概率论与数理统计(英文) 第五章

合集下载

概率论与数理统计 第五章

概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列

n
i =1
Xi −
∑ E(X
i =1
n
i
)

n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0

《概率论与数理统计》课件 概率学与数理统计 第五章

《概率论与数理统计》课件 概率学与数理统计 第五章

时,
n
n
X k =BnZn + k
k 1
k 1
n
近似地服从正态分布 N( k,Bn2) 。这说明无论随机变量 Xk (k
i 1
n
=1, 2,…)具有怎样的分布,只要满足定理条件,那么它们的和Xk
k 1
当n很大时就近似地服从正态分布。而在许多实际问题中,所
考虑的随机变量往往可以表示为多个独立的随机变量之和,因
实测值的算术平均值
时,取
作为 a 1 n
n i1 X i
1 n
n i 1
Xi
,根据此定理,当
n
足够大
的近似值,可以认为所发生的误差是
很小的,所以实用上往往用某物体的某一指标值的一系列
实测值的算术平均值来作为该指标值的近似值。
第二节 中心极限定理
在第二章,我们说只要某个随机变量受到许多相互独立 的随机因素的影响,而每个个别因素的影响都不能起决定性 的作用,那么就可以断定这个随机变量服从或近似服从正态 分布。这个结论的理论依据就是所谓的中心极限定理。概率 论中有关论证独立随机变量的和的极限分布是正态分布的一 系列定理称为中心极限定理( Central limit theorem) 。下面介 绍几个常用的中心极限定理.
P{X 102} P{ X 100 102 100} 1 P{X 100 2}
1
1
1 (2) 1 0.977250 0.022750.

对敌人的防御地进行100次轰炸,每次轰炸命中目标的炸弹数目是 一个随机变量,其期望值是2,方差是。求在100次轰炸中有180颗到 220颗炸弹命中目标的概率。 解 令第 i 次轰炸命中目标的炸弹数为 Xi ,100次轰炸中命中目

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。

概率论与数理统计 第五章

概率论与数理统计 第五章
n →∞ n →∞
∑ X − ∑µ
k =1 k =1
k
Bn
≤ x} = ∫
ቤተ መጻሕፍቲ ባይዱ
x
1 2π
−∞
e
t2 − 2
dt=Φ(x).
说明: 说明
在定理条件下, r.v. Zn =
∑ X − ∑µ
k =1 k k =1
n
n
k
Bn
当 n很 大
时, 近似地服从正态分布N(0, 1),由此当n很大时,
∑X
k =1 n
n
t2 2
(本定理 可以由独立同分布 的中心极限定理证 明)
说明: 说明 本定理不难看出 :若ηn
~ b(n,p), 有
t2 2
b ηn − np 1 lim P a < e dt = Φ(b) − Φ(a), ≤ b = ∫ a n →∞ npq 2π 因 而 当 n较 大 时 , 我 们 可 以 用 正 态 分 布 近 似 计 算 二 项 分布 的 概率 。
2. 切比雪夫大数定律: 设X1 , X 2 , L Xn , L 是由两两互 不相关的随机变量所构成的序列, 每一个随机变量都 有有限的方差, 并且它们有公共的上界 , D(X1 ) ≤ C, D(X 2 ) ≤ C, L , D(Xn ) ≤ C, L 则对∀ε > 0, 都有 1 n 1 n lim P ∑ Xk − ∑ E(Xk ) < ε = 1. n →∞ n k =1 n k =1
k
2 , k = 0,1, L ,90000. 3 ≤ 30500}
90000-k
显然直接计算十分麻烦, 我们利用德莫佛-拉普拉斯定理 来求它的近 似 值 即有P{29500 < X ≤ 30500} 29500-np = P < np(1-p ) 30500-np ≤ np(1-p ) np(1-p ) X-np

