A.且B.且C.D.7.某停车场入口的栏杆如图所示,栏杆从水平位置AB 绕点O 旋转到的位置,已知米,若栏杆的旋转角,则栏杆点A 升高的高度为( )A. 米B. 米C. 米D.米8.已知点C 是线段AB 的黄金分割点,且,则AC 长是( )A. 2B.C. 2或D.9.如图,与是以点O为位似中心的位似图形,且位似比为1:2,下列结论不正确的是( )A.B.C. BC是的中位线D. ::210.圆内接四边形ABCD中,,,的度数之比为2:5:7,则的度数为( )A. B. C. D.11.某机械厂七月份生产零件100万个,第三季度生产零件392万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )A.B.C.D.12.西虹市实验中学在庆祝中国共产党建党百年歌咏比赛中,五位评委给参赛的A班打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则下列正确的是( )A. B. C. D.13.关于x的方程为常数的根的情况,下列结论中正确的是( )A. 两个正根B. 两个负根C. 一个正根,一个负根D. 无实数根14.如图,在直角坐标系中,点、点、点,则外接圆的半径为( )A. 2B. 3C. 4D.15.有一题目:“已知:点O为的外心,,求”嘉嘉的解答为:画以及它的外接圆O,连接OB,如图,由,得而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”下列判断正确的是( )A. 淇淇说的对,且的另一个值是B. 淇淇说的不对,就得C. 嘉嘉求的结果不对,应得D. 两人都不对,应有3个不同值16.如图,直线与x轴、y轴相交于P,Q两点,与的图象相交于,两点,连接OA,下列结论:①;②不等式的解集是或;③;④其中正确的结论是( )A. ①③B. ②③④C. ①③④D. ②④二、填空题:本题共3小题,每小题4分,共12分。
江苏省泰州市泰兴市2024-2025学年九年级上学期11月期中数学试题(含答案)
2024年秋学期九年级期中学情调查数学试题(考试时间:120分钟 满分150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案写在答题卡上,写在试卷上无效.3.作图必须用2B 铅笔,且加粗加黑.第一部分 选择题(共18分)一、选择题(本大题共6小题,每小题3分,共18分,在每小题所给出的四个选项中、只有一个是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.若是方程的一个根,则的值为( )A.1B. C.2D.2.科学家同时培育了甲、乙、丙、丁四种花,下表是这四种花开花时间的平均数和方差.这四种花中开花时间最短且最平稳的是( )种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.78 1.050.78A.甲种类B.乙种类C.丙种类D.丁种类3.三角形三条中线的交点叫做三角形的( )A.内心B.外心C.重心D.中心4.如图,是的直径,若,则的度数为( )A. B. C. D.5.如图,在平行四边形中,为延长线上一点,,点为的中点,连接交手点,则等于()A. B. C. D.6.正方形的边长为8,是的中点,、的延长线相交于点,点为正方形一边上一点,且,则的长为( )A.1B.5C.1或5D.52x =20x x c -+=c 1-2-AB O 36BAC ∠=︒ADC ∠36︒45︒54︒72︒ABCD E AD AD DE =F BC EF DC P :CP DP 1:41:22:34:9ABCD E CD AE BC F G ABCD GA GE =GA第二部分 非选择题(共132分)二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)7.已知的半径为10cm ,,则点在_______(填“上”、“内”或“外”).8.在比例尺为的地图上甲地到乙地的距离是5厘米,则甲乙两地的实际距离是_______千米.9.已知、是方程的两个根,则=_______.10.“易有太极,始生两仪,两仪生四象,四象生八卦”,太极图是我国古代文化关于太极思想的呈现,内含表示一阴一阳的图形(一黑一白),如图,在太极图中随机取一点,则此点取自黑色部分的概率是_______.11.如图,,,,,则的长为_______.12.一圆锥的底面半径为3,母线长为6,则这个圆锥的侧面积为_______.13.如图,的三个顶点均在网格的格点上,请选三个格点组成一个格点三角形,它与有一条公共边且相似(不全等),则这个格点三角形是_______.14.某款“不倒翁”玩具(图1)的主视图是图2,,分别与所在圆相切于点,.若该圆半径是9cm ,,则的长是_______cm.15.已知,,则的值为_______.16.泰兴古城形制独特,状如西瓜,故俗称西瓜城.据《泰兴县志》记载,泰兴古城有桥梁54座,最钜者朝阳桥、阜成桥、文明桥、析津桥,因直通四城门,故称之为四门大桥.小明同学根据古籍自行设计了一幅简O 8cm OP =P O 1:10000001x 2x 230x x m -+=12x x +=123////l l l 3DE =4EF =2AB =BC ACD △13⨯ACD △PA PB AMB A B 40P ∠=︒AMB 4m n +=2820mn p p -+≥mnp易的泰兴城县志全图.为城墙,城区为正方形,其内接于,四门大桥区为正方形、正方形、正方形、正方形,点、、、、、、、在上,、、、、、、、在正方形边上.若正方形边长为,则正方形的边长为_______.(用含的代数式表示)三、解答题(本大题共10小题,共102分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题满分12分)下面是小明同学解一道一元二次方程的过程,请仔细阅读,并完成相应的任务.