怎样由三视图确定正方体个数
由三视图确定小正方体的个数的方法

由三视图确定小正方体的个数的方法
通过三视图确定小正方体的个数是一种简单而有效的方法,可以用来解决许多复杂的几何问题。
三视图法是一种几何技术,它使用三个平面图来表示一个物体的形状,其中包括正视图、左视图和俯视图。
这三个视图是从不同的角度来看待物体的,可以清楚地显示出物体的三维形状。
例如,如果要确定小正方体的个数,可以使用三视图法。
首先,先找出三个视图,即正视图,左视图和俯视图,仔细观察每个视图中小正方体的位置,数数它们的个数。
然后,根据三个视图中小正方体的位置和数量,计算出小正方体的总数。
根据三视图法,可以通过观察三个视图来确定小正方体的总数,而不需要真正地计算它们的体积。
这一步骤非常实用,可以节省大量的时间和精力。
当然,在使用三视图法之前,需要先熟悉三视图的概念,然后根据实际情况,灵活地运用这一技术来解决实际问题。
只有掌握了这种几何方法,才能解决复杂的几何问题。
总之,三视图法是一种有效的几何方法,可以用来快速确定小正方体的个数。
它可以节省大量的时间和精力,因此被广泛应用于复杂的几何问题的解决中。
第3期利用三视图确定正方体的个数

第3期利用三视图确定正方体的个数三规则:主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。
应用如图表示某个由小正方体搭成的几何体的俯视图,俯视图无法表示该几何体的高度,用3代表右上角这个位置有3个立方体。
用2表示左上角这个位置有2个立方体,1表示右下角这个位置有1个立方体,此时,我们不但可以轻易地画出该几何体的其它两个视图,也可以得知该物体一共由1 2 3=6个小正方体组成.借助俯视图的这个功能,我们在确定一个几何体由多少个小正方体组成的时候,可以先画出俯视图,再根据主视图与左视图,确定俯视图各位置上的立方体的个数,从而快速找出正方体的个数.例1 如图是由一些相同的小正方体构成的立体图形的三视图,那么构成这个立体图形的小正方体有_______个解析第一步:从俯视图入手,结合主视图,从正面看过去,也就是从如下图的箭头方向看过去,可以确定的是俯视图最右侧只有一层,标上数字1,左边这列最高有两层,具体数目还不能确定第二步:结合左视图,从箭头方向看过去,右侧有两个一层的,所以马上可以确定如图两个位置的数量.由于左视图的最左侧最高有2个,所以,沿箭头方向看过去最左侧最高有2个,所以,俯视图的空白处应填2,如图,所以,一共有2 1 1 1=5个正方体.点拨:此立体图形的三视图都已知,所以俯视图结合主视图和左视图,容易明确个位置上的正方体的个数.例2 一个几何体由若干个大小相等的小立方体组成,下面分别是此几何体的主视图,和俯视图,该几何体至少是用错少个小立方块搭成的.解析此题已经存在俯视图,还是从俯视图出发考虑,因为主视图已经确定,如蓝色所示,右侧两个位置最高只有一个,所以填写数字1.而最左侧最高有两个,因为是最少是多少个,所以左侧三个位置,只要有一个位置是2个,其余都是1个即可,如图,有下面三种可能总数都为2 2 2=6个.此时顺便还可以求出最多有多少个.如图,只需要左侧最高都是2个即可,所以,最多有2 2 2 1 1=8个.点拨:此题已知主视图与俯视图,可利用主视图在俯视图的基础上填写添加数字,但由于左视图不确定,所以,可能有多种情况.例3 如图,一个几何体是由若干个小正方体堆积而成的,主视、左视图如下,要摆成这样的图形,至少需要多少块小正方形,最多需要多少块小正方体.解析此题没有俯视图,不妨尝试去画出俯视图,主视图和俯视图的长要相等左视图和俯视图的宽要相等.已知俯视图的长和和宽也不一定能完全确定俯视图的形状,但是可以确定俯视图最大可能是什么由题意,俯视图最大可能是首先算出几何体最多可能是多少个,再次基础上,减少正方体的个数,在主视图和左视图不变的前提下,看最少能剩下几个.结合主视图,从前面看俯视图,右侧两个最高是1,所以可以确定右侧两列的最多全是1结合左视图,从左边看俯视图,最上面行和最下面的行最高都是2,如图.最后确定左视图中间的,最高为1 .此时我们得出的小正方体最多可能是2 2 1 1 1 1 1 1 1=11个.如图,减少4个,不影响主视图再减少1个,不影响左视图不能再减少了,所以,此时的数量2 2 1 1=6即是最少需要的正方体个数.点拨:此题已知主视图与左视图,但是不知道俯视图,利用投影的原则,主视图和俯视图的长要相等,左视图和俯视图的宽要相等.尝试画出俯视图的最大可能,首先确定出几何体的最多可能的正方体的个数,在此基础上减少正方体的个数,但不改变主视图与俯视图,到最后不能再减少时,即可确定最少的可能的个数.《义务教育数学课程标准》指出,在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。
怎样由三视图确定正方体个数教学内容