数理统计第五章

数理统计第五章

2πσ1 σ2 1 − ρ2 (x − µ1 )2 (x − µ1 )(y − µ2 ) (y − µ2 )2 − 2 ρ + 2 2 σ1 σ2 σ1 σ2 (−∞ < x, y < ∞)
Then we call that (X, Y ) follows the two-dimensional normal distribution with parameters µ1 , µ2 , σ1 , σ2 , ρ, denoted by (X, Y ) ∼ N (µ1 , µ2 , σ1 , σ2 , ρ), where µ1 , µ2 ∈ R, σ1 > 0, σ2 > 0, |ρ| < 1.
x y
F (x, y ) =
−∞ −∞
f (u, v )dudv.
Then (X, Y ) is called as a two-dimensional continuous r.v., f (x, y ) is the joint probability density function of (X, Y ), which can be simplified as joint probability density or joint density function.
Random Vectors and Joint Probability Distributions
ZHAO Hui School of Mathematics and Statistics Central China Normal University March 10, 2015
1 / 37
Table of Contents
Definition 2.2

(完整word版)概率论与数理统计(英文)

(完整word版)概率论与数理统计(英文)

3. Random Variables3.1 Definition of Random VariablesIn engineering or scientific problems, we are not only interested in the probability of events, but also interested in some variables depending on sample points. (定义在样本点上的变量)For example, we maybe interested in the life of bulbs produced by a certain company, or the weight of cows in a certain farm, etc. These ideas lead to the definition of random variables.1. random variable definitionHere are some examples.Example 3.1.1 A fair die is tossed. The number X shown is a random variable, it takes values in the set {1,2,6}.Example 3.1.2The life t of a bulb selected at random from bulbs produced by company A is a random variable, it takes values in the interval (0,) .Since the outcomes of a random experiment can not be predicted in advance, the exact value of a random variable can not be predicted before the experiment, we can only discuss the probability that it takes somevalue or the values in some subset of R.2. Distribution function Definition3.1.2 Let X be a random variable on the sample space S . Then the function()()F X P X x =≤. R x ∈is called the distribution function of XNote The distribution function ()F X is defined on real numbers, not on sample space.Example 3.1.3 Let X be the number we get from tossing a fair die. Then the distribution function of X is (Figure 3.1.1)0,1;(),1,1,2,,5;61, 6.if x n F x if n x n n if x <⎧⎪⎪=≤<+=⎨⎪≥⎪⎩Figure 3.1.1 The distribution function in Example 3.1.3 3. PropertiesThe distribution function ()F x of a random variable X has the following properties :(1) ()F x is non-decreasing.SolutionBy definition,1(2000)(2000)10.6321P X F e -≤==-=.(10003000)(3000)(1000)P X P X P X <≤=≤-≤1.50.5(3000)(1000)(1)(1)0.3834F F e e --=-=---= Question : What are the probabilities (2000)P X < and (2000)P X =? SolutionLet 1X be the total number shown, then the events 1{}X k = contains 1k - sample points, 2,3,4,5k =. Thus11()36k P X k -==, 2,3,4,5k = And512{1}{}k X X k ==-==so 525(1)()18k P X P X k ==-===∑ 13(1)1(1)18P X P X ==-=-=Thus0,1;5()(),11;181, 1.x F x P X x x x <-⎧⎪⎪=≤=-≤<⎨⎪≥⎪⎩Figure 3.1.2 The distribution function in Example 3.1.5The distribution function of random variables is a connection between probability and calculus. By means of distribution function, the main tools in calculus, such as series, integrals are used to solve probability and statistics problems.3.2 Discrete Random Variables 离散型随机变量In this book, we study two kinds of random variables. ,,}n aAssume a discrete random variable X takes values from the set 12{,,,}n X a a a =. Let()n n P X a p ==,1,2,.n = (3.2.1) Then we have 0n p ≥, 1,2,,n = 1n n p=∑.the probability distribution of the discrete random variable X (概率分布)注意随机变量X 的分布所满足的条件(1) P i ≥0(2) P 1+P 2+…+P n =1离散型分布函数And the distribution function of X is given by()()n n a xF x P X x p ≤=≤=∑ (3.2.2)Solutionn=3, p=1/2X p r01/813/823/831/8two-point distribution(两点分布)某学生参加考试得5分的概率是p, X表示他首次得5分的考试次数,求X的分布。

