初二数学上册知识点总结人教版(精选14篇)
初二数学上册知识点汇总(精华15篇)

初二数学上册知识点汇总(精华15篇)初二数学上册知识点汇总1①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线。
②角有一条对称轴,是角平分线所在的直线。
③等腰三角形有一条对称轴,是顶角平分线所在的直线。
④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线。
⑤矩形有两条对称轴,是相邻两边的垂直平分线。
⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线。
⑦菱形有两条对称轴,是对角线所在的'直线。
⑧等腰梯形有一条对称轴,是两底垂直平分线。
⑨正多边形有与边数相同条的对称轴。
⑩圆有无数条对称轴,是任何一条直径所在的直线。
初二数学上册知识点汇总2①建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;②根据具体问题确定单位长度;③在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.1.平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。
平移后图形的位置改变,形状、大小不变。
2.在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的`新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
3.图形平移与点的坐标变化之间的关系:(1)左、右平移:原图形上的点(x、y),向右平移a个单位(x+a,y);原图形上的点(x、y),向左平移a个单位(x-a,y);(2)上、下平移:原图形上的点(x、y),向上平移a个单位(x,y+b);原图形上的点(x、y),向下平移a个单位(x,y-b)。
初二数学上册知识点汇总31.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
2.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的'最高次数是1的不等式叫一元一次不等式。
人教版初二上册数学知识点汇总

人教版初二上册数学知识点汇总初二上册的数学课程是初中数学学习的重要阶段,它不仅加深了学生对数学基本概念的理解,还引入了更多复杂和抽象的概念。
以下是人教版初二上册数学的知识点汇总,旨在帮助学生和教师更好地掌握和复习。
第一章勾股定理1.探索勾股定理•勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果用a、b和c 分别表示直角三角形的两直角边和斜边,那么a²+b²=c²。
•应用:通过勾股定理可以解决一些与直角三角形边长相关的问题,如计算斜边长度或某一直角边长度。
2.一定是直角三角形吗•如果三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形一定是直角三角形。
•逆定理:如果一个三角形是直角三角形,那么它的三边长一定满足勾股定理。
3.勾股定理的应用•勾股定理在实际生活中有广泛应用,如建筑、工程等领域。
•通过勾股定理可以计算一些几何图形的面积和周长。
第二章实数1.认识无理数•有理数:总是可以用有限小数和无限循环小数表示。
•无理数:无限不循环小数,如π、e、√2等。
2.平方根•算数平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算数平方根。
•特别地,0的算数平方根是0。
•平方根:一般地,如果一个数x的平方等于a,即x²=a,那么这个数x就叫做a的平方根,也叫做二次方根。
•一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。
3.立方根•立方根:一般地,如果一个数x的立方等于a,即x³=a,那么这个数x就叫做a的立方根,也叫三次方根。
•每个数都有一个立方根,正数的立方根是正数;0的立方根是0;负数的立方根是负数。
4.估算•估算一般结果是相对复杂的小数,估算有精确位数。
•通过估算可以简化计算过程,提高计算效率。
5.用计算机开平方•现代计算器可以方便地计算平方根和立方根,但在理解其原理的基础上使用计算器更为有效。
初二上册数学知识点人教版总结(精选10篇)

初二上册数学知识点人教版总结(精选10篇)初二上册数学知识点人教版总结篇1一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0,向上平移;当b0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当kn).在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p 的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序.7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。
人教版初二数学上册知识点总结

人教版初二数学上册知识点总结一、有理数有理数概念:正整数、负整数和零的统称。
有理数的表达形式:整数、分数、带分数。
有理数的大小比较:同号相除,异号相除。
二、乘除法乘法口诀:乘法口诀表 1.链接乘法口诀表那个网站 2.积的化简乘法口诀表 3.乘除混合运算练习 4.综合乘除混合运算练习乘法运算法则: 1.有理数的乘法,符号规律法则 2.乘积的绝对值计算法则 3.乘法分配率定义有理数乘法乘积定义有理数除法除法的定义。
三、分数分数运算法则:分数的化简与分数的加减法: 1.分数的加减法 2.有理数的加减混合运算法则 3.有理数的加减混合运算应用集合的交集、并集运算。
四、图形平面图形:几何图形周长与面积多边形的周长和面积的计算弧度制长度单位之间的换算。
五、方程有理数的乘除运算应用一元一次方程及其解。
六、比例比例的相关概念山洪灾害的应对措施文明用餐环保行为比例的简化与扩大 1.比例的简化与扩大 2.比例的混合运算 3.比例中的变量关系综合题 4.长方体和圆柱容积的计算 5.比例中的变量关系综合题(2018)课题1:比例的概念 1.比例的概念 2.比例的意义与计算 3.比例的求解。
七、百分数小数、分数与百分数之间的关系(6)运算法则:1. 综合题(共25分) 1. 化简比例 2. 比例中的变量关系应用题:根据1500元的货款比例3:2在原来的价格上调价,调价后A、B两家买家的买价。
根据1500元的货款比例3:2在原来的价格上调价,调价后A、B两家买家的买价八、统计与概率统计中的问题解决获取统计资料解题的一般步骤示例语句与描述信息的呈现方式描述相关联的词汇交际意图的释义语篇理解思维模式构想中的常见错误类型阅读技巧练词语话题有关喜好的话题家庭成员话题住址电话号码咨询话题。
人教版八年级上数学知识点总结

