ANSYS稳态热分析的基本过程和实例
ANSYS稳态和瞬态分析步调简述

ANSYS 稳态和瞬态热模拟基本步骤基于ANSYS 9.0一、稳态分析从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。
其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:=0q q q+-流入生成流出在稳态分析中,任一节点的温度不随时间变化。
基本步骤:(为简单起见,按照软件的菜单逐级介绍)1、选择分析类型点击Preferences 菜单,出现对话框1。
对话框1我们主要针对的是热分析的模拟,所以选择Thermal 。
这样做的目的是为了使后面的菜单中只有热分析相关的选项。
2、定义单元类型GUI :Preprocessor>Element Type>Add/Edit/Delete 出现对话框2对话框2(3-1)点击Add,出现对话框3对话框3在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。
对于三维模型,多选择SLOID87:六节点四面体单元。
3、选择温度单位默认一般都是国际单位制,温度为开尔文(K)。
如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units选择需要的温度单位。
4、定义材料属性对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。
GUI: Preprocessor>Material Props> Material Models 出现对话框4对话框4一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.对话框5若要设定材料的热导率随温度变化,主要针对半导体材料。
则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确。
设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。
ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:•前处理:建模、材料和网格•分析求解:施加载荷计算•后处理:査看结果1、建模①、确定jobname> title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建儿何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。
2、施加载荷计算①、定义分析类型•如果进行新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state•如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件):a、恒定的温度通常作为自由度约束施加于温度已知的边界上。
Command Family: DGUI: Main Menu>Solution>-Loads-Apply>-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。
注意:如果在实体单元的某一节点上施加热流率,则此节点周用的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时, 尤其要注意:。
此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。
稳态ansys热分析数值模拟

稳态热分析数值模拟实例1——短圆柱体的热传导过程1、问题描述有一短圆柱体,直径和高度均为1m,其结构如图7.1所示,现在其上端面施加大小为100℃的均匀温度载荷,圆柱体下端面及侧面的温度均为0℃,试求圆柱体内部的温度场分布(假设圆柱体不与外界发生热交换,圆柱体材料的热传导系数为30 W/(m•℃))。
图7.1 圆柱体结构示意图2、三维建模应用Pro-E软件对固体计算域进行三维建模,实体如图7.2所示:图7.2 圆柱体三维实体图3、网格划分采用流动传热软件CFX的前处理模块ICEM对计算域进行网格划分,得到如图7.3所示的六面体网格单元。
流场的网格单元数为640,节点数为891。
图7.3 圆柱体网格图4、模拟计算及结果采用流动传热软件CFX稳态计算,定义圆柱体材料的热传导系数为30 W/(m•℃),求解时选取Thermal Energy传热模型。
固体上壁面的边界条件设置为100℃的温度,侧面和下壁面边界条件为0℃的温度。
求解方法采用高精度求解,计算收敛残差为10-4。
图7.4为计算得到的圆柱体中心剖面的温度等值线分布图。
数据文件及结果文件在steady文件夹内。
图7.4 圆柱体中心剖面的温度等值线分布瞬态热分析数值模拟实例详解实例1——型材瞬态传热过程分析1、问题描述有一横截面为矩形的型材,如图7.5所示。
其初始温度为500℃,现突然将其置于温度为20℃的空气中,求1分钟后该型材的温度场分布及其中心温度随时间的变化规律(材料性能参数如表7.1所示)。
表7.1 材料性能参数密度ρkg/m3 导热系数W/(m•℃)比热J/(kg•℃)对流系数W/(m2•℃)2400 30 352 110图7.5 型材横截面示意图2、三维建模应用Pro-E软件对固体计算域进行三维建模,实体如图7.6所示:图7.6 型材三维实体图3、网格划分采用流动传热软件CFX的前处理模块ICEM对计算域进行网格划分,得到如图7.7所示的六面体网格单元。
ANSYS层流稳态热分析