概率论与数理统计(英文) 第五章

概率论与数理统计(英文) 第五章

5. Random vectors and Joint Probability Distribution s随机向量与联合概率分布5.1 Concept of Joint Probability Distributions(1) Discrete Variables Case 离散型Often, trials are conducted where two random variables are observed simultaneously in order to determine not only their individual behavior but also the degree of relationship between them.( X, Y)For two discrete random variables X and Y, we write the probability that X will take the value x and Y will take the value y as P(X=x, Y=y). Consequently, P(X=x, Y=y) is the probability of the intersection of the events X=x and Y=y.(X=x, Y=y) ------ (X=x)∩(Y=y)The distribution of probability is specified by listing the probabilities associated with all possible pairs of values x and y, either by formula or in a table. We refer to the function p(x, y)=P(X=x, Y=y) and the corresponding possible values (X, Y) as the j oint probability distribution (联合分布)of X and Y.They satisfy(,)0, (,)1xyp x y p x y ≥=∑∑,where the sum is over all possible values of the variable.Example 5.1.1 Calculating probabilities from a discrete joint probability distributionLet X and Y have the joint probability distribution.(a) Find (1)P X Y +>;(b) Find the probability distribution ()()X p x P X x == of the individualrandom variable X . Solution(a) The event 1X Y +>is composed of the pairs of values (l,1), (2,0), and (2,l). Adding their corresponding probabilities(1)(1,1)(2,0)(2,1)0.20.100.3.P X Y p p p +>=++=++=(b) Since the event X =0 is composed of the two pairs of values (0,0) and (0,1), we add their corresponding probabilities to obtain(0)(0,0)(0,1)0.10.20.3P X p p ==+=+=.Continuing, we obtain (1)(1,0)(1,1)0.40.20.6P X p p ==+=+= and(2)(2,0)(2,1)0.100.1P X p p ==+=+=.In summary, (0)0.3X p =, (1)0.6X p = and (2)0.1X p =is the probabilitydistribution of X . Note that the probability distribution ()X p x of appears in the lower margin of this enlarged table. The probability distribution ()Y p y of Y appears in the right-hand margin of the table. Consequently, the individual distributions are called marginal probability distributions .(边缘分布)From the example, we see that for each fixed value of x , the marginalprobability distribution is obtained as()()(,)X yP X x p x p x y ===∑,where the sum is over all possible values of the second variable. Continuing, we obtain()()(,)Y xP Y y p y p x y ===∑.Example 3.5.3Suppose the number X of patent applications (专利申请)submitted by a company during a 1-year period is a random variable having thePoisson distribution with mean λ, (()!n e P X n n λλ-==)and the variousapplications independently have probability (0,1)p ∈ of eventually being approved.Determine the distribution of the number of patent applications during the 1-year period that are eventually approved.