ANSYS非稳态热分析及实例详解解析
《热分析ansys教程》课件

05
热分析优化设计
优化设计的基本概念
01
优化设计是一种通过数学模型和计算机技术,寻找满足特定条 件下的最优设计方案的方法。
02
优化设计的基本概念包括目标函数、设计变量、约束条件和求
解算法等。
热分析优化设计是针对热学问题,通过优化设计来提高产品的
03
热性能和降低能耗。
ANSYS优化设计的步骤
定义设计变量
网格质量检查
对生成的网格进行检查, 确保网格质量良好,没有 出现奇异点或扭曲。
边界条件的设置
确定边界条件
根据分析对象的实际情况,确定合适的边界条件,如温度、热流 率等。
设置边界条件
在ANSYS软件中,将确定的边界条件应用到几何模型上。
验证边界条件
对设置的边界条件进行验证,确保其合理性和准确性。
04
傅里叶定律
热量传递与温度梯度成正比,即热流密度与温度梯度 成正比。
牛顿冷却定律
物体表面与周围介质之间的温差与热流密度成正比。
热力学第一定律
能量守恒定律,表示系统能量的增加等于传入系统的 热量与系统对外界所做的功之和。
热分析的三种基本类型
稳态热分析
系统达到热平衡状态时的温度分布。
瞬态热分析
系统随时间变化的温度分布。
网格划分问题
网格划分不均匀
在某些区域,网格可能过于密集,而 在其他区域则可能过于稀疏,这可能 导致求解精度下降或求解失败。
网格自适应调整问题
在某些情况下,ANSYS可能无法正确 地自适应调整网格,导致求解结果不 准确。
网格划分问题
手动调整网格
手动调整网格密度,确保在关键区域有足够的网格密度。
使用更高级的网格划分工具
热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。
ANSYS热分析详解

ANSYS热分析详解ANSYS(工程仿真软件)是一种广泛应用于工程领域的有限元分析软件。
它不仅可以进行结构力学分析,还可以进行热分析。
热分析是通过数值模拟来研究物体在不同温度和热载荷条件下的热行为。
下面将详细介绍ANSYS热分析的一般步骤和常见应用。
热分析的步骤通常包括几个关键步骤:1.几何建模:通过ANSYS软件创建物体的三维几何模型。
可以使用软件内置的几何建模工具或从其他CAD软件导入几何模型。
2.材料定义:选择适当的材料,并在ANSYS中定义其热特性,如导热系数、比热容和线膨胀系数等。
3.网格划分:将几何模型分割成许多小单元,称为有限元。
每个有限元具有一组方程来描述其热行为。
网格划分的质量直接影响到最终结果的准确性,因此需要仔细选择合适的网格划分方法。
4.边界条件:指定物体的边界条件,如温度、热流、辐射、对流等。
这些边界条件会影响物体的热传导和热平衡。
5.求解:通过解决一组非线性偏微分方程来计算物体的温度分布。
ANSYS使用有限元方法来求解这些方程,并返回物体在不同点上的温度值。
6.后处理:对计算结果进行可视化和分析。
ANSYS可以绘制温度分布图、热通量图、温度梯度图等,以帮助用户更好地理解和分析物体的热行为。
1.电子器件散热分析:在电子设备中,散热问题常常是一个关键问题。
通过ANSYS热分析,可以评估电子器件所产生的热量,以及散热器的性能,从而确保设备的可靠性和性能。
2.汽车发动机冷却分析:汽车发动机的性能和寿命受限于冷却系统的效果。
ANSYS热分析可以帮助评估不同冷却系统的性能,并优化设计以提高发动机的效率和耐久性。
3.压力容器热应力分析:在高温和高压条件下,压力容器可能会发生热应力。
ANSYS热分析可以帮助评估容器的热应力,并指导合适的设计改进。
4.太阳能热系统分析:太阳能是一种可再生能源,可以通过太阳能热系统将太阳能转化为热能。
ANSYS热分析可以帮助评估太阳能热系统的性能,并优化设计以提高能量转化效率。
《热分析ansys教程》课件

汽车发动机热分析
总结词
汽车发动机热分析用于研究发动机工作过程中的热量传递和热应力分布,以提高发动机 效率和可靠性。
详细描述
发动机是汽车的核心部件,其工作过程中会产生大量的热量。通过热分析,工程师可以 了解发动机内部的温度分布和热应力状况,优化发动机设计,提高其燃油效率和耐久性
。
建筑物的温度分布分析
热分析的基本原理
热分析是研究温度场分布、变化 和传递规律的科学,其基本原理 包括能量守恒、热传导、对流和 辐射等。
热分析的应用领域
热分析广泛应用于能源、动力、 化工、机械、电子等众多领域, 涉及传热、燃烧、材料热物性、 电子器件散热等方面。
热分析的常用软件
ANSYS是国际上最流行的热分析 软件之一,具有强大的建模、网 格划分、加载、求解和后处理功 能,广泛应用于工程实际和科学 研究。
模拟系统在稳定状态下温度分布和热流密 度的计算方法
总结词
适用于研究系统在稳定状态下的热性能和 热量传递机制。
详细描述
稳态热分析用于计算系统在稳定状态下温 度分布和热流密度,不考虑时间因素,只 考虑热平衡状态。
详细描述
在稳态热分析中,系统的温度分布和热流 密度不随时间变化,因此可以忽略时间积 分效应,简化计算过程。
施加边界条件和载荷
根据实际情况,为模型的边界施加固 定温度、热流等边界条件,以及热载 荷。
求解和结果查看
选择求解器
根据模型的大小和复杂程度,选择合适的求解器进行求解。
结果后处理与查看
查看温度分布、热流分布等结果,并进行必要的后处理,如云图显示、数据导 出等。
03
热分析的常用方法
稳态热分析
总结词
COMSOL Multiphysics
ANSYS非稳态热分析及实例详解

第7 章非稳态热分析及实例详解本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。
本章要点非稳态导热的基本概念非稳态热分析的应用非稳态热分析单元分析的基本步骤本章案例钢球非稳态传热过程分析不同材料金属块水中冷却的非稳态传热过程分析高温铜导线冷却过程分析7.1 非稳态热分析概述物体的温度随时间而变化的导热过程称为非稳态导热。
根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。