网格
Step 5: 施加速度边界条件Apply Velocity Boundary Conditions
1.
2. 3. 4.
选择菜单路径 Utility Menu> Select> Entities. 出现对话框The Select Entities. 选择 Nodes 和 Exterior. 点击OK. 选择菜单路径 Main Menu> Preprocessor> Loads> Define Loads> Apply> Fluid/CFD> Velocity> On Nodes. 出现选择菜单 Apply V on Nodes 。
1.
5. 点击OK. 图形窗口显示下图:
1
NODAL SOLUTION STEP=4 SUB =1 TEMP (AVG) RSYS=0 SMN =280 SMX =320 APR 15 2009 16:01:45
Y Z MX X 280
MN
288.889 297.778 306.667 315.556 284.444 293.333 302.222 311.111 320 Buoyancy driven flow in a square cavity
该分析是一个层流稳态分析采用fluid1412d单该物理模型可代表一系列的实际问题包括太阳能采集房间内的空气流通等等
层流稳态热分析
------浮力驱动的流动
问题描述:
本案例模拟一个方形空穴内的浮力驱动的流动,其
垂直侧边加热条件不同。 该分析是一个层流稳态分析,采用Fluid 141 2-D单 元。 该物理模型可代表一系列的实际问题,包括太阳能 采集、房间内的空气流通等等。
ansys稳态热力学分析的基本过程及注意要点

ansys稳态热力学分析的基本过程及注意要点1. ansys热力学分析的基本过程及注意要点1.1,对于稳态分析,一般只需要定义导热系数,它可以是恒定的,也可以是随温度变化的。
1.2,在分析过程中,不一定选择国际单位制,但是在建立几何模型及输入材料热性参数时,单位必须统一。
2. ansys中提供6种热载荷:温度(temperature),热流率(heat flow),对流(convection),热流密度(heat flux),生热率(heat generate),辐射率(radiation)。
2.1 温度载荷2.1.1 在单个或者多个节点上施加温度载荷main menu/solution/define loads/apply/thermal/temperature/on nodes2.1.2 在所有节点上施加均匀温度载荷main menu/solution/define loads/apply/thermal/temperature/uniform tempmain menu/solution/define loads/setting /uniform tempmain menu/solution/loading options/uniform temp2.1.3 在关键点上施加温度载荷main menu/solution/define loads/apply/thermal/ temperature/on keypoints 2.1.4 在线段上施加温度载荷main menu/solution/define loads/apply/thermal/temperature/on lines2.1.5 在面上施加温度载荷main menu /solution/define loads/apply /thermal/ temperature/ on areas 2.2 热流率载荷2.2.1 在节点上施加热流率载荷main menu/solution/define loads/apply/thermal/heat flow/on nodes2.2.2 在关键点上施加热流率载荷2.3 对流载荷(convection)2.3.1在节点上施加对流载荷main menu/solution/define loads /apply/thermal/ convection/ on nodes2.3.2 在单元上施加均匀对流载荷mani menu/solution/ define loads/ apply /thermal/ convection /on elements/ uniform2.3.3 在单元上施加非均匀对流载荷mani menu/solution/ define loads/ apply /thermal/ convection /on elements/ tapered2.3.4 在线段上施加对流载荷main menu/solution/ define loads/ apply/ thermal/ convection/on lines2.3.5 在面上施加对流载荷main menu/ solution/ define loads/ apply /thermal/ convection/on areas2.4 热流密度载荷(heat flux)2.4.1 在节点上施加热流密度载荷main menu/ solution/ define loads/apply/ thermal/ heat flux/ on nodes2.4.2 在单元上施加热流密度载荷main menu/ solution/deine loads/apply thermal/heat flux / on elements2.4.3 在线段上施加热流密度载荷main menu/ solution /define loads/ apply / thermal/ heat flux/ on lines2.4.4 在面上施加热流密度载荷main menu/solution/ define loads /apply/ thermal/ heat flux/ on areas2.5 生热率载荷(heat generate)2.5.1 在节点上施加生热密度载荷main menu/solution/define loads /apply/ thermal/ heat generate/ on nodes 2.5.2 在所有节点施加均匀生热流密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/ uniform heat generate2.5.3 在线段上施加生热密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/on lines 2.5.4 在面上施加生热密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/on areas 2.5.5 在体上施加生热密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/on volumes 2.6 辐射率载荷(radiation)2.6.1 在节点上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/ on Nodes2.6.2 在单元上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/ on elements 2.6.3 在线段上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/ on lines2.6.4 在面上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/on areas3 稳态求解选项设置在对一个稳态热分析问题时,需要设置time/frequence选项、非线性选项以及输出控制等载荷步选项3.1 time-time step该选项用于设置载荷步的时间main menu/solution/loads step opts/ time&frequence/time -time step3.2 time and substeps该选项用于确定每载荷步中子步的数量或者时间步大小main menu/ solution/ load step options/ time & frequence/ time and substeps 3.3 convergence criteria该选项可根据温度、热流率等指标设置热分析的收敛标准,检验热分析的收敛性。
最新ANSYS热分析指南——ANSYS稳态热分析