先求联合分布密度,再求边缘分布Solution Let Y be the number of patent application being eventually approved during 1-year period. Then the event {}Y k = is the union of mutually exclusive events {,}X n Y k == ()n k ≥.If X n =, then the random variable S has the binomial distribution with parameter n and p :(|)(1)k k n k n P Y k X n C p p -===-. (0)n k ≥≥ Thus(,)()(|)P X n Y k P X n P Y k X n ====== (1)!nk kn k n e C p p n λλ--=⋅⋅-when k>n, P(X=n, Y=k)=0,Hence the distribution of Y is()(,)(,)n n kP Y k P X n Y k P X n Y k ∞∞=========∑∑(1)!nk kn k n n ke C p p n λλ∞--==⋅⋅-∑!(1)!!()!nk n k n k n e p p n k n k λλ∞--==⋅⋅--∑(1)!()!kn kkn k n ke p p k n k λλλ-∞--==⋅⋅--∑()(1)(1)()()!!!mk k p m p p p e e ek m k λλλλλλ∞---=-==∑ ()!k pp e k λλ-= Thus, Y has the Poisson distribution of mean p λ. exercise从1,2,3,4,5五个数中不放回随机的接连地取3个,然后按大小排成123X X X <<,试求13(,)X X 的联合分布,x1,x3 独立吗?Homework Chap 5 1,(2) Continuous Variables Case 连续型随机向量There are many situations in which we describe an outcome by giving the values of several continuous random variables. For instance, we may measure the weight and the hardness of a rock, the pressure and the temperature of a gas. Suppose that X and Y are two continuous random variables. A function (,)f x y is called the joint probability density of these random variables, if the probability that , a X b c Y d ≤≤≤≤ is given by the multiple integral(, )(,)b da cP a X b c Y d f x y dxdy ≤≤≤≤=⎰⎰Thus, a function (,)f x y can serve as a joint probability density if all of the following hold:for all values of x and y , f is integrable on R 2 andTo extend the concept of a cumulative distribution function to the two variables case, we can define F (x , y )(, )(, )F x y P X x Y y =≤≤,and we refer to the corresponding function F as the joint cumulative distribution function of the two random variables.Example 5.1.2If the joint probability density of two random variables is given by236 for 0,0(,)0 elsewherex y e x y f x y --⎧>>=⎨⎩ Find the joint distribution function, and use it to find the probability(2,4)P X Y ≤≤.Solution By definition,23006 for 0, 0(,)(,)0 elsewhere y x yu vxe du e dv x y F x yf u v dudv ---∞-∞⎧>>⎪==⎨⎪⎩⎰⎰⎰⎰Thus,23(1)(1) for >0, >0(,)0 elsewhere x y e e x y F x y --⎧--=⎨⎩.Hence,412(2, 4)(2, 4)(1)(1)0.9817P X Y F e e --≤≤==--=.ExampleIf the joint probability density of two random variables is given by2,1,01(,)0,kxy x y x f x y ⎧≤≤≤≤=⎨⎩其他(a)find the k; (b)find the probability2((,)),{(,)|,01}P X Y D D x y x y x x ∈=≤≤≤≤solutionsince(,)1f x y dxdy ∞∞-∞-∞=⎰⎰24111001(,)()226x x kf x y dxdy dx kxydy k x dx ∞∞-∞-∞==-=⎰⎰⎰⎰⎰ hence k=6.21124001((,))663()4xx DP X Y D xydxdy dx xydy x x x dx ∈===-=⎰⎰⎰⎰⎰joint marginal densities 边缘密度Given the joint probability density of two random variables, the probability density of the X or Y can be obtained by integrating out another variable,The functions f X and f Y respectively are called the marginal density (边缘密度)of X and Y .,ExampleThe joint probability density of two random variables is given by26,1,01(,)0,xy x y x f x y ⎧≤≤≤≤=⎨⎩其他find the marginal density from the joint density when [0,1]x ∈,215()(,)633X xf x f x v dv xydy x x +∞-∞====-⎰⎰[0,1]x ∉,()0X f x =,hence 533,01()0,X x x x f x elsewhere ⎧-≤≤=⎨⎩23,01()0,Y y y f x elsewhere ⎧≤≤=⎨⎩exercises求服从B 上均匀分布的随机向量(X,Y )的分布密度及分布函数。