人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。
人教版八年级数学上册知识点总结(最新精编版)

人教版八年级数学上册知识点总结第十一章三角形1.三角形的定义定义:不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC 用符号表示为△ABC.三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、(1)三角形按边分类:(2)三角形按角分类:3、三角形的三边关系三角形的任意两边之和大于第三边.三角形的任意两边之差小于第三边。
注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是:任意两边之和大于第三边.三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形等边三角形三角形直角三角形斜三角形锐角三角形钝角三角形人教版八年级数学上册知识点总结D CB A21D CBAD CB A4、和三角形有关的线段:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段表示法:1、AD 是△ABC 的BC 上的中线.2、BD=DC=0.5BC.3、AD 是∆ABC 的中线;注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角与交点之间的线段。
表示法:1、AD 是△ABC 的∠BAC 的平分线.2、∠1=∠2=0.5∠BAC.3、AD 平分∠BAC,交BC 于D注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;(3)三角形的高三角形的高:从三角形的一顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高,表示法:1、AD 是△ABC 的BC 上的高。
数学八年级上册知识点总结人教版

数学八年级上册知识点总结人教版第十一章三角形。
1. 三角形的概念。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 三角形有三条边、三个内角和三个顶点。
2. 三角形的分类。
- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形,直角三角形中直角所对的边叫做斜边,另外两条边叫做直角边。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。
等腰三角形中,等边三角形是特殊的等腰三角形,它的三边都相等。
3. 三角形的三边关系。
- 三角形两边之和大于第三边,两边之差小于第三边。
- 用式子表示为:a + b>c,a - b(a、b、c为三角形的三边)。
4. 三角形的高、中线与角平分线。
- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高是直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。
- 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
三角形的三条中线都在三角形内部,且相交于一点,这个点叫做三角形的重心。
- 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线都在三角形内部,且相交于一点。
5. 三角形的内角和与外角和。
- 三角形内角和定理:三角形的内角和为180^∘。
- 三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角。
- 三角形的外角性质:- 三角形的一个外角等于与它不相邻的两个内角之和。
- 三角形的一个外角大于与它不相邻的任何一个内角。
- 三角形的外角和为360^∘。
(完整版)人教版八年级上册数学重要知识点总结,推荐文档

