高中物理选修3-3知识点总结

高中物理选修3-3知识点总结

物理选修3-3知识点汇总

一、宏观量与微观量及相互关系

微观量包括分子体积V0、分子直径d和分子质量等,而

宏观量则包括物体的体积V、摩尔体积Vm、物体的质量m、

摩尔质量M和物体的密度ρ。分子直径通常在10^-10m数量级,可以通过油膜法测量,公式为d=V/S。此外,分子数N

可以通过公式N=nNA/mA计算,其中NA为阿伏伽德罗常数。分子质量和分子体积的估算方法分别为m=M/N和V=VmρN,其中ρ是液体或固体的密度。分子直径的估算方法则是将固体和液体分子看成球形或立方体,公式为d=6V^(1/3)/π或d=V。

二、分子的热运动

分子的热运动表现为无规则运动,包括扩散现象和布朗运动。扩散现象是不同物质相互接触时彼此进入对方的现象,温度越高,扩散越快。布朗运动则是悬浮在液体中的小颗粒所做

的无规则运动,其特点为永不停息、无规则运动、颗粒越小运动越剧烈、温度越高运动越剧烈、运动轨迹不确定,但肉眼无法看到。XXX运动的产生是由各个方向的液体分子对微粒碰撞的不平衡引起的。需要注意的是,布朗运动只能发生在气体和液体中,而扩散现象则在气体、液体和固体之间均可发生。

能量不会被创造或消失,只能从一种形式转化为另一种形式

2.热力学第一定律:能量守恒定律的应用,表明热量和功可以相互转化,但总能量

不变

3.热力学第二定律:不可能从单一热源中吸收热量,使之完全转化为功而不产生任

何其他效应

4.热力学第三定律:绝对零度是无法达到的,因为物质的内能不可能完全降至零

能量既不能创造也不能消失,只能在不同形式和物体之间进行转化或转移。在这个过程中,总能量量保持不变。

热力学第一定律表明,在物体与外界同时发生做功和热传递的情况下,外界对物体所做的功加上物体吸收的热量等于物

体内能的增加。符号法则非常重要:W>表示外界对系统做功,W<表示系统对外界做功;Q>表示系统吸热,Q<表示系统

放热;ΔU>表示内能增加,ΔU<表示内能减少。

热力学第二定律有两种表述:一是热量不能自发地从低温物体传到高温物体;二是不可能从单一热源吸收热量并完全用来做功,而不产生其他影响。这表明热现象具有方向性。

固体可以分为晶体和非晶体。晶体具有各向异性,非晶体则表现为各向同性。晶体有一定的熔点,而非晶体没有。单晶体整个物体都是一个晶体,而多晶体是由许多细小的单晶体集合而成。晶体和非晶体可以相互转化,金属是多晶体,因此是各向同性的。晶体的微观结构特点是组成晶体的物质微粒有规则地、周期性地在空间排列。

液体分子间距离比气体小,分子间作用力比固体小,液体内部分子间的距离在10^-10m左右。

液体的表面张力是指液体表面上分子间的相互作用力,使得液面具有收缩的趋势。表面张力的方向与液面相切,与液面的分界线垂直。液体的表面张力大小与温度、杂质、密度等因

素有关,温度越高表面张力越小,液体中溶有杂质时表面张力也会变小,而液体的密度越大表面张力越大。

液晶具有液体的流动性和晶体的光学各向异性,即从某个方向上看其分子排列比较整齐,而从另一方向看则是杂乱无章的。液晶的应用包括电子手表、计算器、微电脑等,利用加电压时旋光特性消失的特性实现显示功能,以及利用温度改变时颜色发生改变的性质来测温度。

饱和汽与饱和汽压是液体蒸发和凝结达到动态平衡时的状态。未达到饱和状态的蒸汽称为未饱和汽。在一定温度下,饱和汽的分子数密度是一定的,因此饱和汽的压强也是一定的,这个压强被称为这种液体的饱和汽压。饱和汽压随着温度的升高而增大,与蒸汽所占的体积无关,也与蒸汽体积中有无其他气体无关。