A N S Y S热分析指南——A N S Y S稳态热分析ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
ansys_热分析_瞬态_稳态

Guidelines
目录 (续)
第三章 稳态传热分析 一、稳态传热的定义 二、热分析的单元 三、ANSYS稳态热分析的基本过程 练习 第四章 瞬态传热分析 一、瞬态传热分析的定义 二、瞬态热分析的单元及命令 三、ANSYS瞬态热分析的主要步骤
1、建模 2、加载求解 3、后处理
四、相变问题 练习
Guidelines
系数; [C]为比热矩阵,考虑系统内能的增加; {T}为节点温度向量; { }为温度对时间的导数;
{TQ}为节点热流率向量,包含热生成。
Guidelines
第六讲、线性与非线性
如果有下列情况产生,则为非线性热分析: ①、材料热性能随温度变化,如K(T),C(T)等; ②、边界条件随温度变化,如h(T)等; ③、含有非线性单元; ④、考虑辐射传热 非线性热分析的热平衡矩阵方程为:
第三讲、热传递的方式
Definition
3、热辐射
热辐射指物体发射电磁能,并被其它物体吸收转变为热的热 量交换过程。物体温度越高,单位时间辐射的热量越多。 热传导和热对流都需要有传热介质,而热辐射无须任何 介质。实质上,在真空中的热辐射效率最高。
在工程中通常考虑两个或两个以上物体之间的辐射,系统中 每个物体同时辐射并吸收热量。它们之间的净热量传递 可以用斯蒂芬 —波尔兹曼方程来计算: q=εσA1F12(T14T24),式中q为热流率, ε为辐射率(黑度), σ为斯蒂芬 -波尔兹曼常数,约为5.67×10-8W/m2.K4,A1为辐射面1 的面积,F12为由辐射面1到辐射面2的形状系数,T1为辐 射面1的绝对温度,T2为辐射面2的绝对温度。由上式可 以看出,包含热辐射的热分析是高度非线性的。
线性: LINK32
两维二节点热传导单元
使用ansys进行“T型管的稳态热-流 -固耦合仿真分析计算”的分析流程描述 与结果分析