无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。
许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。
例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。
再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。
可见,非稳态热分析是有相当大的应用价值的。
ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。
非稳态热分析确定了温度以及其它随时间变化的热参数。
7.1.1 非稳态热分析特性瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。
在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。
瞬态热分析的基本步骤与稳态热分析类似。
主要的区别是瞬态热分析中的载荷是随时间变化的。
为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。
对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。
7.1.2 非稳态热分析的控制方程热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下:[]{}[]{}{}C T K T Q +=其中,[]{}C T 为热储存项。
ANSYS流体与热分析第10章热分析典型工程实例

第10 章热分析典型工程实例本章要点拉伸特征旋转特征扫掠特征混合特征孔特征壳特征本章案例某型号手机电池的散热分析冷库复合隔热板热量流动分析电子元器件散热装置温度分析10.1 工程实例1——某型号手机电池的散热分析该算例为某型手机电池的散热分析,如图10-1为某型号手机背面的照片,图中可见手机的电池的位置。
在手机工作时,电池可向外传递热量。
使用手机的读者应该都体会过手机电池发热的现象,特别是在长时间接打电话时,这种现象尤为明显。
本实例对某型号手机进行分析,电池的标准电压为3.7V,电池容量为750mAh。
试求手机开机状态下外壳的温度分布。
手机的各部分材料性能参数如表10.1所示。
图10-1 手机背面照片在计算分析过程中我们将手机看做三个组成部分:塑料外壳、手机内部材料和手机电池。
忽略手机内部线路和芯片,可以将手机电池看做唯一热源。
简化后的手机模型如图10-2所示,图中单位均为cm。
本实例拟采用Solid Tet 10node 87单元进行分析。
由于电池功率和环境温度均可视为恒定不变,因此分析类型为稳态。
图10-2 简化后的手机模型由电池的电压和电流可以算得电池的功率:==⨯=P UI 3.70.75 2.775W电池的体积为:3=⨯⨯=V0.040.010.050.00002m电池的发热量:3==Q P/V138750W/m——附带光盘“Ch10\实例10-1_start”——附带光盘“Ch10\实例10-1_end”——附带光盘“A VI\Ch10\10-1.avi”1、定义分析文件名1、选择Utility Menu>File>Change Jobname,在弹出的单元增添对话框中输入Example10-1,然后点击OK按钮。
2、选择Main Menu>Preferences,弹出Preferences for GUI Filtering对话框,点选Thermal复选框,单击OK按钮关闭该对话框。
ansys热分析实例教程

Temperature distribution in a CylinderWe wish to compute the temperature distribution in a long steel cylinder with inner radius 5 inches and outer radius 10 inches. The interior of the cylinder is kept at 75 deg F, and heatis lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F and the thermal conductivity for steel is 0.69 BTU/hr-in-F.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. Recognize symmetry of the problem, and a quadrant of a section through the cylinder is created using ANSYS area creation tools. Preprocessor -> Modeling -> Create -> Areas -> Circle -> Partial annulusThe following geometry is created.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Thermal Solid -> Solid 8 node 77 -> OK -> Close5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area and refine using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the convection coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesTo account for symmetry, select the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperaturesThe temperature on