怎样由三视图确定正方体个数怎样由三视图确定正方体个数山东李浩明三视图不仅是新教材的一大亮点,也是近些年各省市中考的热点. 学习视图,不仅会画空间几何体的三视图,还应会根据一个空间几何体的三视图,想象出这个简单几何体的形状,若是由小正方体组成的几何体,则要能确定小正方体的个数.例1.由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么(A)4 (B)5 (C)6 (D)7析解:解决这类问题要做到,一看俯视图,从左至右共有三列,从上到下共三行;二看主视图,共有三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中的一、三列上分别只有一个正方体,分别填1(如图1);三看左视图,共三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中第一行只有一个正方体,填1,第二行有两个正方体,填2,第三行第二列只有一个正方体,填1,所以该俯视图上每个小正方体的个主视图左视图俯视图收集于网络,如有侵权请联系管理员删除数如图1所示,搭成这个几何体的小正方体的个数是1+2+1+1+1=6,故本题结果就选 (C). 相应的几何体如图2所示.图121111图2例2. 如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是个.析解:先看俯视图,从左至右共有两列,从上到下共两行;再看主视图,共有两列两行,第一列上只有一层,第二列上有两层,则俯视图中的第一列的第一行只有一个正方体,填1(如图3),第二列的第一行、第二行中至少有一行有两个正方体,具体情况再看左视图;左视图共两列两行,第一列有两层,第二列上只有一层,则俯视图中(观察者需站在俯视图的左侧看)第一行的第二列有两个正方体,填2,第二行只有一个正方体,填1,所以该俯视图上每个小正方体的个数如图3所示,搭成这个几何体的小正方体的个数是1+2+1=4,故本题结果就填4. 相应的几何体如图4所示.图4收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除 例3.一个几何体是由若干个相同正方体组成的,其主视图和左视图如图5所示,则这个几何体最多可由多少个这样的正方体组成? ( )(A )12个 (B )13个 (C )14个 (D )18个图6111112222解析:主视图和左视图都为3列,可知几何体的俯视图有三列三行,最多为33 的正方形,由主视图可知在俯视图第1、3列每个正方形内填2,第2列每个正方形内填1;又由左视图可知,在俯视图的1、3行中(观察者需站在俯视图的左侧看)每个小正方形内都填入2,第2行填1,重叠交叉处数字取小,如上图,故最多由13个组成. 故选(B ).点评:由三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定出几何体,最后便可得出这个几何体组合的小正方体个数.图5。
由三视图判断几何体或几何体组成的小正方体个数

由三视图判断小正方体个数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。
解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。
通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了.在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数.以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人.”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。
A.9箱B.10箱C.11箱D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。
由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。
故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。
各行、各列小正方体的个数如俯视图中所表示.这堆货箱共有3+1+1+2+1+1=9(箱)。
二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。
分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。
第1列均为1层,第2列最高2层,第3列最高3层。
左视图为A时,第1行、第2行最高均为3层。
几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。
此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个.左视图为B时,第一行均为1层,第二行最高为3层。
由视图确定最多和最少立方体个数的方法

由视图确定最多和最少立方体个数的方法.由视图确定最多和最少立方体的个数的方法我们在研究几何体视图问题时,经常会遇到已知几何体的主视图和俯视图,确定搭成几何体的小立方体的个数最多和最少问题。
对于这类问题,同学们普遍感到棘手,下面介绍一种比较简便易行的解题策略,供同学们参考。
