热分析实例

合集下载

热分析(ansys教程)

热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。

瞬态热分析实例(二维)

瞬态热分析实例(二维)

模型[1]热传导问题:如图,110R cm =,220R cm =,密度为36000/kg m ,比热容为220/()J kg K ⋅,热传导率为6/()W m K ⋅,初始温度为300℃,突然放入30℃的液体中冷却,这种液体对流换热系数2120/()h W m K =⋅。

计算:(1)第1秒和第60秒这两个时刻温度分布情况;(2)内外边在60秒内温度变化。

1.设置环境① 设置分析模块。

本例是温度分布分析,所以只需要选择热分析模块,这样就可以把结构分析模块、电磁场分析模块和流体分析模块的菜单都过滤掉。

设置如图② 设置单位在命令行输入“/units,SI ”,SI 为设定为国际单位制。

必须注意:[1] 秦宇.ANSYS 11.0基础与实例教程[M]. 北京,化学工业出版社,2009:318-330ANSYS程序不会为你的分析假定一个单位制,除了磁场分析以外,你可以使用任何单位制,只要你能保证你输入的所有数据都是按照这个单位制进行的。

也就是说,单位制在所有输入数据中应该保持一致。

使用/UNITS命令,你可以在ANSYS数据库中进行标记来表示你使用的单位制。

但是请注意,这个命令并不将一个单位转化为另一个。

它仅仅只作为对分析的一个评论记录。

什么意思呢?就是/UNITS只是个标记,告诉别人程序的单位制,即使程序中没有使用这种单位制,它也不能将这种单位制转化为自己标记的那个单位制。

所以,如果你要让ANSYS的单位为国际单位制,你在输入物理量之前,先将所有的物理量转换为国际单位制,如:原先你的图纸上均为毫米,比如一个矩形截面尺寸是400mm*500mm,那么,你在建模之前先转化为0.4m*0.5m然后输入的长度为0.4和0.5,ANSYS只知道你输入的是0.4和0.5,它不知道你的单位是什么。

2.定义单元类型和材料属性①选择单元类型。

如图:我们选择【Quad 4node 55】即选择了PLANE55单元。

下面介绍一下PLANE55单元,我们直接从ANSYS帮助文档中摘录。

Workbench热分析实例之一.

Workbench热分析实例之一.

Inventory #00557 WS9-4
飞轮铸造分析-控制
• 激活时间积分。使用向后欧拉时间积分。 • 激活线性搜索收敛增强工具。 • 热导率表现了沙与铝的接触。 • 将进行两个分析
–Case 1: 观察1分钟内的凝固。 –Case 2: 运行第二个工况,持续30秒。
• 激活自动时间步
–初始和最小时间步长为0.001 sec –Case 1: 最大时间步长2.0 sec –Case 2: 最大时间步长5.0 sec
•铝 注意,密度和比热将被删除,因为可以替代的计算热焓。
温度相关的热导率
Temperature (°C) 100 200 300 400 530 800
KXX (W/m-°C) 206 215 228 249 268 290
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer 11.0
Workshop 9 – 飞轮铸造(相变分析)
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #002557 WS9-1
案例 – 飞轮铸造分析
• 为了讲述在课程中论述的相变技术,将进行 一个飞轮铸造分析:
• 问题描述:
– 对一个铝制飞轮铸造进行相变分析。飞 轮是将溶解的铝注入沙模中制造的。
• 分析目标:
– 研究飞轮凝固过程。
Workshop Supplement

workbench 热分析案例

workbench  热分析案例

精品课件
2
界条件
定义边
墙壁外表面:
采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡· k。
精品课件
3
条件
定义边界
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃,换 热系数为0.36W/㎡· k, 与热源接触表面采用耦合 边界条件。
物理模型
ห้องสมุดไป่ตู้
物理模型简化:
混凝墙壁上附热源,热 源为一侧等壁温,其余 壁面为绝热壁面。热源 附在墙面中间并与墙面 垂直。在ansys的 DesignModeler中进行 建模。
精品课件
1




网格剖分:
采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
及分析
结果
热通量矢量图:
通过观察热通量矢量图可 以发现热量的传递方向及 密度分布情况。
精品课件
7
及分析
结果
一维导热区域分布:
在该模型中一维导热区域 (xz平面)如图所示。在 该稳态导热过程中y方向所 有截面热流密度均相同。
精品课件
8
精品课件
4
界条件
定 义边
热源:
与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
精品课件
5
及分析
结果
温度场云图:
通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。
精品课件
6