数学英语词汇(概率论与数理统计)

数学英语词汇(概率论与数理统计)

概率论与数理统计——Probability theory and mathematical statistics第一章随机事件与概率——Chapter 1. Random events and probability试验 Experiment随机的 Random;Stochastic随机性 Randomnesstest;Random experiment随机试验 Randomevent随机事件 Randomevent基本事件 Elementaryevent复合事件 Compoundspace样本空间 Sampleevent必然事件 Certainevent不可能事件 Impossible事件的出现Occurrence of eventevent积事件 Product不相容 Incompatibleexclusive互不相容 Mutuallyevent不相容事件 Incompatibleevents不相交事件 Disjiont频率 Frequency概率 Probability可能性 Possibilityset;Non-enumerable set不可数集 Non-denumerable可数的 Numerable可列 Countable;Denumerable;Enumerableinfinite可列无穷 Enumerableadditivity可列可加性 Countablemodel概率模型 Probabilisticprobability等概率 Equal等可能事件Equally likely event条件概率 Conditionalprobabilitytheorem乘法定理 Multiplicationformula乘积公式 Product全概率 TotalprobabilityTheorem贝叶斯定理 Bayes’后验概率 Posteriorprobabilityprobability先验概率 Prior独立 Independence独立事件 Independentevent独立随机事件Independent random eventindependence两两独立 Pairwise两两独立事件Pairwise independence eventstrial伯努利试验 Bernouill’sevents事件序列 Sequenceof第二章随机变量及其分布——Chapter 2. Random variables and their distribution分布 Distributiondistribution概率分布 Probabilityvariable随机变量 Random离散 Discrete离散随机变量Discrete random variabledistribution离散分布 Discretedistribution一维概率分布 One-dimensionalprobability连续随机变量Continuous random variable连续分布 Continuousdistributionfunction密度函数 Densityfunction分布函数 Distributiondistribution两点分布 Two-pointdistribution零一分布 Zero-onedistribution二项分布 Binomialdistribution超几何分布 Hypergeometrydistribution泊松分布 Poisson均匀分布 Uniformdistributiondistribution指数分布 Exponentialdistribution正态分布 Normal高斯分布 Gaussiandistributiondistributionnormal标准正态分布 Standarddistribution几何分布 GeometricdistributionΓ分布 Gammadistribution瑞利分布 Rayleigh第三章二维随机变量及其分布——Chapter 3. Two-dimension random variables and their distributionvector随机向量 Random联合分布 Jointdistributionn维概率分布n-dimensional probability distributiondistribution边缘分布 Marginal联合分布函数Joint distribution function联合概率分布Joint probability distributiondistributionprobability条件概率分布 Conditional条件概率函数Conditional probability functiondensity联合密度 Joint联合概率密度Joint probability densitydensity边缘密度 Marginalprobabilitydensity条件概率密度 Conditional二元正态分布Bivariate normal distributionnormaldistribution多元正态分布 Multivariate多维正态分布Multidimensional normal distributionn维正态分布n-dimensional normal distribution随机变量独立性Independence of random variable独立随机变量Independent random variable卷积 Convolution第四章数字特征——Chapter 4. Numeric characteristic期望 Expectationexpectation数学期望 Mathematicalvector均值向量 Mean方差 Variancedeviation标准差 Standard偏差 Deviation标准化随机变量Standardized random variable协方差 Covariancematrix协方差矩阵 Covariance相关系数 Correlationcoefficient;Related coefficient不相关 Irrelevancecorrelation负相关 Negative矩 Momentmoment中心矩 Centralmoment一阶矩 First峰度 Leptokurtosisfunction矩函数 Moment矩母函数Moment generating functioninequality切比雪夫不等式 Chybyshevprobability依概率收敛 Convergenceinconvergence弱收敛 Weak大数定律Law of large number弱大数定律Weak law of large numberslimitTheorem中心极限定理 Centraldistribution极限分布 Limiting第五章数理统计的基本概念——Chapter 5. Fundamental concept of mathematical statistics 统计 Statistic总体 Population;Ensemble;Totalitydistribution总体分布 Populationparameter总体参数 Population随机抽样法Method of random samplingprocession数据处理 Datavalue观测值 Observedinterval组距 Classlimits组限 Classmean组平均 Classmidpoint组中值 Classerror分组误差 Grouping直方图 Histogramvariance经验方差 Empiricalfunction经验分布函数 Empiricaldistributionpopulation正态总体 Normalaverage简单平均 Simple平均值 Mean;Mean value;Average权 Weightaverage;Weighted mean加权平均值 Weighted总体均值 Populationmean;Ensemble averagevariance总体方差 Population离差平方和Sum of squares of deviationsmoment总体矩 Populationmoment总体中心矩 Populationcentral样本 Sampleaverage样本均值 Sample样本相关系数 Samplecoefficientcorrelationmean样本均值 Samplemoment样本矩 Samplepoint样本点 Samplesize样本容量 Samplespace样本空间 Sample样本标准差Sample standard deviationvariance样本方差 Sample抽样 Samplinginspection抽样检验 Sampling均方根 Root-mean-squaresquaredeviation均方差 Mean众数 Mode分位数 Quantile峰值 Peakχ 2分布Chi square distributiont分布 