the interior is 75 F and on the outside wall it is found to be 45. These results can be checked using results from heat transfer theory.BackThermal Stress of a Cylinder using Axisymmetric ElementsA steel cylinder with inner radius 5 inches and outer radius 10 inches is 40 inches long and has spherical end caps. The interior of the cylinder is kept at 75 deg F, and heat is lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F. Calculate the stresses in the cylinder caused by the temperature distribution.The problem is solved in two steps. First, the geometry is created, the preference set to'thermal', and the heat transfer problem is modeled and solved. The results of the heat transfer analysis are saved in a file 'jobname.RTH' (Results THermal analysis) when you issue a save jobname.db command.Next the heat transfer boundary conditions and loads are removed from the mesh, the preference is changed to 'structural', the element type is changed from 'thermal' to 'structural', and the temperatures saved in 'jobname.RTH' are recalled and applied as loads.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. A quadrant of a section through the cylinder is created using ANSYS area creation tools.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Solid 8 node 77 -> OK ->Options -> K3 Axisymmetric -> OK5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesSelect the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperatureThe temperature on the interior is 75 F and on the outside wall it is found to be 43.12. File -> Save Jobname.db13. Preprocessor -> Loads -> Delete -> Delete All -> Delete All Opts.14. Preferences -> Structural will show, Thermal will NOT show.15. Preprocessor -> Element Type -> Switch Element Type -> OK (This changes the element to structural)16. Preprocessor -> Loads -> Apply -> Displacements -> Nodes(Fix nodes on vertical and horizontal lines of symmetry from crossing the lines of symmetry.)17. Preprocessor -> Loads -> Apply -> Temperature -> From Thermal AnalysisSelect Jobname.RTH (If it isn't present, look for the default 'file.RTH' in the root directory)18. Solution -> Solve Current LS19. General Postprocessor -> Plot Results -> Element Solution - von Mises StressThe von Mises stress is seen to be a maximum in the end cap on the interior of the cylinder and would govern a yield-based design decision.Back。
ANSYS_热分析报告(两个实例)有限元热分析报告上机指导书

第四讲 热分析上机指导书CAD/CAM 实验室,USTC实验要求:1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进展稳态热分析的根本过程,熟悉用直接耦合法、间接耦合法进展热应力分析的根本过程。
2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进展瞬态热分析的根本过程。