Workbench热分析实例之一

Workbench热分析实例之一
• 铝的热焓数据不直接给出,但是我们可以从已有数据中计算出热焓。 • 定义热焓属性:
–选择Ts = 700 °C 以及Tl = 695 °C ( 在流体和固体之间定义5 °C 的相变 区间)
属性 熔点 密度 Cs, 固体比热 Cl,流体比热 L, 潜热 (或 L x 密度)
• 热焓计算结果数据
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-16

• 热焓数据必须要用命令行添加。 • 高亮 “wheel” ,然后插入命令:
• 注意命令行下的注释: 飞轮的材料属性号可以简单的记为参数 “matid”
Inventory #00557 WS9-4
飞轮铸造分析-控制
• 激活时间积分。使用向后欧拉时间积分。 • 激活线性搜索收敛增强工具。 • 热导率表现了沙与铝的接触。 • 将进行两个分析
–Case 1: 观察1分钟内的凝固。 –Case 2: 运行第二个工况,持续30秒。
• 激活自动时间步
–初始和最小时间步长为0.001 sec –Case 1: 最大时间步长2.0 sec –Case 2: 最大时间步长5.0 sec
• 建立对流边界条件。
–环境温度为30 °C,沙模侧面换热系数为7.5 W/m2-°C ,沙模顶面为5.75 W/m2-°C。
–底部不指定边界条件 (完全绝热).
• 在后处理中建立温度探测器。
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.

热分析技术PPT课件

热分析技术PPT课件

从熔融热焓法得到的结晶度定义为
c

Ha H H a Hc
9/18/2019
20
热重(TG)
在程序控温下测量试样质量对温度 的变化。
9/18/2019
21
TG仪器
热重分析仪的基本部件是热天平。根据结 构的不同,热天平可分为水平型、托盘型 和吊盘型三种。
9/18/2019
22
9/18/2019
9/18/2019
2
热分析技术
热分析(Thermal Analysis, TA)是指在程序控 温下测量物质的物化性质与温度关系的一类技术。
根据所测物性的不同,广义的热分析方法可分为9 类17种,但狭义的热分析技术只限于差热分析 (Differential thermal analysis, DTA)、差示扫 描量热(Differential scanning calorimetry, DSC)、热重分析(Thermogravimetry, TG)、 热机械分析(Thermomechanical analysis, TMA) 和动态热机械分析(Dynamic mechanical analysis, DMA)等。



9/18/2019
E'(elastic)
E(" viscous) 48
动态模量
E’ 为弹性模量,又称为储能模量,代表材 料的弹性; E” 为黏性模量,又称为损耗模量,代表材 料的黏性。 损耗模量对储能模量的比值称为损耗因子 或损耗角正切,即
tan E"/ E' DMA测试通常记录的是动态(储能、损耗) 模量对温度、频率等的变化。
9/18/2019
31
2019/9/18

Ansys-第33例瞬态热分析实例一水箱

Ansys-第33例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。

33.1概述热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。

33.1.1 瞬态热分析的定义瞬态热分析用于计算系统随时间变化的温度场和其他热参数。

一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。

33.1.2 嚼态热分析的步骤瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。

1.建模瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。

注意:瞬态热分析必须定义材料的导热系数、密度和比热。

2.施加载荷和求解(1)指定分析类型,Main Menu→Solution→Analysis Type→New Analysis,选择Transient。

(2)获得瞬态热分析的初始条件。

定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu→Solution→Define Loads→Apply→Thermal→Temperature命令施加的温度在整个瞬态热分析过程中均不变,应注意二者的区别。

定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads →Apply→Initial Condit'n→Define即IC命令施加。

非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。

该稳态分析与一般的稳态分析相同。

注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts →Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步,Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step。

ANSYS流体与热分析第10章热分析典型工程实例

ANSYS流体与热分析第10章热分析典型工程实例

第10 章热分析典型工程实例本章要点拉伸特征旋转特征扫掠特征混合特征孔特征壳特征本章案例某型号手机电池的散热分析冷库复合隔热板热量流动分析电子元器件散热装置温度分析10.1 工程实例1——某型号手机电池的散热分析该算例为某型手机电池的散热分析,如图10-1为某型号手机背面的照片,图中可见手机的电池的位置。