t-distribution临界值 Marginalvalueoffreedom自由度 Degree无限自由度Infinite degree of freedomstatistics充分统计量 Sufficient第六章参数估计——Chapter 6. Parameter estimation总体参数Parameter of population估计 Estimate估计量 Estimatorestimation点估计 Point矩法Method of momentestimation 矩估计法 Momentofmethodfunction似然函数 Likelihoodequation似然方程 Likelihoodlikelihood最大似然 Maximum最大似然法Method of maximum likelihoodestimate最大似然估计 Maximumlikelihood相关的估计量Estimate of correlationestimates充分估计量 Sufficient无偏的 Unbiased无偏性 Unbiasedness;Without bias无偏估计 Unbiasedestimate;Unbiased estimation有效性 Validityestimation有效估计 Efficiency有效估计量 Efficiencyestimatorerrorsquare均方误差 Mean最小方差估计Minimum variance estimation一致最小方差无偏估计Uniformly minimum variance unbiased estimationestimation;Estimate by a interval区间估计 Intervalinterval;Fiducial interval置信区间 Confidencelevel置信水平 Confidenceconfidenceof置信度 Degreelimit置信限 Fiducial总体比例估计Estimate of population proportion总体方差估计Estimate of population variance第七章假设检验——Chapter 7. Hypothesis testing假设 Hypothesis统计假设 Statisticalhypothesistesting;Test of hypothesis;Testing of hypothesis 假设检验 Hypothesis小概率事件Event of small probabilitystatistics检验统计量 Testtest双侧检验 Two-sidesofacceptance;Acceptance region接受域 Region拒绝域Region of rejection显著水平Level of significance;Significance level第八章回归分析——Chapter 8. Regression analysis回归 Regression回归分析 Regressionanalysisequation回归方程 Regression回归系数估计Estimate of regression coefficient线性回归 Linearregression拟和 Fittingmethod;Minimum squares method最小二乘法 Leastsquare残差 Residual残差平方和Residual sum of squares;Square sum of residues方差分析 Varianceanalysis曲线拟和Fitting of a curve多项式拟和Fitting of a polynomial直线拟和Fitting of a straight linefit拟和优度 Goodnessof拟和优度检验Goodness of fit testregression非线性回归 Nonlinearanalysis 非线性回归分析 Nonlinearregression。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5. Random vectors and Joint Probability Distribution s随机向量与联合概率分布5.1 Concept of Joint Probability Distributions(1) Discrete Variables Case 离散型Often, trials are conducted where two random variables are observed simultaneously in order to determine not only their individual behavior but also the degree of relationship between them.( X, Y)For two discrete random variables X and Y, we write the probability that X will take the value x and Y will take the value y as P(X=x, Y=y). Consequently, P(X=x, Y=y) is the probability of the intersection of the events X=x and Y=y.(X=x, Y=y) ------ (X=x)∩(Y=y)The distribution of probability is specified by listing the probabilities associated with all possible pairs of values x and y, either by formula or in a table. We refer to the function p(x, y)=P(X=x, Y=y) and the corresponding possible values (X, Y) as the j oint probability distribution (联合分布)of X and Y.They satisfy(,)0, (,)1xyp x y p x y ≥=∑∑,where the sum is over all possible values of the variable.Example 5.1.1 Calculating probabilities from a discrete joint probability distributionLet X and Y have the joint probability distribution.(a) Find (1)P X Y +>;(b) Find the probability distribution ()()X p x P X x == of the individualrandom variable X . Solution(a) The event 1X Y +>is composed of the pairs of values (l,1), (2,0), and (2,l). Adding their corresponding probabilities(1)(1,1)(2,0)(2,1)0.20.100.3.P X Y p p p +>=++=++=(b) Since the event X =0 is composed of the two pairs of values (0,0) and (0,1), we add their corresponding probabilities to obtain(0)(0,0)(0,1)0.10.20.3P X p p ==+=+=.Continuing, we obtain (1)(1,0)(1,1)0.40.20.6P X p p ==+=+= and(2)(2,0)(2,1)0.100.1P X p p ==+=+=.In summary, (0)0.3X p =, (1)0.6X p = and (2)0.1X p =is the probabilitydistribution of X . Note that the probability distribution ()X p x of appears in the lower margin of this enlarged table. The probability distribution ()Y p y of Y appears in the right-hand margin of the table. Consequently, the individual distributions are called marginal probability distributions .