空气的湿度可以用绝对湿度和相对湿度来表示。绝对湿度是用空气中所含水蒸气的压强来表示的湿度,而相对湿度是空气中水蒸气的压强与同一温度时水的饱和汽压之比。常用的湿度计包括干湿泡湿度计、毛发湿度计和传感器湿度计。

气体分子之间作用力微弱,可以忽略不计,因此气体分子向各个方向运动的机会均等。气体分子的速率分布呈现出“中间多、两头少”的统计分布规律,温度升高,气体分子的平均速率增大,但不是每个分子的速率都增大。压强的计算可以利用平衡法或取等压面法进行,其中取等压面法可以根据液体在同一水平液面处压强相等的规律建立方程求解。

nRT,其中n为气体的摩尔数,R为气体常数.

3)微观解释:理想气体的分子间除碰撞外无其他作用力,因此在状态变化时。

分子间的碰撞仍为弹性碰撞,分子本身没有体积,所以它所占据的空间可以被压缩。

从而保持压强与体积的乘积与温度的比值不变.此外,理想气体的内能只与温度有

关,所以状态方程中只涉及温度而不涉及内能.

C是与p、V、T无关的常量,表示单位质量的理想气体在绝热过程中压强、体积和温度之间的关系。理想气体是一种理想化模型,实际气体在温度不太低、压强不太大时可以看做理想气体。一定质量的理想气体的状态方程给出了两个状态间的联系,并不涉及状态变化的具体方式。

对于一定质量的气体,我们可以通过不同的图象来比较它们的状态。例如,考虑一个质量为M的汽缸,汽缸内放有一

质量为m的可在汽缸内无摩擦滑动的活塞,活塞面积为S。

现用水平恒力F向右推汽缸,最后汽缸和活塞达到相对静止

状态,求此时缸内封闭气体的压强p(已知外界大气压为p)。我们可以选与气体相接触的活塞为研究对象,进行受力分析,再利用牛顿第二定律列方程求解。

练1:一汽缸竖直倒放,汽缸内有一质量不可忽略的活塞,将一定质量的理想气体封在汽缸内,活塞与汽缸壁无摩擦,气体处于平衡状态。现保持温度不变把汽缸稍微倾斜一点,在达到平衡后与原来相比,气体的体积变大,压强变小。

在气体力学中,气体对器壁的压强是由大量气体分子对器壁的碰撞形成的。因此,气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力,也可以理解为大量气体分子单位时间作用在器壁上的平均冲量。

例4:已知地球半径约为6×10^6m,空气的XXX质量约

为29×10^-3kg/mol,一个标准大气压约为10^5Pa。利用以上

数据可估算出地球表面大气在标准状况下的体积为4×10^18m³。

指向液体内部

答案]A

解析:B选项错误,木炭是非晶体;C选项错误,单晶体

和多晶体都有固定的熔点,非晶体没有固定的熔点;D选项错误,液体表面层内的分子所受其它分子作用力的合力总是垂直于表面。因此,正确选项为A。可以改写为:当一定质量的气体吸收热量时,其内能可能发生变化;玻璃、石墨和金刚石都是晶体,而木炭是非晶体;单晶体和多晶体都有固定的熔点,而非晶体没有固定的熔点;当液体与大气相接触时,液体表面层内的分子所受其它分子作用力的合力总是垂直于表面。

解析]根据热力学第一定律,Q+W=ΔU,其中Q为热量,W为功,ΔU为内能变化量.

题目中Q=-200 J,W=800 J,代入可得ΔU=600 J.由

于气体被压缩,温度升高。

内能增加,故选项A正确.