解方程:.解:方程两边同除以,得.第一步移项,合并同类项,得.第二步系数化为1,得.第三步任务:①小明的解法从第_______步开始出现错误;②此题的正确结果是_______;③用因式分解法解方程:.18.(本题满分8分)某校一年级开设人数相同的,,三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到班”的概率是_______;(2)请用画树状图法或列表法求甲、乙两位新生分到同一个班的概率.19.(本题满分8分)已知关于的一元二次方程有两个不相等的实数根.(1)求实数的取值范围;(2)若该方程的两根符号相同,求整数的值.20.(本题满分8分)如图,在中,,是的中点,点在的延长线上,点在边上,.O ABCD O EFGH IJKL MNOP QRST E H J K N O R S O F G I L M P Q T ABCD ABCD a EFGH a 2(31)2(31)x x -=-(31)x -312x -=⋅⋅⋅33x =⋅⋅⋅1x =⋅⋅⋅3(2)24x x x +=+A B C A x 24250x x m --+=m m ABC △AB AC =D BC E BA F AC EDF B ∠=∠(1)求证:;(2)若,,求的长.21.(本题满分10分)为了解某种植物苗的长势,随机抽取了部分植物苗并对它们的株高进行测量,把测量结果制成尚不完整的扇形统计图与条形统计图。
2024年最新人教版初三数学(上册)期中试卷及答案(各版本)
2024年最新人教版初三数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最大的数是()A. 3B. 0C. 1D. 22. 一个等边三角形的周长是15cm,那么它的边长是()A. 3cmB. 5cmC. 7.5cmD. 10cm3. 下列哪一个数是有理数()A. √3B. πC. 1/2D. √14. 下列哪一个图形是正方体()A. 长方体B. 球体C. 圆柱体D. 正方体5. 下列哪一个数是无理数()A. 1/3B. √4C. 0.333D. √2二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 任何两个实数的积都是实数。
()3. 0是正数。
()4. 1是质数。
()5. 任何两个奇数的和都是偶数。
()三、填空题5道(每题1分,共5分)1. 一个等差数列的第1项是1,公差是2,第10项是______。
2. 一个等比数列的第1项是2,公比是3,第4项是______。
3. 下列数列的前5项是2, 4, 8, 16, 32,下一个数是______。
4. 下列数列的前5项是1, 3, 5, 7, 9,下一个数是______。
5. 下列数列的前5项是1, 4, 9, 16, 25,下一个数是______。
四、简答题5道(每题2分,共10分)1. 解释什么是等差数列?2. 解释什么是等比数列?3. 解释什么是无理数?4. 解释什么是函数?5. 解释什么是几何图形?五、应用题:5道(每题2分,共10分)1. 一个等差数列的第1项是3,公差是2,求第10项。
2. 一个等比数列的第1项是2,公比是3,求第6项。
3. 下列数列的前5项是2, 4, 8, 16, 32,求下一个数。
4. 下列数列的前5项是1, 3, 5, 7, 9,求下一个数。
5. 下列数列的前5项是1, 4, 9, 16, 25,求下一个数。
六、分析题:2道(每题5分,共10分)1. 给出一个等差数列的前5项,然后给出一个等比数列的前5项,比较它们的特点。
九年级上学期数学期中考试试卷及答案解析
九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。
2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。
3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。
4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。
5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。
6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。
7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。
九年级数学上册期中考试试卷及答案
九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N E
东
北
A
B
C
九年级上(期中A 班)数学试卷
一、选择题(每小题3分,共30分)
1 .如图,在Rt ABC △中,
90=∠B ,ED 是AC 的垂直平分线,
交AC 于点D ,交BC 于点E .已知
10=∠BAE ,则C ∠的度数为( ) A 、
30 B 、
40 C 、
50 D 、 60
2、顺次连结等腰梯形各边中点所得的四边形是( )
A 、平行四边形
B 、菱形
C 、矩形
D 、正方形
3.小明从左面观察下图所示的两个物体,看到的是( )
A B C D
4.如图
,从A 地沿北偏东30°方向走100m,到B 地再
从B 地向西走200m 到C 地,这时小明离A 地 ( ) 。
A. 150m
B.1003 m
C. 100m
D. 503 m 5.如果矩形的面积为6cm 2
,那么它的长y cm 与宽x cm 之间的
函数关系用图象表示大致 ( )
6、下列命题中,不正确...