我们可以根据主视图,在俯视图上的每一个小正方形上标出每一个小正方形所在处可能摆放小立方体的数目,再把这些数按照所给要求相加,从而计算出搭成几何体所需立方体的个数。
具体方法如下:第一步:根据主视图数出每列中的小正方形个数,在俯视图对应的列(从左到右的顺序)的第一行(从上到下的顺序)的每一个小正方形内填入相应的数字;第二步:在俯视图对应的列的其它行的小正方形内填入不超过第一行且不低于1的数字;第三步:若要求的是最多需要小立方体的个数,则应取俯视图中每一个小正方形上最大的数字(若相同,则任取一个),再把它们相加,即可得最多小立方体的个数;若要求的是最少需要小立方体的个数,则应取俯视图中每一个小正方形上最小的数字(若相同,则任取一个),再把它们相加,即可得最少小立方体的个数。
例:用同样大小的小立方体搭成一个几何体,使得它从正面和上面观察所得的图形如图1、图123所示,这样的几何体只有一种吗?试探究要搭21,22,1,3成一个这种几何体最少需要多少个小立方体?2,1,1,32最多需要多少个小立方体?1图3图2图由显然搭成这样的几何体不止一种。
析解:从正面观察所得的图形就是这个几何视图可知,,上面观察所得的图形就是)1体的主视图(图。
主视图有三列,2这个几何体的俯视图(图)在俯视图第一列的三个小正方形中3第一列个,至少有一个所在处小立方体的个数为3(不妨设为最上一行),第一列其余两个小正方形所在处小立方体的个数不超过3且不低于1,所以可能的数目为1、2、3。
运用同样的方法,由主视图第二列2个,可知在俯视图第二列的三个小正方形中至少有一个所在处小立方体的个数为2(不妨设为最上一行),其余两个小正方形所在处小立方体的个数可能为1或2;俯视图第三列上的小立方体的个数只能是1(如图3)。
【典型例题】五年级数学下册第一单元观察物体(三)(含答案)

2021-2022学年五年级数学下册典型例题系列之第一单元观察物体(三)(原卷版)编者的话:《2021-2022学年五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第一单元观察物体(三)典型例题部分。
本部分内容主要是观察立体图形的几种类型题,考试多以填空、选择、判断等基础题型为主,题目比较简单,建议选取着重点进行讲解,一共划分为五个考点,欢迎使用。
【考点一】根据立体图形观察物体。
【方法点拨】根据立体图形观察物体时:1.从不同位置观察立体图形的形状,一般是从前面、上面、左面三个方向观察,所看到的形状一般是不同的。
2.在画观察到的图形时,遵循三个原则:长对正、高平齐、宽相等。
【典型例题】画出从不同方向观察到的图形。
【对应练习1】如图的物体分别从正面、左面、上面看到的图形是什么?请你在方格纸上画出来。
【对应练习2】分别画出从正面、上面、左面看到的形状。
【对应练习3】请把对应的序号填在横线上.(1)从上面看是的有()。
(2)从前面看是的有()。
(3)从左面或右面看是的有()。
【考点二】根据平面图形还原立体图形。
【方法点拨】根据平面图还原立体图形:1.从上面看到的图形中,小正方形内部的数表示的是在这个位置上所用的小正方体的个数。
2.从正面看到的图形中,视线从前往后,每列中最大的数即为这一列最高层的层数。
3.从左面看到的图形,视线从左往右,每行中最大的数即为这一行最高层的层数。
【典型例题】一个立体图形,从正面看到图形是,从上面看到的图形是,从右面看到的图形是,这个立体图形可能是()。
A. B.C. D.【对应练习1】一个几何体,从正面看是,从左面看是,这个几何体可能是()。
小专题(四) 确定小正方体的个数问题

小专题
类型1 全部视图得出唯一个数 1.如图是由一些相同的小正方体构成的几何体从不同方向看得到 的平面图形,在这个几何体中,小正方体的个数是( C ) A.7 C.5 B.6 D.4
-3-
2.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆 货箱的三视图画了出来,如图所示,则这堆正方体货箱共有( A ) A.9箱 B.10箱 C.11箱 D.12箱
小专题(四) 确定小正方体的个数问题
小专题
-2-
通过小正方体组合图形的三视图确定小正方体的个数问题全国 各地中考试题中经常出现.解决这类问题需要充分发挥空间想象能 力,如果考虑问题不全面,很容易出现确定小正方体的个数与事实 不符. 通过三视图计算组合图形的小正方体的个数,首先要根据小正方 体组合图形的三视图弄清楚它的行数和列数,再分析每行、每列中 各有多少层,理清了行、列、层的数量关系,小正方体的个数问题 就迎刃而解了.
小专题
5.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的 正面、上面看到的形状图,该几何体至少是多少个小立方块搭成的 ( C ) A.8 B.7 C.6 D.5
-5-
6.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子 的个数与碟子的高度的关系如下表:
碟子的个数 碟子的高度( 12 3 4 …
小专题
3.观察下图,这是由一些相同小正方体构成的立体图形的三种视图, 构成这个立体图形的小正方体的个数是 8 .