答案]A

正确,B错误;根据热力学第一定律,机械能和热量都是

能量的不同形式,可以相互转化,但总能量守恒,所以C、D

选项都是正确的。改写后:根据热传递规律,热量能从高温物体传到低温物体,外界对系统做功时,也可使系统从低温物体吸取热量传到高温物体上去,致冷机是这样的装置。但热量不能自发地从低温物体传到高温物体。因此选项A正确,B错误。根据热力学第一定律,机械能和热量都是能量的不同形式,可以相互转化,但总能量守恒,所以C、D选项都是正确的。

一个运动的物体在克服摩擦阻力的过程中会做功,最终会停止。在这个过程中,机械能会全部转化为热量。当外界条件发生变化时,热量也可以全部转化为机械能。例如,在等温膨胀过程中,系统吸收的热量会全部转化为对外界做的功。因此,正确答案为B和D。

高中物理选修3-3知识点总结

高三物理复习资料选修3—3考点汇编 一、分子动理论 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯ (3)对微观量的估算: ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据空 间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c 分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说 明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀造成。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。 30V L = 3 6πV d =

高中物理选修3-3大题知识点及经典例题知识讲解

高中物理选修3-3大题知识点及经典例题 气体压强的产生与计算 1.产生的原因:由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强。 2.决定因素 (1)宏观上:决定于气体的温度和体积。 (2)微观上:决定于分子的平均动能和分子的密集程度。 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强。 (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强。 (3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等。液体内深h处的总压强p=p0+ρgh,p0为液面上方的压强。 4.加速运动系统中封闭气体压强的求法 选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解。 考向1 液体封闭气体压强的计算 若已知大气压强为p0,在图2-2中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强。 图2-2 [解析]在甲图中,以高为h的液柱为研究对象,由二力平衡知 p甲S=-ρghS+p0S 所以p甲=p0-ρgh 在图乙中,以B液面为研究对象,由平衡方程F上=F下有: p A S+ρghS=p0S p乙=p A=p0-ρgh 在图丙中,仍以B液面为研究对象,有 p A′+ρgh sin 60°=p B′=p0 所以p丙=p A′=p0- 3 2 ρgh 在图丁中,以液面A为研究对象,由二力平衡得p丁S=(p0+ρgh1)S 所以p丁=p0+ρgh1。 [答案]甲:p0-ρgh乙:p0-ρgh丙:p0- 3 2 ρgh1丁:p0+ρgh1 考向2 活塞封闭气体压强的求解 如图2-3中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边

高中物理热学知识点归纳全面很好

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: { 球体模型: V d N =3A )2 (3 4π 3 3 A 6=6=π πV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n === =ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素 固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。 (6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在,这种 微粒肉眼是看不到的,必须借助于显微镜。

高中物理选修3-3知识点总结

高中物理选修3-3知识点总结 物理选修3-3知识点汇总 一、宏观量与微观量及相互关系 微观量包括分子体积V0、分子直径d和分子质量等,而 宏观量则包括物体的体积V、摩尔体积Vm、物体的质量m、 摩尔质量M和物体的密度ρ。分子直径通常在10^-10m数量级,可以通过油膜法测量,公式为d=V/S。此外,分子数N 可以通过公式N=nNA/mA计算,其中NA为阿伏伽德罗常数。分子质量和分子体积的估算方法分别为m=M/N和V=VmρN,其中ρ是液体或固体的密度。分子直径的估算方法则是将固体和液体分子看成球形或立方体,公式为d=6V^(1/3)/π或d=V。 二、分子的热运动 分子的热运动表现为无规则运动,包括扩散现象和布朗运动。扩散现象是不同物质相互接触时彼此进入对方的现象,温度越高,扩散越快。布朗运动则是悬浮在液体中的小颗粒所做