的是 ( ) A .对角线相等的平行四边形是矩形. B .有一个角为60°的等腰三角形为等边三角形.
C .直角三角形斜边上的高等于斜边的一半.
D .正方形的两条对角线相等且互相垂直平分. 7.若关于x 的一元二次方程0962
=+-x kx 有两个不相等的实数根,则k 的取值范围是( )
A. 1k <
B. 0k =/
C. 10k k <=
/且 D. 1k > 8. 已知点A( -2 ,y 1 ) , ( -1 ,y 2 ) , ( 3 ,y 3 )都在反比例函数x
y 4
=
的图象上,则( ) A. y 1<y 2<y 3 B. y 3<y 2<y 1 C. y 3 <y 1<y 2 D. y 2<y 1<y 3
9.人离窗子越远,向外眺望时此人的盲区是( )
A .变小
B .变大
C .不变
D .以上都有可能 10.函数x
k
y =
的图象经过(1,-1),则函数2-=kx y 的图象是( )
二、填空题(每小题3分,共30分.)
11.如图1,反比例函数图象上一点A ,过A 作AB ⊥x 轴于B ,
若S △AOB =3,则反比例函数解析式为______ ___;
12.已知2
5100x kx +-=的一个根是-5,求它的另一个根是 ,k = 。
13.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均
每次降价的百分率是 . 14、方程0)3)(2(=-+x x 的解是 。
15.如图,在△ABC 中,BC = 8 cm ,AB 的垂直平分线交
AB 于点D,交边AC 于点E ,△BCE 的周长等于18 cm , 则AC 的长等于 cm
16.已知梯形的两底边长分别为6和8,一腰长为7,则另一腰长a 的取值范围是 . 17.菱形的两条对角线的长的比是2 : 3 ,面积是2
12cm ,
则它的两条对角线的长分别为___________
18.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落 在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则 线段CN 的长是( )
19.写一个关于x 的一元二次方程,使它有一个根为0,
你所写的方程是 20.如图,以正方形ABCD 的对角线AC 为一边,延长AB 到E , 使AE = AC ,以AE 为一边作菱形AEFC ,若菱形的面积为29, 则正方形边长
A
D
B
图1
正面 F
学校:_____________ 班级:_____________ 姓名:_______________
三、本题共6题,每小题10分,共60分
21.将一个正方形铁皮的四角各剪去一个边长为4cm 的小正方形,做成一个无盖的盒子。
已知盒子的容积是400cm 3,求原铁皮的长。
22.解方程:9)3(22
2
-=-x x
23.如图,反比例函数k
y x
=
的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.
24.如图,已知在□ABCD 中,E 、F 是对角线BD 上的两点,BE =DF ,点G 、H 分别在BA 和DC 的延长线上,且AG =CH ,连接GE 、EH 、HF 、FG . 求证:四边形GEHF 是平行四边形.
25.小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号).
26、如图,已知在△ABC 中,AB=AC ,AD ⊥BC 于D ,且AD=BC=4,若将三角形沿AD 剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中的直角),并分别写出所拼四边形的对角线的长.(只需写出结果即可)
B。