-4-
类型2 部分视图确定计数范围
4.由一些完全相同的小正方体搭成一个几何体,这个几何体的主视 图和左视图相同,如图所示,则小正方体的块数最少有( A ) A.6块 B.7块 C.8块 D.9块
单位:cm ) 2 2+1.5 2+3 2+4.5 …
三视图中的小正方体计数问题 口诀

三视图中的小正方体计数问题之蔡仲巾千创作主俯看列,俯左看行,主左看层。
前上看列,上右看行,前右看层前面看,上下左右都不变上面看,左右不变,前下后上右面看,上下不变,前左后右左面看,上下不变,前右后左口诀:主俯定长,俯左定宽,主左定高俯视图打地基,正视图疯狂盖,左视图拆违章.是小华从正面、左面、上面看到的,这个物体是由______块小方块组成的.2.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是______.3.如图是某立体图形的俯视图,小正方形中的数字暗示在该位置上的小正方体块的个数,画出这个几何体的主视图和左视图.4.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字暗示在该位置上的小正方体的个数,那么,这个几何体的左视图是[]5.如图是一个由多个相同小正方体堆积而成的几何体的俯视图.图中所示数字为该位置小正方体的个数,则这个几何体的主视图是()6.如图所示,是一个由小立方体搭成的几何体的俯视图,小正方形中数字暗示该位置的小立方块的个数,则它的主视图为()7.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字暗示在该位置的小正方体的个数.请你画出它的主视图和左视图.8.一个由小立方块搭成的几何体如图所示.(1)如图(a)是该几何体的正视图和俯视图,问:这样的几何体的形状确定吗?如果不确定,那么有多少种情况?(2)如图(b)是该几何体的正视图、左视图和俯视图,问:这样的几何体的形状确定吗?如果不确定,那么有多少种情况9.由一些相同的小正方体搭成的几何体的俯视图如右图所示,其中正方形中的数字暗示该位置上的小正方体的个数,那么该几何体的左视图是10.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是A. B. C. D.11.如图,由相同的小正方体搭成的几何体的主视图是()A. B. C. D.12.用小正方体搭一个几何体,使它的主视图和俯视图如图所示:(1)搭这样的几何体最少需要个小正方体,最多需要个小正方体;(2)请你在俯视图的小正方体中用数字暗示当用最多的小正方体搭起的几何体时该位置小正方体的个数;(3)画出其中一种搭成的几何体的左视图.13.画出视图.14.如图是一个由几块相同的小正方体搭成的立体图形的三视图,则这堆立体图形中的小正方体共有( )块.15.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样由三视图确定正方体个数
三视图不仅是新教材的一大亮点,也是近些年各省市中考的热点. 学习视图,不仅会画空
间几何体的三视图,还应会根据一个空间几何体的三视图,想象出这个简单几何体的形状,若是由小正方体组成的几何体,则要能确定小正方体的个数.
例1.由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何体的小正方体有( )个.
(A )4 (B )5 (C )6 (D )7
析解:解决这类问题要做到,一看俯视图,从左至右共有三列,从上到下共三行;二看主
视图,共有三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中的一、三列上分别只有一个正方体,分别填1(如图1);三看左视图,共三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中第一行只有一个正方体,填1,第二行有两个正方体,填2,第三行第二列只有一个正方体,填1,所以该俯视图上每个小正方体的个数如图1所示,搭成这个几何体的小正方体的个数是1+2+1+1+1=6,故本题结果就选 (C). 相应的几何体如图2所示.
图121
111 图2
例2. 如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正
方体的个数是 个.
析解:先看俯视图,从左至右共有两列,从上到下共两行;再看主视图,共有两列两行,
第一列上只有一层,第二列上有两层,则俯视图中的第一列的第一行只有一个正方体,填1(如图3),第二列的第一行、第二行中至少有一行有两个正方体,具体情况再看左视图;左视图共两列两行,第一列有两层,第二列上只有一层,则俯视图中(观察者需站在俯视图的左侧看)第一行的第二列有两个正方体,填2,第二行只有一个正方体,填1,所以该俯视图上每个小主视图 左视图 俯视图
正方体的个数如图3所示,搭成这个几何体的小正方体的个数是1+2+1=4,故本题结果就填
4. 相应的几何体如图4所示.