的无规则运动,其特点为永不停息、无规则运动、颗粒越小运动越剧烈、温度越高运动越剧烈、运动轨迹不确定,但肉眼无法看到。XXX运动的产生是由各个方向的液体分子对微粒碰撞的不平衡引起的。需要注意的是,布朗运动只能发生在气体和液体中,而扩散现象则在气体、液体和固体之间均可发生。 能量不会被创造或消失,只能从一种形式转化为另一种形式 2.热力学第一定律:能量守恒定律的应用,表明热量和功可以相互转化,但总能量 不变 3.热力学第二定律:不可能从单一热源中吸收热量,使之完全转化为功而不产生任 何其他效应 4.热力学第三定律:绝对零度是无法达到的,因为物质的内能不可能完全降至零 能量既不能创造也不能消失,只能在不同形式和物体之间进行转化或转移。在这个过程中,总能量量保持不变。 热力学第一定律表明,在物体与外界同时发生做功和热传递的情况下,外界对物体所做的功加上物体吸收的热量等于物

高中物理选修3知识总结

高中物理3-3知识点总结 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V 0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A 、物体质量m 、摩尔质量M 、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-10m) ○1球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 ○2立方体模型.30=V d (气体一般用此模型;对气体,d 应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子

质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。 发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接.. 说明了液体分子在永不停息地做无规则运动. ○1布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力

物理人教版选修3-3知识点总结

物理人教版选修3-3知识点总结 物理选修3-3是高中阶段的重要课程,学生应该学习这门课程的重要知识点。下面学习啦小编给大家带来高中物理选修3-3知识点,希望对你有帮助。 高中物理选修3-3知识点(一) 气体压强的微观解释 大量分子频繁的撞击器壁的结果 影响气体压强的因素: ①气体的平均分子动能(宏观上即:温度) ②分子的密集程度即单位体积内的分子数(宏观上即:体积) 表面张力 当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力,如露珠。 (1)作用:液体的表面张力使液面具有收缩的趋势。 (2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直。 (3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。 液晶

分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性。 各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的。 高中物理选修3-3知识点(二) 理想气体 宏观上:严格遵守三个实验定律的气体,实际气体在常温常压下(压强不太大、温度不太低)实验气体可以看成理想气体 微观上:理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.故一定质量的理想气体的内能只与温度有关,与体积无关(即理想气体的内能只看所用分子动能,没有分子势能) 应用状态方程或实验定律解题的一般步骤: (1)明确研究对象,即某一定质量的理想气体; (2)确定气体在始末状态的参量p1、V1、T1及p2、V2、T2; (3)由状态方程或实验定律列式求解; (4)讨论结果的合理性。 饱和汽;湿度