容1:冷却栅管问题问题描述:本实例确定一个冷却栅管〔图a 〕的温度场分布与位移和应力分布。
一个轴对称的冷却栅结构管为热流体,管外流体为空气。
冷却栅材料为不锈钢,特性如下:W/m ℃×109 MPa×10-5/℃边界条件:〔1〕管:压力:6.89 MPa流体温度:250 ℃对流系数249.23 W/m 2℃〔2〕管外:空气温度39℃对流系数:62.3 W/m 2℃假定冷却栅管无限长,根据冷却栅结构的对称性特点可以构造出的有限元模型如图b 。
其上下边界承受边界约束,管部承受均布压力。
练习1-1:冷却栅管的稳态热分析步骤:1. 定义工作文件名与工作标题1) 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【ChangeJobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。
2) 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。
3) 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> WindowOptions ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章向读者介绍非稳态热分析的基本知识, 主要包括非稳态热分析的应用、 非稳态热分析的基本步骤。
非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤丄本章案例钢球非稳态传热过程分析不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析7.1 非稳态热分析概述物体的温度随时间而变化的导热过程称为非稳态导热。
根据物体温度随着时间的推移而变化的 特性可本章要点非稳态热分析单兀、以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。
无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。
许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。
例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。
再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。
可见,非稳态热分析是有相当大的应用价值的。
ANSYS 11.0 及其相关的下属产品均支持非稳态的热分析。
非稳态热分析确定了温度以及其它随时间变化的热参数。
7.1.1 非稳态热分析特性瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。
在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。
瞬态热分析的基本步骤与稳态热分析类似。
主要的区别是瞬态热分析中的载荷是随时间变化的。
为了表达随时间变化的载荷,首先必须将载荷 - 时间曲线分为载荷步。
对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。
7.1.2 非稳态热分析的控制方程热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下:C T& K T Q其中,C T&为热储存项。
在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下:C T& K T Q t 若分析为分线性,则各参数除了和时间有关外,还和温度有关。
非线性的控制方程可表示如下:C T T& K T T Q T, t7.1.3 时间积分与时间步长1 、时间积分从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。
利用 ANSYS 11.0 分析问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。
2 、时间步长两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。
确定时间步长的方法有两种:( 1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。
( 2)大致估计初始时间步长。
在非稳态热分析中估计初始时间步长,可以使用 Biot 数和 Fourier 数。
Biot 数是不考虑尺寸的热阻对流和传导比例因子,其定义为:K式中:x ――名义单元宽度;h ――平均表面换热系数; K ――平均导热系数。
式中: 一一平均密度;c ——比热容;如果Bi 1,可将Fourier 数设为常数并求解t 来预测时间步长:2 2tc( x) ( x)_ c式中: ------ 热耗散。
如果Bi 1,时间步长可应用Fourier 数和Biot 数的乘积预测:其中,0.1 0.5时间步长的预测精度随单元宽度的取值、平均的方法、比例因子 的变化而变化。
7.1.4数值求解过程当前温度矢量 T n 假设为已知,可以是初始温度或由前面的求解得到的。
定义下一个时间点的温度矢量为:FogBi求解t 得到:t h x h t2c( x)Kc xt c xthBiFourier 数是不考虑尺寸的时间(t/t ),其定义为:F oK t c( x)2T n 1 T n (1 ) t T& t T&1其中称为欧拉参数,默认为 1,下一个时间点的温度为:C T&1 K Tn 1Q 由上面两式可得:1 C K T n 1 Q C - 1 T 1nt tK Tm Q1其中—C K KtQ C 丄T n 1 T& Qt 1欧拉参数的数值在0.5~1之间。
在这个范围内,时间积分算法是不明显而且是不稳定的。
因此,ANSYS 11.0总是忽略时间积分步的幅值来计算。
但是,这样的计算结果并不总是准确的。