《热工基础》课程报告评分标准
评审依据
得分
评审指标1
能够了解并掌握热传导\热对流\热辐射等重点理论知识与原理。
评审指标2
能够运用传热学的基本定律和基本知识及原理,结合文献资料研究,对机械设计及制造的解决方案的各种影响因素进行分析,掌握热传导\热对流\热辐射以及综合传热等问题的基本分析方法和计算方法。
评审指标3
能够理解和评价机械产品设计\制造过程和产品运用对能源\环境等方面的影响,客观评价工程实践与能源节约问题的冲突,优化机械产品设计\制造过程问题的解决方案,采取合理的技术手段减少对环境的影响和节约资源。
总评成绩
—
教师签字:
图表6图表6二总结在操作过程中由于不细心导致了多次重做浪费很长的时间若是在以后的工程项目中出现了此类问题耽误的就不只是我一个人的时间了这教导我以后凡事都要细心仔细地去做并且要善于与他人交流向他人学习借鉴
使用ansys进行“T型管的稳态热-流-固耦合仿真分析计算”的分析流程描述与结果分析
学院:
专业:
班级:
图表2
3.第三步是流体的求解过程。
比较繁琐的就是参数的设置,但是难度不大,只需要按照教程一点一点的进行设置即可。(图表3)
图表3
4.分析处理
进行速度,温度,压力的求解。(图表4)
图表4
进行速度分析。(图表5)
图表5
进行cfd后处理,其中,不划分网格很平滑,划分后变得有梯度了。(图表6)
图表6
二、总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:•前处理:建模、材料和网格•分析求解:施加载荷计算•后处理:查看结果1、建模①、确定jobname、title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。
2、施加载荷计算①、定义分析类型●如果进行新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state●如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) :a、恒定的温度通常作为自由度约束施加于温度已知的边界上。
Command Family: DGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。
注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。
此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。
Command Family: FGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Flowc、对流对流边界条件作为面载施加于实体的外表面,计算与流体的热交换,它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流。
Command Family: SFGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Convectiond、热流密度热流密度也是一种面载。
当通过单位面积的热流率已知或通过FLOTRAN CFD计算得到时,可以在模型相应的外表面施加热流密度。
如果输入的值为正,代表热流流入单元。
热流密度也仅适用于实体和壳单元。
热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载进行计算。
Command Family: FGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Fluxe、生热率生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热。
它的单位是单位体积的热流率。
Command Family: BFGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Generat③、确定载荷步选项对于一个热分析,可以确定普通选项、非线性选项以及输出控制。
a. 普通选项•时间选项:虽然对于稳态热分析,时间选项并没有实际的物理意义,但它提供了一个方便的设置载荷步和载荷子步的方法。
Command: TIMEGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps•每载荷步中子步的数量或时间步大小:对于非线性分析,每一载荷步需要多个子步。
Command: NSUBSTGUI: Main Menu>Solution>-Load Step Opts->Time/Frequenc>Time and SubstpsCommand: DELTIMGUI: Main Menu>Solution>-Load Step Opts->Time/Frequenc>Time-Time Step•递进或阶越选项:如果定义阶越(stepped)选项,载荷值在这个载荷步内保持不变;如果为递进(ramped)选项,则载荷值由上一载荷步值到本载荷步值随每一子步线性变化。
Command: KBCGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substpsb. 非线性选项•迭代次数:本选项设置每一子步允许的最多的迭代次数。
默认值为25,对大数热分析问题足够。
Command: NEQITGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Equilibrium Iter •自动时间步长: 对于非线性问题,可以自动设定子步间载荷的增长,保证求解的稳定性和准确性。
Command: AUTOTSGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps•收敛误差:可根据温度、热流率等检验热分析的收敛性。
Command: CNVTOLGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Convergence Crit •求解结束选项:如果在规定的迭代次数内,达不到收敛,ANSYS可以停止求解或到下一载荷步继续求解。
Command: NCNVGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Criteria to Stop •线性搜索:设置本选项可使ANSYS用Newton-Raphson方法进行线性搜索。
Command: LNSRCHGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Line Search•预测矫正:本选项可激活每一子步第一次迭代对自由度求解的预测矫正。
Command: PREDGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Predictorc. 输出控制•控制打印输出:本选项可将任何结果数据输出到*.out 文件中。
Command: OUTPRGUI: Main Menu>Solution>-Load Step Opts-Output Ctrls>Solu Printout •控制结果文件:控制*.rth的内容。
Command: OUTRESGUI: Main Menu>Solution>-Load Step Opts-Output Ctrls>DB/Results File④、确定分析选项a. Newton-Raphson选项(仅对非线性分析有用)Command: NROPTGUI: Main Menu>Solution>Analysis Optionsb. 选择求解器:可选择如下求解器中一个进行求解:•Frontal solver(默认)•Jacobi Conjugate Gradient(JCG) solver•JCG out-of-memory solver•Incomplete Cholesky Conjugate Gradient(ICCG) solver•Pre-Conditioned Conjugate Gradient Solver(PCG)•Iterative(automatic solver selection option)Command: EQSLVGUI: Main Menu>Solution>Analysis Options注意:热分析可选用Iterative选项进行快速求解,但如下情况除外:•热分析包含SURF19或SURF22或超单元;•热辐射分析;•相变分析•需要restart an analysisc. 确定绝对零度:在进行热辐射分析时,要将目前的温度值换算为绝对温度。
如果使用的温度单位是摄氏度,此值应设定为273;如果使用的是华氏度,则为460。
Command: TOFFSTGUI: Main Menu>Solution>Analysis Options⑤、保存模型: 点击ANSYS工具条SAVE_DB。
⑥、求解Command: SOLVEGUI: Main Menu>Solution>Current LS3、后处理ANSYS将热分析的结果写入*.rth文件中,它包含如下数据:基本数据:•节点温度导出数据:•节点及单元的热流密度•节点及单元的热梯度•单元热流率•节点的反作用热流率•其它对于稳态热分析,可以使用POST1进行后处理,关于后处理的完整描述,可参阅《ANSYS Basic Analysis Procedures Guide》。
进入POST1后,读入载荷步和子步:Command: SETGUI: Main Menu>General Postproc>-Read Results-By Load Step可以通过如下三种方式查看结果:•彩色云图显示Command: PLNSOL, PLESOL, PLETAB等GUI: Main Menu>General Postproc>Plot Results>Nodal Solu, Element Solu, Elem Table•矢量图显示Command: PLVECTGUI: Main Menu>General Postproc>Plot Results>Pre-defined or Userdefined•列表显示Command: PRNSOL, PRESOL, PRRSOL等GUI: Main Menu>General Postproc>List Results>Nodal Solu, Element Solu, Reaction Solu详细过程请参阅《ANSYS Basic Analysis Procedures Guide》。