高中物理选修3-3知识点总结

物理选修3-3 知识点汇总 一、宏观量与微观量及相互关系 微观量:分子体积V0、分子直径d 、分子质量 宏观量:物体的体积V 、摩尔体积V m ,物体的质量m 、摩尔质量M 、物体的密度ρ. 1. 分子的大小:分子直径数量级:-10 10m. 2.油膜法测分子直径:d =V S 单分子油膜,V 是油滴的体积,S 是水面上形成的 单分子油膜 的面积. 3. 宏观量与微观量及相互关系 (1)分子数 N =nN A =m M N A 4. 宏观量与微观量及相互关系 (2)分子质量的估算方法:每个分子的质量为:m 0=M N A (3)分子体积(所占空间)的估算方法:V 0=V m N A =M ρN A 其中ρ是液体或固体的密度 (4)分子直径的估算方法:把固体、液体分子看成球形,则V 0=16πd 3 .分子直径 d =36V 0 π ;把固体、液体分子看成立方体,则d =3V 0. 5. 气体分子微观量的估算方法 (1)摩尔数n =V 22.4 ,V 为气体在标况下的体积.(标况是指0摄氏度、一个标准大气压的条件,V 的单位为升L ,如果 3 m ) 注意:同质量的同一气体,在不同状态下的体积有很大差别,不像液体、固体体 积差别不大,所以求气体分子间的距离应说明实际状态. 二、分子的热运动 1.扩散现象和布朗运动:扩散现象和布朗运动都说明分子做无规则运动. (1)扩散现象:不同物质相互接触时彼此进入对方的现象.温度越高,扩散越快. (2)布朗运动:a.定义:悬浮在液体中的 小颗粒 所做的无规则运动. b .特点 :永不停息;无规则运动;颗粒越小,运动越 剧烈 ;温度越高,运动越 剧烈 ;运动轨迹不确定;肉眼看不到. c .产生的原因:由各个方向的液体分子对微粒碰撞的不平衡引起的. d .布朗颗粒:布朗颗粒用肉眼直接看不到,但在显微镜下能看到,因此用肉眼看到的颗粒所做的运动不能叫做布朗运动.布朗颗粒大小约为10-6 m(包含约1021个分子),而分子直径约为10-10 m .布朗颗粒的运动是分子热运动的间接反映。 2.热运动:(1)定义: 分子永不停息的无规则运动. (2)特点:温度越高,分子的热运动 剧烈 . 说明:(1)布朗运动不是固体分子的运动,也不是液体分子的运动,而是小颗粒的 运动,是液体分子无规则运动的间接反映,是微观分子热运动造成的宏观现象. (2)布朗运动只能发生在气体、液体中,而扩散现象在气体、液体、固体之间均 可发生. 三、分子间的作用力、内能 1.分子间的相互作用力 (1)分子间同时存在着相互作用的引力和斥力,引力和斥力都随分子间距离增大而 减小,随分子间距离减小而 增大.但斥力的变化比引力的变化快.实际 表现出来的分子力是引力和斥力的合力 (2)分子间的作用力与分子间距离的关系 a. 当r =r 0时,引力和斥力相等,分子力 F=0 ,此时分子所处的位置为平衡 位置.r 0的数量级为10-10 m. b. 当r <r 0时,斥力大于引力,分子力F 表现为斥力. c. 当r >r 0时,引力大于斥力,分子力F 表现为引力. 当分子间距离r 大于10-9 m 时,分子力可以忽略不计. 2.分子动能 (1)定义:做热运动的分子具有的动能叫分子动能 . (2)分子的平均动能:组成系统的所有分子的动能的 平均值叫做分子热运动的平 均动能. (3)温度是分子热运动的平均动能的标志,温度越高,分子热运动的 平均动 能越大

3热学知识点总结

高中物理选修3-3知识点梳理 考点64物体是由大量分子组成的 阿伏罗德罗常数 要求:1 阿伏加德罗常数(N A =6.02x1023mol T )是联系微观量与宏观量的桥梁。 设分子体积V 0、分子直径d 、分子质量m ;宏观量为•物质体积丫、摩尔体积匕、物质质量M 、摩尔 质量〃、物质密度p 。 目 p V _ V _ R (1)分子质量:m = N =N (2)分子体积:V 0=N =PN - (对气体,V 0应为气体分子占 AA A A 据的空间大小) (3)分子直径: 4 d : 6V 而 "球体模型.N A 38(2)3= V d = 3菽—=3寸 (固体、液体一般用此模型) Q 立方体模型.d = 3;'匕 (气体一般用此模型)(对气体,d 应理解为相邻分子间的平均距离) (4)分子的数量: p V M V N = N = N = N A 日 A p V A V A 11 固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子不可估算大小,只能估算气体分子所占空间、分子质量。 考点65用油膜法估测分子的大小(实验、探究) 要求:1 在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤C 的内容及实验步骤E 中的计算式: A .用滴管将浓度为0.05%的油酸酒精溶液逐滴滴入量筒中,记下滴入1mL 的油酸酒精溶液的滴数N ; B .将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为0.05%的油酸酒精溶液,逐滴向水面上滴 入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数n ; C . ______________________________________________________________________ D .将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长1cm 的正方形为单位,计算出轮廓内正 方形的个数m (超过半格算一格,小于半格不算) E .用上述测量的物理量可以估算出单个油酸分子的直径d =cm . 考点66分子热运动布朗运动 要求:1 1)扩散现象:不同物质彼此进入对方(分子热运动)。温度越高,扩散越快。 应用举例:向半导体材料掺入其它元素 扩散现象直接说明:组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈; 间 接 说 明:分子间有间隙 2)布朗运动:悬浮在液体中的固体微粒的无规则运动,不是液体分子的无规则运动!因微粒很小,所以 要用光学显微镜来观察. 布朗运动发生的原因是受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而布朗运动说 明了分子在永不停息地做无规则运动. (1)布朗运动不是固体微粒中分子的无规则运动. (2)布朗运动不是液体分子的运动.