图4
例3.一个几何体是由若干个相同正方体组成的,其主视图和左视图如图5所示,则这个
几何体最多可由多少个这样的正方体组成? ( )
(A )12个 (B )13个 (C )14个 (D )18个
图61111
12
22
2
解析:主视图和左视图都为3列,可知几何体的俯视图有三列三行,最多为33 的正方
形,由主视图可知在俯视图第1、3列每个正方形内填2,第2列每个正方形内填1;又由左视图可知,在俯视图的1、3行中(观察者需站在俯视图的左侧看)每个小正方形内都填入2,第2行填1,重叠交叉处数字取小,如上图,故最多由13个组成. 故选(B ).
点评:由三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定
出几何体,最后便可得出这个几何体组合的小正方体个数.
名称: U3:由三视图判断几何体
描述: (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想
象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:
①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的
长、宽、高;
②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;
③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;
④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.
用三视图确定小正方体的块数的简便方法
一、由三个视图确定小正方体的块数
例 1 如图所示的是一个由相同的小正方体搭成的几何体的三视图,那么这个几何体是由
多少个小正方体搭成的?
图5
主视图左视图俯视图
解析:在三个视图中,俯视图最重要,它可以直接确定底层有几个正方体,再由主视图,左视图确定有几层,每层有几个.一般步骤:
1.复制一张俯视图,在俯视图的下方,左方分别标上主视图,左视图所看到的小正方体的最高层数.
2
1 2 1
2如在横竖方
向对应的都是2,则填入2;
若方格所对应的横竖方向上的数字不一样,如在横竖
方向对应的分别是填入1
2
2
1
1 2 1
通过上面的两步,我们就能确定每一个方格中的数字(方格中的数字代表所在位置的正方体的块数),从而就能确定这个几何体所需要的小正方体的块数.
答案: 2 1 ,这个几何体是由8块小正方体搭成的.
1 2 1
1
二、由两个视图确定小正方体的块数
根据两个视图一般不能确定一个几何体,但可以确定搭成这样的几何体最多需要多少块?最少需要多少块?
1.由主视图,俯视图来确定
例2 如图所示的是由一些正方体小木块搭成的几何体的主视图,俯视图.它最多需要多
主视图俯视图
解析:(1)复制一张俯视图,在俯视图的下方标上主视图所看到的小正方体的最高层数,将这些数字填入所在竖上的每一个方格,则可得到这个几何体所需最多的小正方体的块数.
3 2 1
3 2
3 2
3 2 1
(2)因为从俯视图可以确定底层有正方体,所以方格中的数字最小为1,那么只要将每列上的数字留一个,其余的均改为1,这样就可以确定最少需要的小正方体的块数.举两种情况如图:
3 2 1 1 1 1
1 1 3 2
1 1 1 1
所以这个几何体最多需要16块,最少需要10块.
2.由左视图,俯视图来确定
方法跟由主视图,俯视图来确定一样.
例3 如图所示的是由一些正方体小木块搭成的几何体的左视图,俯视图,它最多需要多少块?最少需要多少块?
左视图俯视图
解析:(1)复制一张俯视图,在俯视图的左方标上左视图所看到的小正方体的最高层数,将这些数字填入所在横上的每一个方格,则可得到这个几何体所需最多的
小正方体的块数.
3 3
1 1 1
2 2 2 2
(2)因为从俯视图可以确定底层有正方体,所以方格中的数字最小为1,那么只要将每横上的数字留一个,其余的均改为1,这样就可以确定最少需要的小正
方体的块数.举两种情况如图:
3 3 3 3
1 1 1 1 1 1
2 2 1 1 2 1 2 1
所以这个几何体最多需要11块,最少需要9块.
3.由主视图,左视图来确定
由这两个视图来确定小正方体的块数是最难的.
例4 如图所示的是由一些正方体小木块搭成的几何体的主视图,左视图,它最多需要多少块?
最少需要多少块?
主视图左视图
解析:(1)取一张3×4的方格纸,在方格纸的下方,左方分别标上主视图,左视图所看到的小正方体的最高层数.然后,在方格纸中填入方格所在横,竖上的较小的数字(如果相同取相同的数字),那么就可确定这个几何体所需最多的小正方体的块数.
2 2 1 2 2
3 2 1 3 2
1 1 1 1 1
2 1
3 2
(2)在方格纸中寻找所在横,竖方向上的数字一样的方格,取相同的数字填入方格,这样就可以确定最少需要的小正方体的块数.
2 2 2
3 3
1 1
2 1
3 2
所以这个几何体最多需要19块,最少需要8块.
通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到.解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错.通过三视图确定组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,再按照上面介绍的方法,小正方体的个数就迎刃而解了.。