下面是选择积分参数的一些建议:当=0.5时,时间积分方法采用“Crank-Nicolson ”技术。
本设置对于绝大多数热瞬态问题都是精确有效的。
当=1时,时间积分方法采用“Backward Euler ”技术。
这是缺省的和最稳定的设置,因为它消除了可能带来严重非线性或高阶单元的非正常振动。
本技术一般需要相对Cran k-Nicolson 较小的时间积分步得到精确的结果。
7.2非稳态热分析单兀非稳态热分析和稳态热分析使用的分析单兀相同,具体请读者参见本书第6章。
7.3非稳态热分析基本步骤非稳态热分析的基本步骤主要包括:建模、加载求解和后处理。
下面分别对这三个基本步骤进行具体的阐述。
7.3.1 建立有限元模型就这一步骤而言,并没有稳态和非稳态之分,可参照稳态分析的建模方法进行。
里不在赘述。
7.3.2 加载求解1、定义分析类型如果第一次进行分析或重新进行分析,操作步骤如下:Command: ANTYPE,TRANSIENT,NEWGUI : Main Menu>Solution>Analysis Type>New Analysis>Transient 如果接着上次的分析继续进行(例如增加其它载荷),操作步骤如下: Command:ANTYPE,TRANSIENT,RESTGUI : Main Menu>Solution>Analysis Type>Restart2、获得非稳态热分析的初始条件( 1 )定义均匀温度场如果已知模型的起始温度是均匀的,可设定所有节点初始温度,操作步骤如下: Command: TUNIFGUI: Main Menu>Solution>Loads>Settings>Uniform Temp 如果不在对话框中输入数据,则默认为参考温度,参考温度的值默认为零,设定参考温度:Command: TREF 因此,在这但可通过如下方法GUI: Main Menu>Solution>Loads>Settings>Reference T 注意:设定均匀的初始温度,与如下的设定节点的温度(自由度)不同,设定节点温度的操 作步骤如下:Command: DGUI: Main Menu>Solution>Loads>Apply>Thermal>Temperature>On Nodes初始均匀温度仅对分析的第一个子步有效; 而设定节点温度将保持贯穿整个瞬态分析过程, 除 非通过下列方法删除此约束:Command: DDELEGUI: Main Menu>Solution>Loads>Delete>Thermal>Temperature>On Nodes( 2 )设定非均匀的初始温度在瞬态热分析中,节点温度可以设定为不同的值,操作步骤如下:Command: CGUI: Main Menu>Solution>Loads>Apply>Initial Condit'n>Define如果初始温度场是不均匀的且又是未知的, 就必须首先作稳态热分析确定初始条件, 步骤如下: •设定载荷(如已知的温度、热对流等) •将时间积分设置为OFF :Command: TIMINT, OFFGUI: Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>TimeIntegrationCommand: TIMEemp设定一个只有一个子步的,时间很小的载荷步(例如0.001 ):GUI: Main Menu>Preprocessor>Loads>LoadStep Opts>Time/Frequenc>TimeandSubstps写入载荷步文件:Command: LSWRITEGUI: Main Menu>Preprocessor>Loads>Write LS File或先求解:Command: SOLVEGUI: Main Menu>Solution>Solve>Current LS3 、设定载荷步选项(1)普通选项•设置时间和时间步步,操作如下:Command: TIMEGUI: Main Menu>Solution>Load Step Opts>Time/Frequenc>Time-Time Step•设置每个载荷步的载荷子步数,或时间增量Command: NSUBST or DELTIMGUI: Main Menu>Solution>Load Step Opts>Time/Frequenc>Time and Substps( 2)非线性选项•设置迭代次数:(每个子步默认的次数为 25 ,这对大多数非线性热分析已经足够)Command: NEQITGUI: Main Menu>Solution>Load step opts>Nonlinear>Equilibrium Iter•自动时间步长:(本选项为 ON 时,在求解过程中将自动调整时间步长)Command: AUTOTSGUI: Main Menu>Solution>Load Step Opts>Time/Frequenc>Time and Substps•时间积分效果:(如果将此选项设定为 OFF,将进行稳态热分析)Command: TIMINTGUI: Main Menu>Solution>Load Step Opts>Time/Frequenc>Time Integration (3)输出选项•控制打印输出:(本选项可将任何结果数据输出到*.out文件中)Command: OUTPRGUI: Main Menu>Solution>Load Step Opts>Output Ctrls>Solu Printout•控制结果文件:(控制*.rth的内容)Command: OUTRESGUI: Main Menu>Solution>Load Step Opts>Output Ctrls>DB/Results File( 4 )存盘求解7.3.3 后处理ANSYS 提供两种后处理方式:P0ST1,可以对整个模型在某一载荷步(时间点)的结果进行后处理;Command: POST1GUI: Main Menu>General Postproc.POST26,可以对模型中特定点在所有载荷步(整个瞬态过程)的结果进行后处理。