高中物理选修3-3“分子动理论”知识点总结

高中物理选修3-3“分子动理论”知识点总结 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯ (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标 r距离时,分 0子间的引力与斥力平衡,分子间作用力为零, r的数量级为 10 10 m,相当于 r位置叫做平衡位置。当分子距离的数量级大于 m时,分子间的作用力变得十分微弱,可以忽略不计了

高中物理33热学知识点归纳

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值 : 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303A 6=6=π πV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子 间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n ====ρμρμ 2. 分子永不停息地做无规则热运动

(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。(2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素 固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。 (6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在,这种微粒肉眼是看不到的,必须借助于显微镜。 3.分子间存在着相互作用力 (1)分子间的引力和斥力同时存在,实际表现 出来的分子力是分子引力和斥力的合力。 分子间的引力和斥力只与分子间距离(相对位 置)有关,与分子的运动状态无关。 (2)分子间的引力和斥力都随分子间的距离r 的增大而减小,随分子间的距离r的减小而增大,但斥力的变化比引力的变

高中物理选修3-3知识点总结[1]

高中物理选修3-3知识点 第一章分子动理论 第二章固体、液体和气体 第三章热力学定律及能量守恒 2012年8月

第1课时分子动理论 一、要点分析 1.命题趋势 本部分主要知识有分子热运动及内能,在09年高考说明中,本课时一共有五个考点,分别是:1.物质是由大量分子组成的阿伏加德罗常数;2.用油膜法估测分子的大小(实验、探究);3.分子热运动布朗运动;4.分子间作用力;5.温度和内能.这五个考点的要求都是I级要求,即对所列的知识点要了解其内容及含义,并能在有关问题中识别和直接应用。由于近几年《考试说明》对这部分内容的要求基本没有变化,江苏省近几年的考题中涉及到了几乎所有的考点,试题多为低档题,中档题基本没有。分子数量、质量或直径(体积)等微观的估算问题要求有较强的思维和运算能力。分子的动能和势能、物体的内能是高考的热点。2.题型归纳 随着物理高考试卷结构的变化,所以估计今后的高考试题中,考查形式与近几年大致相同:多以选择题、简答题出现。 3.方法总结 (1)对应的思想:微观结构量与宏观描述量相对应,如分子大小、分子间距离与物体的体积相对应;分子的平均动能与温度相对应等;微观结构理论与宏观规律相联系,如分子热运动与布朗运动、分子动理论与热学现象。 (2)阿伏加德罗常数在进行宏观和微观量之间的计算时起到桥梁作用;功和热量在能量转化中起到量度作用。 (3)通过对比理解各种变化过程的规律与特点,如布朗运动与分子热运动、分子引力与分子斥力及分子力随分子间距离的变化关系、影响分子动能与分子势能变化的因素、做功和热传递等。 4.易错点分析 (1)对布朗运动的实质认识不清 布朗运动的产生是由于悬浮在液体中的布朗颗粒(即固体小颗粒)不断地受到液体分子的撞击,是小颗粒的无规则运动。布朗运动实验是在光学显微镜下观察到的,因此,只能看到固体小颗粒而看不到分子,它是液体分子无规则运动的间接反映。布朗运动的剧烈程度与颗粒大小、液体的温度有关。布朗运动永远不会停止。 (2)对影响物体内能大小的因素理解不透彻 内能是指物体里所有的分子做无规则热运动的动能和分子势能的总和。分子动能取决于分子个数和温度;分子势能微观上由分子间相对位置决定,宏观上取决于物体的体积。同时注意内能与机械能的区别和联系。 二、典型例题 例1、铜的摩尔质量是6.35×10-2kg,密度是8.9×103kg/m3 。求(1)铜原子的质量和体积; (2)铜1m3所含的原子数目;(3)估算铜原子的直径。 例2、下面两种关于布朗运动的说法都是错误的,试分析它们各错在哪里。 (1) 大风天常常看到风沙弥漫、尘土飞扬,有时在室内也能看到飘浮在空气中的尘埃的