= a= a a 八年级数学上册重要知识点归纳1、三角形具有稳定性2、三角形的三边关系定理及推论 (1) 三角形三边关系定理:三角形的两边之和大于第三边(符号表示:a+b>c ) (2) 推论:三角形的两边之差小于第三边(符号表示:a-b<c ) (3) 三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围; ③证明线段不等关系。
3、(1)三角形的内角和等于 180°,三角形的外角和等于 360°;(2)n 边形的内角和等于(2)- 18⋅0,n 边形的外角和等于 360°;(2)- 18⋅0 360(3) 正 n 边形每个内角等于 n 4、三角形全等的条件:A,正 n 边形每个外角等于 n .一般三角形 SSS ,SAS ,ASA ,AAS ,直角三角形 HL5、角的平分线的性质:角平分线上的点到角两边的距离相等 符号表示:BD 为角平分线,DA ⊥AB ,DC ⊥BC ,AD =DC.6、垂直平分线性质:垂直平分线上的点到线段两端的距离相等符号表示:CD 为 AB 的垂直平分线AC=BC ,AE=BE.7、等腰三角形 () “等边对等角”和“三线合一”的性质已知∆ABC 是等腰三角形, AB=AC,∴∠B = ∠C (等角对等边),BD = CD , ∠BAD = ∠CAD , AD ⊥ BC (三线合一)D () “等角对等边”的判定方法已知(B 等=角∠对C ∴等A 边B )= AC ∆ABC 是等腰三角形8、等边三角形的性质和判定(性质)等边三角形的三个内角都相等,并且每一个角都等于 60° (判定 1)三个角都相等的三角形是等边三角形。
(判定 2)有一个角是 60°的等腰三角形是等边三角形。
9、整式的乘法和因式分解a m ⋅a n m +n(a m )n mn 同底数幂乘法 幂的乘方 = a m ÷ a nm -n(ab )n = a n b n同底数幂除法积的乘方a -1 = 1(a ≠ 0)规定: a 0= 1 (a≠0);a 乘法公式:平方差公式: (a +b )(a - b ) = a2 - b 2完全平方公式:(a + b )2 = a 2 + 2ab + b 2 因式分解有:(1)提公因式法(2) 公式法:平方差公式、完全平方公式 (3) 十字相乘法(a - b )2 = a 2 - 2ab + b 2A = A ⨯ M , A =A ÷ M 10、分式的基本性质:分式的分子与分母同时乘以或除以非 0 整式,分式的值不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上册知识点总结人教版〔精选14篇〕篇1:初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:假设两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,那么称y是x的一次函数x为自变量,y为因变量。
特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当k篇2:人教版初二数学上册知识点总结 1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的`两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的间隔相等28 定理2 到一个角的两边的间隔一样的点,在这个角的平分线上29 角的平分线是到角的两边间隔相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的断定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的间隔相等40 逆定理和一条线段两个端点间隔相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点间隔相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理假如三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°550 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形断定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形断定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形断定定理3 对角线互相平分的四边形是平行四边形59平行四边形断定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角初二上册数学知识点归纳平均数根本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数根本算法:①求出总数量以及总份数,利用根本公式①进展计算。
②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比拟接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,详细关系见根本公式②多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到。
篇3:人教版初二数学上册知识点总结逆定理的内容:假如三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是断定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比拟,假设它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如假设三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比拟最大边的平方与别两边的平方和是否相等,假设相等,那么说明是直角三角形。
篇4:人教版初二数学上册知识点一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,程度的数轴叫做_轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;_轴和y 轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描绘坐标平面内点的位置,把坐标平面被_轴和y轴分割而成的四个局部,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:_轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念对于平面内任意一点P,过点P分别_轴、y轴向作垂线,垂足在上_轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征点P(_,y)在第一象限:_;0,y;0点P(_,y)在第二象限:_;0,y;0点P(_,y)在第三象限:_;0,y;0点P(_,y)在第四象限:_;0,y;0(2)、坐标轴上的点的特征点P(_,y)在_轴上,y=0,_为任意实数点P(_,y)在y轴上,_=0,y为任意实数点P(_,y)既在_轴上,又在y轴上,_,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(_,y)在第一、三象限夹角平分线(直线y=_)上,_与y相等点P(_,y)在第二、四象限夹角平分线上,_与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于_轴的直线上的各点的纵坐标一样。
位于平行于y轴的直线上的各点的横坐标一样。
(5)、关于_轴、y轴或原点对称的点的坐标的特征点P与点p’关于_轴对称横坐标相等,纵坐标互为相反数,即点P(_,y)关于_轴的对称点为P’(_,-y) 点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(_,y)关于y轴的对称点为P’(-_,y) 点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(_,y)关于原点的对称点为P’(-_,-y)(6)、点到坐标轴及原点的间隔点P(_,y)到坐标轴及原点的间隔:(1)点P(_,y)到_轴的间隔等于|y|;(2)点P(_,y)到y轴的间隔等于|_|;(3)点P(_,y)到原点的间隔等于根号___+y_y初二上册数学知识点总结一.知识概念1.同底数幂的'乘法法那么:m,n都是正数2..幂的乘方法那么:m,n都是正数3.整式的乘法(1)单项式乘法法那么:单项式相乘,把它们的系数、一样字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3)多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:5.完全平方公式:6.同底数幂的除法法那么:同底数幂相除,底数不变,指数相减,即a≠0,m、n都是正数,且m>n.在应用时需要注意以下几点:①法那么使用的前提条件是“同底数幂相除”而且0不能做除数,所以法那么中a≠0.②任何不等于0的数的0次幂等于1,即,如,-2.50=1,那么00无意义.③任何不等于0的数的-p次幂p是正整数,等于这个数的p的次幂的倒数,即a≠0,p是正整数,而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a篇5:人教版初二数学上册知识点多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。