(边缘分布)From the example, we see that for each fixed value of x , the marginalprobability distribution is obtained as()()(,)X yP X x p x p x y ===∑,where the sum is over all possible values of the second variable. Continuing, we obtain()()(,)Y xP Y y p y p x y ===∑.Example 3.5.3Suppose the number X of patent applications (专利申请)submitted by a company during a 1-year period is a random variable having thePoisson distribution with mean λ, (()!n e P X n n λλ-==)and the variousapplications independently have probability (0,1)p ∈ of eventually being approved.Determine the distribution of the number of patent applications during the 1-year period that are eventually approved.先求联合分布密度,再求边缘分布Solution Let Y be the number of patent application being eventually approved during 1-year period. Then the event {}Y k = is the union of mutually exclusive events {,}X n Y k == ()n k ≥.If X n =, then the random variable S has the binomial distribution with parameter n and p :(|)(1)k k n k n P Y k X n C p p -===-. (0)n k ≥≥ Thus(,)()(|)P X n Y k P X n P Y k X n ====== (1)!nk kn k n e C p p n λλ--=⋅⋅-when k>n, P(X=n, Y=k)=0,Hence the distribution of Y is()(,)(,)n n kP Y k P X n Y k P X n Y k ∞∞=========∑∑(1)!nk kn k n n ke C p p n λλ∞--==⋅⋅-∑!(1)!!()!nk n k n k n e p p n k n k λλ∞--==⋅⋅--∑(1)!()!kn kkn k n ke p p k n k λλλ-∞--==⋅⋅--∑()(1)(1)()()!!!mk k p m p p p e e ek m k λλλλλλ∞---=-==∑ ()!k pp e k λλ-= Thus, Y has the Poisson distribution of mean p λ. exercise从1,2,3,4,5五个数中不放回随机的接连地取3个,然后按大小排成123X X X <<,试求13(,)X X 的联合分布,x1,x3 独立吗?Homework Chap 5 1,(2) Continuous Variables Case 连续型随机向量There are many situations in which we describe an outcome by giving the values of several continuous random variables. For instance, we may measure the weight and the hardness of a rock, the pressure and the temperature of a gas. Suppose that X and Y are two continuous random variables. A function (,)f x y is called the joint probability density of these random variables, if the probability that , a X b c Y d ≤≤≤≤ is given by the multiple integral(, )(,)b da cP a X b c Y d f x y dxdy ≤≤≤≤=⎰⎰Thus, a function (,)f x y can serve as a joint probability density if all of the following hold:for all values of x and y , f is integrable on R 2 andTo extend the concept of a cumulative distribution function to the two variables case, we can define F (x , y )(, )(, )F x y P X x Y y =≤≤,and we refer to the corresponding function F as the joint cumulative distribution function of the two random variables.Example 5.1.2If the joint probability density of two random variables is given by236 for 0,0(,)0 elsewherex y e x y f x y --⎧>>=⎨⎩ Find the joint distribution function, and use it to find the probability(2,4)P X Y ≤≤.Solution By definition,23006 for 0, 0(,)(,)0 elsewhere y x yu vxe du e dv x y F x yf u v dudv ---∞-∞⎧>>⎪==⎨⎪⎩⎰⎰⎰⎰Thus,23(1)(1) for >0, >0(,)0 elsewhere x y e e x y F x y --⎧--=⎨⎩.Hence,412(2, 4)(2, 4)(1)(1)0.9817P X Y F e e --≤≤==--=.ExampleIf the joint probability density of two random variables is given by2,1,01(,)0,kxy x y x f x y ⎧≤≤≤≤=⎨⎩其他(a)find the k; (b)find the probability2((,)),{(,)|,01}P X Y D D x y x y x x ∈=≤≤≤≤solutionsince(,)1f x y dxdy ∞∞-∞-∞=⎰⎰24111001(,)()226x x kf x y dxdy dx kxydy k x dx ∞∞-∞-∞==-=⎰⎰⎰⎰⎰ hence k=6.21124001((,))663()4xx DP X Y D xydxdy dx xydy x x x dx ∈===-=⎰⎰⎰⎰⎰joint marginal densities 边缘密度Given the joint probability density of two random variables, the probability density of the X or Y can be obtained by integrating out another variable,The functions f X and f Y respectively are called the marginal density (边缘密度)of X and Y .,ExampleThe joint probability density of two random variables is given by26,1,01(,)0,xy x y x f x y ⎧≤≤≤≤=⎨⎩其他find the marginal density from the joint density when [0,1]x ∈,215()(,)633X xf x f x v dv xydy x x +∞-∞====-⎰⎰[0,1]x ∉,()0X f x =,hence 533,01()0,X x x x f x elsewhere ⎧-≤≤=⎨⎩23,01()0,Y y y f x elsewhere ⎧≤≤=⎨⎩exercises求服从B 上均匀分布的随机向量(X,Y )的分布密度及分布函数。

相关文档
最新文档