高中物理选修3-3知识点清单

A N N 高中物理 3-3 知识点 第七章 分子动理论 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同 N = 6.02⨯1023 mol -1 (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) Ⅰ.球体模型直径d = Ⅱ.立方体模型边长d = 3 V 0. ②利用阿伏伽德罗常数联系宏观量与微观量 Ⅰ.微观量:分子体积V 0、分子直径d 、分子质量m 0. Ⅱ.宏观量:物体的体积V 、摩尔体积V m ,物体的质量m 、摩尔质量M 、物体的密度ρ. a.分子质量: m = M mol = ρV mol A A b.分子体积: v = V mol M (气体分子除外) = 0 ρN A A M ρv M v c.分子数量: n = M N A = M N A = ρV N A = V N A mol mol mol mol 特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。分子的体积V =V m ,仅适用于固体和 液体,对气体不适用,仅估算了气体分子所占的空间。 0 N A 2、对于气体分子,d =3 V 0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离. 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。可以发生在固体、液体、气体任何两种物质之间 (2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高, 布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固.体.微.小.颗.粒.各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 N

人教版高中物理选修3-3知识点汇总_一册全_

人教版高中物理选修3—3知识点总结 第七章 分子动理论 第一节 物体是由大量分子组成的 一、实验:用油膜法估测分子的大小 二、分子的大小 阿伏加德罗常数 1.分子的大小:除了一些有机物质的大分子外,多数分子大小的数量级为10-10 m 。 2.阿伏加德罗常数:N A =6.02×1023_mol - 1。 3.两种分子模型 分子 模型 意义 分子大小或 分子间的平 均距离 图例 球形 模型 固体和液体可看成是由一个个紧挨着的球形分子排列 而成的,忽略分子间的空隙 d = 3 6V 0 π (分子大小) 立方体 模型 (气体) 气体分子间的空隙很大,把气体分成若干个小立方体,气体分子位于每个小立方体的中心,每个小立方体是每个分子占有的活动空间,这时忽略气体分子的 大小 d =3 V 0 (分子间平 均距离) 设物质的摩尔质量为M 、摩尔体积为V 、密度为ρ、每个分子的质量为m 0、每个分子的体积为V 0,有以下关系式: (1)一个分子的质量:m 0=M N A =ρV 0。 (2)一个分子的体积:V 0=V N A =M ρN A (只适用于固体和液体;对于气体,V 0表示每个气体分子平均占有的空间 体积)。 (3)一摩尔物质的体积:V =M ρ 。 (4)单位质量中所含分子数:n =N A M 。 (5)单位体积中所含分子数:n ′=N A V 。 (6)气体分子间的平均距离:d = 3V N A 。 (7)固体、液体分子的球形模型分子直径:d = 36V πN A ;气体分子的立方体模型分子间距:d = 3V N A 。 第二节 分子的热运动

一、扩散现象 1.定义:不同物质能够彼此进入对方的现象。 2.产生原因:物质分子的无规则运动。 3.意义:反映分子在做永不停息的无规则运动。 二、布朗运动 1.概念:悬浮微粒在液体(或气体)中的无规则运动。 2.产生原因:大量液体(或气体)分子对悬浮微粒撞击作用的不平衡性。 3.影响因素:微粒越小、温度越高,布朗运动越激烈。 4.意义:间接反映了液体(或气体)分子运动的无规则性。 三、分子的热运动 1.定义:分子永不停息的无规则运动。 2.宏观表现:布朗运动和扩散现象。 3.特点 (1)永不停息;(2)运动无规则;(3)温度越高,分子的热运动越激烈。 第三节分子间的作用力 一、分子间的作用力 1.分子间有空隙 2.分子间的作用力 (1)分子间同时存在着相互作用的引力和斥力。 (2)当两个分子的距离为r0时,分子所受的引力与斥力大小相等,此时分子所受的合力为零;当分子间的距离小于r0时,作用力的合力表现为斥力;当分子间的距离大于r0时,作用力的合力表现为引力。 二、分子动理论 1.内容物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着引力和斥力。 2.分子力F随r变化的关系 (1)F­r图像:如图所示。 (2)变化规律: ①当r=r0时,F=0; ①当rr0时,F随r的增大,先增大后减小; ①当r≥10r0时,F=0。 第四节温度和温标 一、状态参量与平衡态