在手机工作时,电池可向外传递热量。

使用手机的读者应该都体会过手机电池发热的现象,特别是在长时间接打电话时,这种现象尤为明显。

本实例对某型号手机进行分析,电池的标准电压为3.7V,电池容量为750mAh。

试求手机开机状态下外壳的温度分布。

手机的各部分材料性能参数如表10.1所示。

图10-1 手机背面照片在计算分析过程中我们将手机看做三个组成部分:塑料外壳、手机内部材料和手机电池。

忽略手机内部线路和芯片,可以将手机电池看做唯一热源。

简化后的手机模型如图10-2所示,图中单位均为cm。

本实例拟采用Solid Tet 10node 87单元进行分析。

由于电池功率和环境温度均可视为恒定不变,因此分析类型为稳态。

图10-2 简化后的手机模型由电池的电压和电流可以算得电池的功率:==⨯=P UI 3.70.75 2.775W电池的体积为:3=⨯⨯=V0.040.010.050.00002m电池的发热量:3==Q P/V138750W/m——附带光盘“Ch10\实例10-1_start”——附带光盘“Ch10\实例10-1_end”——附带光盘“A VI\Ch10\10-1.avi”1、定义分析文件名1、选择Utility Menu>File>Change Jobname,在弹出的单元增添对话框中输入Example10-1,然后点击OK按钮。

2、选择Main Menu>Preferences,弹出Preferences for GUI Filtering对话框,点选Thermal复选框,单击OK按钮关闭该对话框。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
70 0.285 8.35 0.113 426 200 0.285 8.90 0.117 405 300 0.285 9.35 0.119 352 400 0.285 9.8 0.122 275 500 0.285 10.23 0.125 221
oF
温度 密度 导热系数 比热 对流系数*
lbm/in3 Btu/hr-ft-oF Btu/lbm-oF Btu/hr-ft2-oF
求罐与接管的温度分布。


一个30公斤重、温度为70℃的铜块,以及一个20公斤重、温度为80℃ 的铁块,突然放入温度为20℃、盛满了300升水的、完全绝热的水箱 中,如图所示。过了一个小时,求铜块与铁块的最高温度(假设忽略水 的流动)。 材料热物理性能如下:
热性能 导热系数 密度 比热 单位制 W/m℃ Kg/m3 J/kg℃ 铜 383 8889 390 铁 70 7833 448 水 .61 996 4185


某一潜水艇可以简化为一圆筒,它由三层组成,最外 面一层为不锈钢,中间为玻纤隔热层,最里面为铝层, 筒内为空气,筒外为海水,求内外壁面温度及温度分 布。 几何参数: 筒外径 30feet 总壁厚 2inch 不锈钢层壁厚 0.75inch 玻纤层壁厚 1inch 空气 铝层壁厚 0.25inch 筒长 200 feet 导热系数 不锈钢 8.27BTU/hr.ft.oF 玻纤 0.028 BTU/hr.ft.oF 铝 117.4BTU/hr.ft.oF 边界条件 空气温度 70oF 海水温度 44.5oF 空气对流系数 2.5BTU/hr.ft2.oF 海水对流系数 80BTU/hr.ft2.oF 沿垂直于圆筒轴线作横截面,得到一圆环,取其 中1度进行分析,如图示。
铝 玻璃纤维 不锈钢 海水
R15 feet


一圆筒外径 为0.5英尺,壁厚为0.1英尺,罐与接管的轴线垂直且接管远离罐的端 部。如图所示: 罐内流体温度为华氏450度,与罐壁的对流换热系数年为250BUT/hrft2-oF,接管内流体的温度为华氏100度,与管壁的对流换热系数随管壁 温度而变。接管与罐为同一种材料,它的热物理性能如下表所示:

一钢铸件及其砂模的横截面尺寸如图所示: 砂模的热物理性能如下表所示:
单位制 导热系数(KXX) 密度(DENS) 比热(C) Btu/hr.in.oF lbm/in3 Btu/lbm.oF 0.025 0.254 0.28
铸钢的热物理性能如下表所示:
单位制 导热系数 焓 Btu/hr.in.oF Btu/in3 0oF 1.44 0 2643oF 1.54 128.1 2750oF 1.22 163.8 2875oF 1.22 174.2
初始条件:铸钢的温度为2875oF,砂模的温度为80oF; 砂模外边界的对流边界条件:对流系数 0.014Btu/hr.in2.oF,空气温度80oF; 求3个小时后铸钢及砂模的温度分布。
相关文档
最新文档