高中物理选修3-3知识点归纳

选修3-3学问点归纳2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个相识到物体是由分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体)A N V V 摩分子=(对固体和液体)摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②试验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能视察得到。 ②扩散现象和布朗运动证明分子永不停息作无规则运动,扩散现象还说明白分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变更得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理选修3-3 知识点梳理和总结

选修3-3 热学 一、分子动理论 1.物体是由大量分子组成的 (1)分子的大小 ①分子直径:数量级是10-10 m ; ②分子质量:数量级是10-26 kg ; ③测量方法:油膜法. (2)阿伏加德罗常数:1 mol 任何物质所含有的粒子数,N A =6.02×1023 mol - 1. (3)微观量:分子体积V 0、分子直径d 、分子质量m 0. (4)宏观量:物体的体积V 、摩尔体积V m 、物体的质量m 、摩尔质量M 、物体的密度ρ. (5)关系: ①分子的质量:m 0=M N A =ρV m N A ②分子的体积:V 0=V m N A =M ρN A ③物体所含的分子数:N =V V m ·N A =m ρV m ·N A 或N =m M ·N A =ρV M ·N A (6)两种模型: ①球体模型直径为:d = 36V 0 π ②立方体模型边长为:d =3 V 0 2.分子热运动:一切物质的分子都在永不停息地做无规则运动. (1)扩散现象:相互接触的不同物质彼此进入对方的现象.温度越高,扩散越快,可在固体、液体、气体中进行. (2)布朗运动: ①定义:悬浮在液体(或气体)中的小颗粒的永不停息地无规则运动. ②实质:布朗运动反映了液体分子的无规则运动. ③决定因素:颗粒越小,运动越明显;温度越高,运动越剧烈. (3)气体分子运动速率的统计分布:

①同一温度下,大多数分子具有中等的速率;随温度升高,占总数比例最大的那些分子速率增大. ②气体分子运动速率的“三个特点” 某个分子的运动是无规则的,但大量分子的运动速率呈现统计规律,如图所示:横轴表示分子速率,纵轴表示各速率的分子数占总分子数的百分比,图像有三个特点: (1)“中间多,两头少”:同一温度下,特大或特小速率的分子数比例都较小,大多数分子具有中等的速率. (2)“图像向右偏移”:速率小的分子数减少,速率大的分子数增加,分 子的平均速率将增大,但速率分布规律不变. (3)“面积不变”:图线与横轴所围面积都等于1,不随温度改变. 二、内能 1.分子动能 (1)分子动能:分子热运动所具有的动能; (2)分子平均动能:所有分子动能的平均值.温度是分子平均动能的标志. 2.分子势能:由分子间相对位置决定的能,在宏观上分子势能与物体体积有关,在微观上与分子间的距离有关.3.物体的内能 (1)内能:物体中所有分子的热运动动能与分子势能的总和. (2)决定因素:温度、体积和物质的量. 4.分子力 (1)分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快. (2)分子力、分子势能与分子间距离的关系 分子力曲线与分子势能曲线:分子力F、分子势能E p与分子间距离r的关系图线如图所示(取无穷远处分子势能E p=0): (3)分子力、分子势能与分子间距离的关系 ①当r>r0时,分子力为引力,当r增大时, 分子力做负功,分子势能增加. ②)当r

相关文档
最新文档